Supplementary Information for

Abrogation of pre-nucleation, transient oligomerization of the Huntingtin exon-1 protein by human profilin-I

Alberto Ceccona, Vitali Tugarinova, Rodolfo Ghirlanдоб and G. Marius Cloreа

аLaboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
бLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540
Expression and purification of httex1 and htt\textsuperscript{NTQ-P\textsubscript{11}K\textsubscript{2}} peptides. Both httex1 and htt\textsuperscript{NTQ-P\textsubscript{11}K\textsubscript{2}} peptides were expressed as fusion proteins, with the immunoglobulin-binding domain of streptococcal protein G (GB1) attached to the peptide N-termini, following a protocol described previously (1, 2). Codon optimized httex1 and htt\textsuperscript{NTQ-P\textsubscript{11}K\textsubscript{2}} gene constructs cloned in pET-21d(+) plasmids with Ncol and BamHI cloning sites, were purchased from Genscript Inc. (Piscataway, NJ). Both plasmids contained a 6 Histidine (His\textsubscript{6}) tag following the sequence of GB1 and prior to the Factor Xa cleavage site (GB1 – His\textsubscript{6} – FXa cleavage site - peptide). The GB1-httex1 and GB1-htt\textsuperscript{NTQ-P\textsubscript{11}K\textsubscript{2}} fusion constructs were expressed in E. Coli BL21 (DE3) cells grown in M9 minimal medium supplemented with appropriate 15N and/or 13C isotope sources. Uniform 15N and 13C labeling was achieved by using 15NH\textsubscript{4}Cl and 13C\textsubscript{6}-D-glucose as the sole nitrogen and carbon sources, respectively. Fractional 13C\alpha labeling (with all other carbons at natural isotopic abundance) was achieved using [2-13C]-D-glucose as the sole carbon source (3). This labeling strategy produces proteins selectively fractionally 13C\alpha-labeled in all residues except leucine (where the 13C position is labeled at less than 10%), and isoleucines and valines (where 13C\alpha-1213C\beta and 13C\alpha-1313C\beta pairs are in a ratio of 1.2:1) (3).

Following protein over-expression (at 20 °C for 18 h), the cells were harvested by centrifugation (4,500 × g for 25 min), and the resulting cell pellet resuspended in buffer comprising 50 mM Tris-HCl, pH 8, 100 mM NaCl and 20 mM imidazole. EDTA-free protease inhibitors (Roche Life Science) were added to the suspension, and the cells were lysed by heating to 80°C for 10 min. The cell lysate was clarified by centrifugation (40,000 × g for 25 min). The His-tagged fusion proteins were subsequently isolated by affinity chromatography using a HisTrap HP 5 ml column (GE Healthcare, USA) on an AKTA explorer FPLC system. The GB1 fusion domain and the associated His\textsubscript{6} tag were cleaved by addition of Factor Xa (0.0065 mg/mL) directly to the fractions containing the eluted proteins, and the excess imidazole eliminated by extensive dialysis against buffer containing 50 mM Tris-HCl, pH 8, 100 mM NaCl, 20 mM imidazole for 18 h (4 °C). The GB1-His\textsubscript{6} tag was subsequently removed from the solution by affinity chromatography. The httex1 and htt\textsuperscript{NTQ-P\textsubscript{11}K\textsubscript{2}} polypeptides were purified by reverse phase high performance liquid chromatography (HPLC) using a preparative scale C4 column (Vydac) as described previously (2). Both peptides were eluted with a gradient (from 20 to 45 %) of solvent B (95% v/v acetonitrile, 4.9% v/v H\textsubscript{2}O, 0.1% v/v trifluoroacetic acid (TFA)) in solvent A (5% v/v acetonitrile, 94.9% v/v H\textsubscript{2}O and 0.1% v/v TFA). Following purification, a disaggregation procedure involving the dissolution of the peptides in a 1:1 (v/v) mixture of TFA and hexafluoroisopropanol (HFIP) (4), was used to ensure complete removal of any pre-existing aggregates that can potentially accelerate aggregation of monomeric peptides. The TFA:HFIP solvent mixture was removed under a stream of N\textsubscript{2} gas directed into the flask through a glass pipette for 4 h. The peptide film was then dissolved in 0.1 mM TFA prior to lyophilization. Completion of the cleavage reaction and the peptide identity were confirmed by liquid phase chromatography coupled with electrospray mass spectrometry (LC-MS).

Expression and purification of human profilin-I. Recombinant human profilin-I (referred to hereafter as profilin) was expressed and purified as described in (5). E.coli cells were transformed with the pET-15b plasmid containing thePFN1 gene bearing an N-terminal His-tag, and grown at 37 °C either in M9 minimal medium, containing 15NH\textsubscript{4}Cl and 12C\textsubscript{6}-D-glucose as the sole nitrogen and carbon sources, respectively, or in Luria-Bertani (LB) rich medium. Following protein over-expression for 4 h at 37 °C, the cells were harvested, resuspended in buffer (20 mM sodium phosphate, pH 6.5, 150 mM NaCl, 20 mM imidazole and 2 mM dithiothreitol (DTT)), and sonicated. The cell debris was removed by centrifugation (40,000 × g for 25 min), the supernatant injected onto a HisTrap HP 5 ml column (GE Healthcare, USA), and the protein
eluted using a step gradient of imidazole (20 to 500 mM). The His-tag was subsequently removed by overnight proteolysis with tobacco etch virus (TEV) protease in 20 mM phosphate buffer, pH 6.5, 150 mM NaCl and 2 mM DTT. The last step of purification consisted of gel filtration on a Superdex 75 column, followed by dialysis against a buffer comprising 20 mM phosphate, pH 6.5, 50 mM NaCl, 2 mM DTT and 1 mM EDTA.

Preparation of NMR samples. NMR samples of huntingtin peptides were prepared by dissolving an aliquot of the httex1 or httNTQ\textsubscript{P1}\textsubscript{K2} polypeptides in a 13.8 mM monobasic sodium phosphate buffer, pH 4.6, containing 50 mM NaCl in 10% D\textsubscript{2}O/90% H\textsubscript{2}O (v/v). As described previously, lower pH improves peptide solubility (4). The pH of the buffer was subsequently adjusted to 6.5 by adding dibasic sodium phosphate for a final sodium phosphate concentration of 20 mM. The concentration of the httex1 and httNTQ\textsubscript{P1}\textsubscript{K2} polypeptide stock solutions was 1.5 mM, and the stocks were diluted to the appropriate final concentrations prior to NMR measurements. NMR samples containing profilin were dissolved in a 20 mM monobasic sodium phosphate buffer, pH 6.5, containing 50 mM NaCl, 2 mM DTT and 1 mM EDTA in 10% D\textsubscript{2}O/90% H\textsubscript{2}O (v/v).

Sedimentation velocity analytical ultracentrifugation. Sedimentation velocity experiments were carried out on a Beckman Optima XL-A or Beckman Coulter ProteomeLab XI-I analytical ultracentrifuge at 50,000 or 60,000 rpm (10 °C) following standard protocols (6). Samples of httex1, prepared in 20 mM sodium phosphate buffer, pH 6.5, 50 mM NaCl and 10% D\textsubscript{2}O/90% H\textsubscript{2}O (v/v), were analyzed at a series of protein concentrations ranging from 0.2 to 1.2 mM. The samples were loaded into 3 mm path-length, 2-channel centerpiece cells, and sedimentation data were collected using the absorbance and interference optical detection systems. Time-corrected data (7, 8) were analyzed in SEDFIT 16.1c (9) in terms of a continuous c(s) distribution of sedimenting species (Fig. S1). The solution density and viscosity were measured on an Anton Paar DMA 5000 density meter and Anton Paar AMVn automated rolling ball viscometer, respectively, at 20 °C and corrected to 10 °C. The protein partial specific volume was determined based on the composition in SEDNTERP (10). Sedimentation coefficients were corrected to $s_{20,w}$ values at standard conditions.

NMR spectroscopy. All NMR experiments were recorded at 5 °C (with the exception of 3D triple resonance experiments for backbone resonance assignments that were performed at 10 °C) using Bruker Avance-III spectrometers, equipped with TCI triple resonance z-axis gradient cryogenic probes operating at 1H Larmor frequencies of 900.16, 800.13 and 600.82 MHz. Backbone 1H, 13C and 15N resonance assignments of httex1 were carried out using standard 3D triple resonance HNCA CB AND CBCA(CO)NH experiments on a 0.5 mM 15N/13C-labeled sample of httex1. The NMR data were processed using NMRPipe (11), and in the case of exchange induced shift measurements, the time domain in the indirect dimension (15N or 13C) was extended two-fold through the application of sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction (12). The backbone assignments for httex1 have been deposited in the Biological Magnetic Resonance Bank (www.bmrbr.wisc.edu; BMRB accession codes 50122).

15N/13C\textsubscript{\alpha}-CPMG relaxation dispersion experiments. All 15N-CPMG relaxation dispersion experiments were recorded using a pulse scheme that provides the effective relaxation rates of in-phase 15N coherences (13), with amide proton decoupling during the relaxation period achieved by continuous wave (CW) irradiation using a radio frequency (RF) field strength of 11 kHz. Reference experiments for all 15N-CPMG
measurements were obtained by omitting the relaxation period. \(^{15}\text{N}\)-CPMG relaxation dispersion experiments on 0.8, 0.6 and 0.3 mM \(^{15}\text{N}/^{13}\text{C}\)α-labeled htt\(^{\text{ex}}\) were recorded at 600 and 900 MHz with the relaxation period set to 100 ms, and the following CPMG fields \(v_{\text{CPMG}}\): 0, 10, 20, 40, 70, 90, 110, 130, 150, 180, 210, 240, 280, 320, 420, 500, 580, 660, 740, 820, 900 and 1000 Hz. \(^{15}\text{N}\)-CPMG relaxation dispersion experiments on 0.75 and 0.4 mM \(^{15}\text{N}/^{13}\text{C}\)α-labeled htt\(^{\text{ex}}\) in the presence of 4.8 mM unlabeled profilin were recorded at 600 and 800 MHz with the relaxation period set to 80 ms and the following set of CPMG fields: 0, 12.5, 25, 50, 75, 100, 125, 150, 200, 225, 275, 325, 375, 437.5, 500, 562.5, 625, 750, 875 and 1000 Hz. \(^{15}\text{N}\)-CPMG relaxation dispersion measurements on 0.4 mM \(^{15}\text{N}/^{13}\text{C}\)α-labeled profilin in the presence of 15 \(\mu\)M unlabeled htt\(^{\text{NT}}\)Q\(^{\text{P1}}\)K\(^{\text{2}}\) were recorded at 600 and 800 MHz, with the relaxation period set to 30 ms and the following CPMG fields: 0, 33.3, 66.7, 100.0, 133.3, 166.7, 233.3, 300, 366.7, 433.3, 500, 600, 666.7, 800, 933.3 and 1000 Hz.

\(^{13}\text{C}\)α-CPMG relaxation dispersion experiments were recorded using the pulse scheme described in (14) with \(^1\text{H}\) CW decoupling during the relaxation period applied with a RF field strength of 12 kHz. The reference experiments were obtained by omitting the relaxation period. \(^{13}\text{C}\)α-CPMG relaxation dispersion experiments on 0.8, 0.6 and 0.3 mM \(^{15}\text{N}/^{13}\text{C}\)α-labeled htt\(^{\text{ex}}\) were recorded at 600 and 900 MHz with the \(^{13}\text{C}\)α relaxation period set to 40 ms and the following set of CPMG fields: 0, 25, 50, 75, 100, 125, 150, 200, 250, 300, 400, 500, 600, 750, 925, 1125, 1375, 1675 and 2000 Hz. \(^{13}\text{C}\)α-CPMG relaxation dispersion experiments on 1.0 mM \(^{15}\text{N}/^{13}\text{C}\)α-labeled htt\(^{\text{NT}}\)Q\(^{\text{P1}}\)K\(^{\text{2}}\) in the presence of 0.1 mM unlabeled profilin were recorded at 600 and 800 MHz with the relaxation period set to 30 ms and the following CPMG fields: 0, 33.3, 66.7, 100.0, 133.3, 166.7, 200.0, 266.7, 333.3, 400.0, 533.3, 666.7, 866.7, 1000.0, 1166.7, 1333.3, 1500.0, 1666.7, 1833.3 and 2000 Hz.

\(^{15}\text{N}\) transverse spin relaxation rate \((R_2)\) and lifetime line-broadening \((\Delta R_2)\) measurements. The values of \(^{15}\text{N}\)-\(R_2\) for 0.1 mM \(^{15}\text{N}\)-labeled htt\(^{\text{ex}}\) in the absence and presence of profilin were obtained from the measured \(^{15}\text{N}\)-\(R_{1p}\) (1.5 kHz spin-lock field) and \(^{15}\text{N}\)-\(R_1\) rates at 600 MHz and 5 °C using the pulse schemes and procedures described previously (2, 15). Lifetime line-broadening \((^{15}\text{N}-\Delta R_2)\) values \((\text{Fig. 4B, main text)}\) were calculated as the difference between \(^{15}\text{N}\)-\(R_2\) values of htt\(^{\text{ex}}\) obtained in the presence and absence of profilin.

\(^{13}\text{C}\)α and \(^{15}\text{N}\) exchange-induced chemical shifts \((\delta_{\text{ex}})\). The concentration-dependent changes in \(^{13}\text{C}\)α and \(^{15}\text{N}\) chemical shifts of \(^{15}\text{N}/^{13}\text{C}\)α-labeled htt\(^{\text{ex}}\) were obtained from 2D \(^1\text{H}-^{13}\text{C}\) constant-time (CT)-HSQC (900 MHz) and 2D \(^1\text{H}-^{15}\text{N}\) HSQC (800 MHz) spectra, respectively, recorded in the absence and presence of profilin. A constant-time period of 56 ms (~ \(2/\(J_{\text{CC}}\)) was used in the 2D \(^1\text{H}-^{13}\text{C}\) CT-HSQC experiments. Successive dilutions of \(^{15}\text{N}/^{13}\text{C}\)α-labeled htt\(^{\text{ex}}\) from the 1.2 mM to 50 \(\mu\)M concentration were performed by addition of NMR buffer (20 mM phosphate buffer, pH 6.5, 50 mM NaCl and 90% H\(_2\)O/10% D\(_2\)O v/v), with the protein concentration and pH verified at each dilution step. \(^{13}\text{C}\)α and \(^{15}\text{N}\) exchange-induced chemical shifts \((\delta_{\text{ex}})\) were calculated as, \(\delta_{\text{ex}}(i) = \delta_{\text{obs}}(i) - \delta_{\text{ref}}, \) where \(\delta_{\text{obs}}\) is the observed chemical shift at the peptide concentration \(i, \) and \(\delta_{\text{ref}}\) is the chemical shift at a concentration of 50 \(\mu\)M htt\(^{\text{ex}}\). The errors in peak positions were determined as described earlier (2). The absence of any observable changes in \(^{13}\text{C}\)α chemical shifts of Thr2, Gln22 and Gln23 and the \(^{15}\text{N}\) shift of His71 are indicative of the pH stability and continuity of conditions of the NMR samples over the entire concentration range. For the measurements of \(\delta_{\text{ex}}\) in the presence of unlabeled profilin, the concentration of profilin was kept constant throughout at 4.8 mM by including profilin in the NMR buffer. The changes in \(^{15}\text{N}\) chemical shifts of the 0.4 mM \(^{15}\text{N}/^{13}\text{C}\)α-labeled profilin in the presence of 15 \(\mu\)M htt\(^{\text{NT}}\)Q\(^{\text{P1}}\)K\(^{\text{2}}\) were obtained from 2D \(^1\text{H}-^{15}\text{N}\) HSQC spectra recorded at
600 and 800 MHz. 15N-δ_{ex} values were obtained in the same manner as for httex1 but using the chemical shifts of free profilin as the reference, δ_{ref}.

Quantitative analysis of pre-nucleation transient oligomerization of free httex1. The characterization of the inter-conversion between free monomeric httex1 and several oligomeric httex1 species followed closely that of our previous study of transient oligomerization of the shorter huntingtin variant, httNTQ7 (2) from both experimental and analytical perspectives. The reader is referred to the SI Appendix of (2), where the details of data analysis, the assumptions used in the modeling of the oligomerization kinetics, as well as the procedures of model selection, are discussed at length. Similar sets of concentration-dependent 15N/13Ca CPMG relaxation dispersion and 15N/13Ca exchange-induced shift data were collected for httex1 as were obtained and analyzed previously for the shorter httNTQ7 variant (see ‘Materials and Methods’ above). All the experimental data used for analysis is shown in Fig. S2. The data were included into the minimized target function consisting of the differences squared between experimental and calculated values of each observable (2). The minimal oligomerization model that accounts for all the data, comprising an on-pathway dimer (E$_2$) and tetramer (E$_4$), and an off-pathway dimer (E'_{2}) which does not undergo further oligomerization, is summarized in Fig. 2D of the main text. The $\Delta\omega$ values are listed in Table S1.

To test the robustness of the global fit to all the CPMG relaxation dispersion and δ_{ex} data, we also carried out the following set of calculations: since chemical exchange for the on-pathway process is fast on the chemical shift time scale, the δ_{ex} data were fit independently based simply on optimizing the $\Delta\omega$ values and equilibrium dissociation constants for the on-pathway process only. These optimized parameters were then held fixed, and the CPMG relaxation dispersion data were best-fit including the off-pathway dimer. This procedure, which is significantly faster computationally than the full global minimization, yielded essentially the same results as the full global minimization against the CPMG relaxation dispersion and δ_{ex} data simultaneously.

Quantitative analysis of profilin-httex1 binding. The set of coupled equilibria describing the binding of profilin to the two distinct polyproline binding sites of httex1, P$_{11}$ and P$_{10}$, is shown in Fig. 4D and described in the main text. Here, we reproduce for convenience the binding scheme used for analysis of δ_{ex} and R_2 titration data obtained for each binding partner (Scheme S1), and describe how fractional populations p_i of each complex i ($i \in \{PE,PE',P_{2}EE'\}$) in Fig. 4D and Scheme S1 can be obtained from material balance.
It should be noted that in Scheme S1, $K_{3}^{\text{diss}} = \alpha K_{1}^{\text{diss}}$ and $K_{4}^{\text{diss}} = \alpha K_{2}^{\text{diss}}$ where α is the cooperativity factor (see main text).

The equilibrium concentrations of each of the species in Scheme S1 obey the following mass conservation relationships:

\[
\begin{align*}
[E]_T &= [E] + [PE] + [PE'] + [P_2EE'] \\
[P]_T &= [P] + [PE] + [PE'] + 2[P_2EE']
\end{align*}
\]

where $[P]_T$ and $[E]_T$ are the total concentrations of profilin and httex1, respectively. By substituting the expressions for each dissociation constant K_j^{diss}, $j = (1, 2, 3)$, into Eq. (S1), the following expression for the concentration of free httex1, $[E]$, is obtained,

\[
[E] = [E]_T \left\{1 + \left(\frac{K_{1}^{\text{diss}} + K_{2}^{\text{diss}}}{K_{1}^{\text{diss}} K_{2}^{\text{diss}}} \right) [P] + \left(\frac{[P]^{2}}{K_{3}^{\text{diss}} K_{2}^{\text{diss}}} \right) \right\}^{-1}
\]

(S3)

Substitution of Eq. (S3) into Eq. (S2) provides the following cubic equation,

\[
a[P]^{3} + b[P]^{2} + c[P] + d = 0
\]

(S4)

where $a = (K_{1}^{\text{diss}} K_{3}^{\text{diss}})^{-1}$, $b = (K_{1}^{\text{diss}})^{-1} + (K_{2}^{\text{diss}})^{-1} + (2[E] - [P]_T)(K_{1}^{\text{diss}} K_{3}^{\text{diss}})^{-1}$, $c = 1 + ([E]_T - [P]_T)(1/K_{2}^{\text{diss}} + 1/K_{2}^{\text{diss}})$, and $d = -[P]_T$. Numerical solution of Eq. (S4) for $[P]$ - a function $f(K_j^{\text{diss}}; [E]_T; [P]_T)$ - which we denote by ‘S’ in the following, can be used in conjunction with Eq. (S3) and the expressions for each constant K_j^{diss}, to obtain the expressions for equilibrium concentrations of complex i, $i \in \{PE, PE', P_2EE'\}$,

\[
[PE] = S \lambda [E]_T/K_{1}^{\text{diss}}
\]

(S5.1)

\[
[PE'] = S \lambda [E]_T/K_{2}^{\text{diss}}
\]

(S5.2)

\[
[P_2EE'] = S^2 \lambda [E]_T/(K_{1}^{\text{diss}} K_{3}^{\text{diss}})
\]

(S5.3)

where

\[
\lambda = \left\{1 + \left(\frac{K_{1}^{\text{diss}} + K_{2}^{\text{diss}}}{K_{1}^{\text{diss}} K_{2}^{\text{diss}}} \right) S + \left(\frac{S^{2}}{K_{1}^{\text{diss}} K_{3}^{\text{diss}}} \right) \right\}^{-1}
\]

(S5.4)

The real solution ‘S’ of Eq. (S4) for [P] can also be obtained analytically and has the form,

\[
S = 9a^2 L^2 - 3abL - 3ac - b^2
\]

(S6)

where
\[
L = \left[9a\sqrt{(4/3)ac^3} - (4/3)b^2c^2 + 6abc[P]_T - (4/3)b^2[P]_T + 9a^2[P]_T^2 + 27a^2[P]_T + 9abc - 2b^3 \right]^{1/3}
\]

(S7)

The fractional population \(p_i \) of the complex \(i, i \in \{ PE, PE', P2EE' \} \), can then be obtained by division of each equilibrium concentration in Eqs. (S5.1-5.3) by the total concentration of the observable species ([E]_T or [P]_T). Note that fractional populations \(p_i \) are defined differently for the two types of titrations: when \(^{15}\)N-labeled profilin is titrated with unlabeled htt\(^{ex1} \), the total concentration of observable species is [P]_T, whereas when \(^{15}\)N-labeled htt\(^{ex1} \) is titrated with unlabeled profilin, the corresponding total concentration is [E]_T. The fourth dissociation constant, \(K_4^{\text{diss}} \) (Scheme S1) is calculated a-posteriori, \(K_4^{\text{diss}} = K_1^{\text{diss}} K_3^{\text{diss}} / K_2^{\text{diss}} \).

The measured values of \(^{15}\)N-\(\delta_{ex} \) and \(^{15}\)N-\(\Delta R_2 \) for \(^{15}\)N-labeled htt\(^{ex1} \) in the presence of profilin, and the \(^{15}\)N-\(\delta_{ex} \) values measured for \(^{15}\)N-labeled profilin in the presence of unlabeled htt\(^{ex1} \), were fit simultaneously by minimizing the following target function (\(F \)),

\[
F = \alpha_1 \sum_i \left(\frac{\delta_{\text{obs},i} - \delta_{\text{calc},i}}{\sigma_{\delta_{\text{ex},P11}}} \right)^2 + \alpha_2 \sum_j \left(\frac{\delta_{\text{obs},j} - \delta_{\text{calc},j}}{\sigma_{\delta_{\text{ex},P10}}} \right)^2 + \alpha_3 \sum_k \left(\frac{\Delta R_{\text{obs},k} - \Delta R_{\text{calc},k}}{\sigma_{\Delta R_{2,P11}}} \right)^2 + \\
\alpha_4 \sum_l \left(\frac{\Delta R_{\text{obs},l} - \Delta R_{\text{calc},l}}{\sigma_{\Delta R_{2,P10}}} \right)^2 + \alpha_5 \sum_m \left(\frac{\delta_{\text{obs},m} - \delta_{\text{calc},m}}{\sigma_{\delta_{\text{ex},Prof}}} \right)^2
\]

(S8)

where the first two terms correspond to the differences between the observed (‘obs’) and calculated (‘calc’) \(^{15}\)N-\(\delta_{ex} \) values measured for the two pairs of htt\(^{ex1} \) residues - [Gln22; Gln23] and [Gly62; Val65] - that describe the binding of profilin to the polyproline P\(_1\) and P\(_{10}\) tracts, respectively; the third and the fourth terms correspond to the \(^{15}\)N-\(\Delta R_2 \) data measured for the same two pairs of htt\(^{ex1} \) residues; the last term corresponds to the \(^{15}\)N-\(\delta_{ex} \) values measured for \(^{15}\)N-labeled profilin (‘Prof’) in the presence of unlabeled htt\(^{ex1} \); and \(\sigma' \) denotes experimental errors. The subscripts \(i, j, k, l, m \) refer to residue numbers for each set of data (\(i = 2, j = 2, k = 2, l = 2, m = 4 \)). The coefficients \(\alpha_i \) are empirically determined weighting factors for different types of data: \(\alpha_1 = \alpha_3 = \alpha_4 = \alpha_5 = 1 \), and \(\alpha_2 = 0.5 \). The set of global variable parameters in the minimization of the target function comprised, \(K_j^{\text{diss}}, j = 1, 2, 3 \), while the space of local (residue-specific) variable parameters included: (i) the differences between the chemical shifts of the complexes and the monomeric species, \(\Delta \omega \), for each residue of profilin or htt\(^{ex1} \) (assumed the same for the single-occupied, PE and PE', and double-occupied, P\(_2\)EE', species in Scheme S1, as described in the main text); (ii) transverse \(^{15}\)N spin relaxation rates \(R_2 \) for the single-occupied species PE or PE' (assumed equal), \(R_{2,PE} = R_{2,PE} \). The relaxation rates of the doubly-occupied species P\(_2\)EE' were scaled according to the ratio of molecular weights of the double-occupied (38 kDa) and singly-occupied htt\(^{ex1} \) (23 kDa), and equal to 1.65\(R_{2,PE} \). The fast exchange limit was assumed for lifetime line broadening, \(\Delta R_2 \), where \(\Delta R_2 = p(R_{2,PE} - R_2), i \in \{ PE, PE', P_2EE' \} \), and \(R_2 \) is the relaxation rate of free htt\(^{ex1} \). The best-fit populations \(p_i, i \in \{ PE, PE', P_2EE' \} \), for \(^{15}\)N-
labeled httex1 titrated with unlabeled profilin, and 15N-labeled profilin titrated with unlabeled httex1, are shown in Fig. 4D of the main text.

Analysis of the binding kinetics of profilin-httNTQ\textsubscript{7}P\textsubscript{11}K\textsubscript{2} interactions. The 15N-\textit{δ}_{\text{ex}} titration curves and proline13Cα-CPMG relaxation dispersion profiles obtained for httNTQ\textsubscript{7}P\textsubscript{11}K\textsubscript{2} in the presence of unlabeled profilin, and 15N-\textit{δ}_{\text{ex}} titration curves, 15N-CPMG relaxation dispersion profiles and 15N-\textit{δ}_{\text{ex}} data obtained for profilin in the presence of unlabeled httNTQ\textsubscript{7}P\textsubscript{11}K\textsubscript{2}, were best-fit simultaneously to the kinetic model shown in Scheme S2 and Figure 5F of the main text:

\[
E_S + P \xrightarrow{k_{\text{on}}/k_{\text{off}}} E_S P
\]

Scheme S2

where the bimolecular (second order) nature of profilin(P)-httNTQ\textsubscript{7}P\textsubscript{11}K\textsubscript{2}(E\textsubscript{S}) complex formation is considered explicitly. Such a treatment is advantageous in the case of profilin-httNTQ\textsubscript{7}P\textsubscript{11}K\textsubscript{2} interactions, as the kinetics of complex formation can be monitored from the perspective of each of the binding partners, whose total concentrations are known with sufficient accuracy. The calculations of CPMG relaxation dispersion profiles and exchange induced shifts (\textit{δ}_{\text{ex}}) were performed as described previously (2). The second-order association rate-constant \(k_{\text{on}}\) and the dissociation rate constant \(k_{\text{off}}\) were the two global variable parameters of the fit. The pseudo-first-order, ‘apparent’ association rate constant, \(k_{\text{app}}\), that enters into the exchange matrix, was re-cast as, \(k_{\text{app}} = k_{\text{11}}\), \(i \in \{\text{P, E}\}\), and \([B]\) denotes the equilibrium concentration of (free) species \(i\) (P or E\textsubscript{S} depending on which binding partner is observed). At each step (iteration) of the minimization, the concentration of \(B_i\), \(i \in \{\text{P, E}\}\), is given by, \([B] = [B]_T - p_{B_i} \cdot [B]_T\), where \([B]_T\) and \([B]_T\) are the total concentrations of the two binding partners, \(i, j \in \{\text{P, E}\}\), \(i \neq j\), and the population of the bound state \(j\), \(p_{B_i}\), is calculated from the solution of the quadratic equation obtained from the material balance,

\[
p_{B_i} = \frac{([B]_T + [B]_T + K^{\text{diss}}) - \left(([B]_T + [B]_T + K^{\text{diss}})^2 - 4[B]_T[B]_T \right)^{1/2}}{2[B]_T}
\]

where \(K^{\text{diss}} = k_{\text{off}}/k_{\text{on}}\), \(i, j \in \{\text{P, E}\}\), and \(i \neq j\).

The array of local (residue-specific) variable parameters comprised,

\[
\{\Delta \omega_{\text{N}^x_i}, \Delta \omega_{\text{C}^\alpha_i}, \Delta \omega_{\text{N}^x_i}, \Delta \omega_{\text{H}_i}, R_{\text{2,1}^x_i}, R_{\text{2,1}^\alpha_i}, R_{\text{2,1}^x_i}, R_{\text{2,1}^\alpha_i}, R_{\text{2,2}^x_i}, R_{\text{2,2}^\alpha_i}, R_{\text{2,2}^x_i}, R_{\text{2,2}^\alpha_i}\}
\]

where \(\Delta \omega\) denotes the differences between the chemical shifts of the bound species (E\textsubscript{S}P) and those of the free httNTQ\textsubscript{7}P\textsubscript{11}K\textsubscript{2} (‘E\textsubscript{S}’) or profilin (‘P’); \(R_2\) is the transverse spin relaxation rate of the free species (E\textsubscript{S} or P). The superscripts denote the type of the nucleus (‘15N’; ‘13C\alpha’; ‘1H\gamma’, ‘1HN’), \(1H\) spectrometer frequency (600 and 800 MHz), and the number of residues analyzed \((i = 4, j = 2, k = 8, l = 5, \text{and } m = 1)\).

Analysis of 15N-CPMG relaxation dispersion data obtained for httex1 in the presence of unlabeled profilin. 15N-CPMG relaxation dispersion data were obtained for httex1 in the presence of saturating amounts of profilin that hinders the formation of the on-pathway dimeric and tetrameric species (the pathways shown in grey in Fig. 6C, main text). The relaxation dispersion profiles were collected at two concentrations of httex1 (0.40 and 0.75 mM), and the dataset consisting of the 11 httex1 residues (Fig. 6B,
main text, and Fig. S12) that do not show chemical shift changes upon addition of profilin was best-fit globally to a two-state model of exchange, shown in black in Fig. 6C of the main text. The calculation of CPMG relaxation dispersion profiles was performed by solution of a set of Bloch-McConnell equations as described previously (2, 16). The second-order self-association rate constant \(k_2^\ast \) and the dissociation rate constant \(k_3^\ast \) were used as the global variable parameters in the fit. The ‘apparent’ pseudo-first-order self-association rate constant that enters into the exchange matrix, is given by, \(k_{app}^\ast = 2k_2^\ast [EP] \), where [EP] is the concentration of the profilin-httex1 complex EP (94.3 % of the total httex1 concentration under the conditions of our study; see main text). The array of local (residue-specific) parameters varied in the fit comprised: \(\{ \Delta \delta^{N}; R_2^{N,600,C}, R_2^{N,800,C}, R_2^{N,600,C'}, R_2^{N,800,C'} \} \), where \(\Delta \delta^{N} \) is the difference between \(^{15}\text{N} \) chemical shifts of profilin-bound httex1 in the dimeric state \((EP)_2\) and the Profilin-bound httex1 monomer \((EP)\); \(R_2 \) is \(^{15}\text{N} \) transverse spin relaxation rate of the state EP \(R_2 \) of the bound dimeric species \((EP)_2\) was assumed to be equal to \(2R_{2,EP} \); and the superscripts denote the type of nucleus (‘N’ = \(^{15}\text{N} \)), spectrometer field (600 and 800 MHz), and the two concentrations \(C_n \) of httex1 at which the data were collected \((C_1 = 0.40 \text{ mM and } C_2 = 0.75 \text{ mM}) \).

Minimization. Minimization of all error functions was performed using the ‘trust-region-reflective’ algorithm for constrained non-linear minimization in an in-house program implemented in Matlab (MathWorks Inc., MA). In all the calculations the uncertainties in the fitted values of the optimized parameters, corresponding to ± 1 S.D., were determined from the Jacobian variance-covariance matrix of the nonlinear fit. Uncertainties in parameters derived from the optimized parameters (e.g. \(K_{diss} \) from the ratio of the optimized values of \(k_{off} \) and \(k_{on} \)) were determined by standard propagation of errors.
Figure S1. Characterization of httex1 by sedimentation velocity analytical ultracentrifugation. The sedimentation velocity absorbance profile, $c(s)$, was obtained for 1.2 mM httex1. Only a single species at 0.74 S with an estimated molecular mass of 7.9 kDa is observed, indicating that the observable species is monomeric. The data were collected at 10 °C in 20 mM sodium phosphate buffer, pH 6.5, 50 mM NaCl and 90% H\textsubscript{2}O/10 % D\textsubscript{2}O (v/v).
Figure S2. Concentration dependent 15N and 13Ca CPMG relaxation dispersion profiles, and 15N and 13Ca exchange induced shifts (δ_{ex}) used for quantitative analysis of pre-nucleation oligomerization of 15N/13Ca-labeled htt$^{\text{ex1}}$. The data were recorded at 5 °C. The experimental points are shown as circles, and the best fit curves to the branched kinetic scheme shown in Fig. 2D of the main text are shown as continuous lines. Details of the fitting procedure are provided in the Appendix SI. Note that the 15N data for Phe10 were not included in the global fit as the 15N-CPMG dispersion profiles and concentration-dependent changes in 15N-δ_{ex} are very small. The reduced χ^2 is 2.25, calculated with errors of 0.3 Hz and 0.6 s$^{-1}$ for the δ_{ex} and CPMG relaxation dispersion data, respectively.
Figure S3. Grid search showing the dependence of the reduced χ^2 on the value of k_2, the dissociation rate constant of the tetramer into two on-pathway (‘productive’) dimers. k_2 and k_2 are linearly correlated; thus, the equilibrium dissociation constant K_{diss}^2 can be determined, and the χ^2 grid search indicates that the lower limit of k_2 consistent with the δ_{ex} and CPMG relaxation dispersion data is $\sim20,000$ s\(^{-1}\). The overall dissociation rate constant from tetramer to monomer is given by $k_1k_2/(k_1+k_2^{\text{app}}) = k_1^2k_2(k_1^2 + 2k_1k_2[D]^2)$, and therefore decreases as the concentration of monomer increases, thereby affecting the overall rate of interconversion (k_{ex}) between monomer and tetramer (2).
Figure S4. Simulation illustrating the contribution of the ‘productive’ and ‘non-productive’ pathways for httex1 oligomerization to the 15N and 13C\textalpha CPMG relaxation dispersion profiles and concentration-dependent exchange-induced (δ_{ex}) shifts. Simulated curves for the full branched four-state exchanging system, the ‘non-productive’ dimerization pathway and the ‘productive’ pathway leading to a tetramer are displayed in red, blue and green, respectively. (A) 15N and 13C\textalpha CPMG profiles and (B) 15N- and 13C\textalpha exchange-induced shifts at 900 MHz. The total httex1 concentration in panel A is 0.8 mM; the values of the rate constants used in the simulations, obtained from the global fits to the full four-state kinetic scheme (shown in red in panel A, as well as in Fig. 2D) to the NMR data shown in Fig. S2 (and Fig. 2, main text), are as follows: $k_1 = 5.8 \times 10^3$ M-1s-1, $k_{-1} = 4.1 \times 10^4$ s-1, $k_2 = 8.5 \times 10^8$ M-1s-1, $k_{-2} = 2.0 \times 10^4$ s-1, $k_3 = 5.9 \times 10^3$ M-1s-1 and $k_3 = 1350$ s-1; 15N and 13C\textalpha R_2 (monomer) = 6.4 and 11.7 s-1 and with R_2 (dimer) = 2 x R_2 (monomer) and R_2 (tetramer) = 4 x R_2 (monomer). The values of $\Delta\phi$ for the different species used in the simulation correspond to those for Lys8 listed in Table S1.
Figure S5. Examples of 15N-CPMG relaxation dispersion profiles observed for 0.8 mM 15N/13Cα-labeled htt$^{\text{ex1}}$ at the C-terminal end of the polyglutamine (Q_7) region (Gln23), in the linker (Leu46) connecting the two polyproline tracts (P_{11} and P_{10}), and close to the C-terminus (Leu70). No significant 15N-CPMG dispersions (15N-$R_{ex} > 2 \text{ s}^{-1}$) are observed beyond Gln17. The experimental data were recorded at 5 °C.
Figure S6. Profiles of 15N and 13Cα exchange contributions to transverse relaxation ($R_{2,ex}$) and exchange induced shifts (δ_{ex}) for httex1. The domain architecture of httex1 is shown at the top of the figure. The $R_{2,ex}$ values were obtained from 15N- and 13Cα CPMG relaxation dispersion experiments recorded on a 0.8 mM 15N/13Cα-labeled httex1 sample. The δ_{ex} values were obtained by taking the differences in 15N and 13Cα chemical shifts (obtained from 1H-15N and 1H-13C HSQC experiments, respectively) between 1.2 mM and 50 µM samples of 15N/13C-labeled httex1. The 13Cα-δ_{ex} and $R_{2,ex}$ values obtained for the overlapped 1Hα-13Cα proline cross-peaks of Pro25 to Pro33 and Pro53 to Pro60, are shown with ovals covering the P$_{11}$ and P$_{10}$ polyproline tracts, respectively. All data were recorded at 5 °C and 900 MHz.
Figure S7. Exchange regime with respect to 15N-$\Delta R_2^{1.5\text{kHz}}$ lifetime line broadening for the binding of profilin to httex1. (A) No 15N-CPMG dispersions are observed for Gln22/Gln23 and Gly62/Val65 under conditions where 15N-exchange induced shifts and 15N-$\Delta R_2^{1.5\text{kHz}}$ lifetime line broadening are observed for these residues (see Fig. 4B, main text). The data were recorded at 5 °C and 600 MHz; the concentrations of 15N-labeled httex1 and unlabeled profilin are 400 µM each. (B) Simulations showing a comparison of the exact concentration dependence of 15N-$\Delta R_2^{1.5\text{kHz}}$ lifetime line broadening (solid lines) calculated from the Bloch-McConnell equations with that calculated for the fast-exchange approximation (circles). The bottom left, top left and bottom right panels show the results for $k_{off} = 500$, 1643 and 15,000 s$^{-1}$, respectively, for $\Delta \omega_{PE} = 18.2$ Hz (0.3 ppm at 600 MHz) which is slightly larger than the largest value observed experimentally for 15N-δ_{ex} (Fig. 4B, main text). The concentration of httex1, E, is 100 µM; $k_{on} = 3.2 \times 10^7$ M$^{-1}$s$^{-1}$. The values of $k_{off} = 1643$ s$^{-1}$ and $k_{on} = 3.2 \times 10^7$ M$^{-1}$s$^{-1}$ correspond to those obtained experimentally for the binding of profilin to the shorter htt$^{NT-Q-P_T1-K_2}$ construct (see Fig. 5, main text). When $\Delta \omega_{PE}$ is increased to 60.8 Hz (top right panel; 1 ppm at 600 MHz), significant deviations are observed between the exact solution and the fast exchange approximation.
Figure S8. 2D 1H-13C constant-time HSQC spectrum of 1.0 mM sample of 15N/13Cα-labeled htt$^{NTQ_7P_{11}K_2}$ (5 °C, 600 MHz) in 20 mM phosphate buffer, pH 6.5, 50 mM NaCl and 90% H$_2$O/10% D$_2$O (v/v). The region of the proline 1Hα/13Cα cross-peaks is enclosed in the green box and enlarged on the right-hand side of the figure.
Figure S9. Additional 15N-CPMG relaxation dispersion profiles used in data analysis of the binding kinetics of profilin-htt$^{NT}Q_7P_{11}K_2$ interaction. (A) 15N/13C$_\alpha$-labeled htt$^{NT}Q_7P_{11}K_2$ in the presence of unlabeled profilin. (B) and (C) 15N/13C-labeled profilin in the presence of unlabeled htt$^{NT}Q_7P_{11}K_2$. The circles represent the experimental data. Since no or minimal dispersions are observed in panels A and B, the dashed lines serve purely to guide the eye. The solid lines in panel C are the best-fit curves obtained from global fitting to the two-state kinetic scheme shown in Scheme S2 and Fig. 5F (main text). All experimental data were recorded at 5 °C.
Figure S10. Addition of profilin to 15N/13Cα-labeled htt$^{NTQ}_{7}P_{11}K_{2}$ results in negative shifts of the proline 1Hα and 13Cα resonances in the P$_{11}$ polyproline tract. The blue and red contours are the spectra obtained in the absence and presence of profilin, respectively. The 2D 1H-13C constant-time HSQC spectra were recorded at 5 °C and 600 MHz in 20 mM phosphate buffer, pH 6.5, 50 mM NaCl and 90% H$_2$O/10% D$_2$O (v/v). Note that further addition of profilin results in extensive line broadening and disappearance of the 1Hα/13Cα proline cross-peaks.
Figure S11. Simulation of 15N exchange-induced chemical shift (15N-δ_{ex}) as a function of the difference ($\Delta\omega$) between the chemical shifts of profilin bound to htt^{NT}Q-$P_{11}K_{2}$ (ω_{B}) and free profilin (ω_{A}): $\Delta\omega_{AB} = \omega_{B} - \omega_{A}$. The curve is calculated from the imaginary part of the smallest (by absolute magnitude) eigenvalue of the evolution Liouvillian (Eq. S1 in SI Appendix of Ref. 2). The following average parameters of exchange for profilin binding to htt^{NT}Q-$P_{11}K_{2}$ were used in the simulation (see Fig. 5F of main text): $k_{on}^{app} = 54$ s$^{-1}$, $k_{off} = 1643$ s$^{-1}$ (corresponding to a population of 3.2% for the complex), and $R_{2,A} = R_{2,B} = 18$ s$^{-1}$. The average 15N-$\Delta\omega$ values of 2.1 ppm obtained for profilin at 600 MHz (equivalent to 128 Hz) and 800 MHz (equivalent to 170 Hz) are indicated by the blue and green dashed vertical lines, respectively. The derivative of the function $\delta_{ex}(\Delta\omega)$, $d\delta_{ex}/d\Delta\omega$, is shown in the inset, where the horizontal dashed line is drawn at the value of $d\delta_{ex}/d\Delta\omega = 0$. It is clear from the plot that for the average values of $\Delta\omega$ obtained from the global fit (and, generally, for $|^{15}$N-$\Delta\omega| \geq 2$ ppm in the case of profilin-htt^{NT}Q-$P_{11}K_{2}$ interactions), a very weak field dependence of 15N-δ_{ex} values is predicted - in agreement with barely distinguishable values of 15N-δ_{ex} obtained experimentally at 600 and 800 MHz in Fig. 5E (main text).
Figure S12. Additional 15N-CPMG relaxation dispersion profiles for 0.4 and 0.75 mM 15N/13Cα-labeled httex1 in the presence of 4.8 mM unlabeled profilin. The data were recorded at 5 °C. The filled-in and open circles represent data acquired at 600 and 800 MHz, respectively. The solid lines represent the best-fit curves obtained from the global fit to the two-state kinetic scheme shown in Fig. 6C (main text). For errors of 0.3 s$^{-1}$ for the 15N CPMG relaxation dispersion data, the reduced χ^2 is 0.77.
Table S1. Residue-specific fitted values of $\Delta \omega$ (ppm) for the ‘non-productive’ dimer (E_2^*) and ‘productive’ dimer/tetramer (E_2, E_4) obtained from the global fits to the relaxation dispersion and exchange-induced shift data for free htt$^{\text{ex1}}$.a

<table>
<thead>
<tr>
<th>Residue</th>
<th>15N E_2^* (ppm)</th>
<th>13C$_{\alpha}$ E_2^*</th>
<th>15N E_2, E_4 (ppm)</th>
<th>13C$_{\alpha}$ E_2, E_4 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1.25 ± 0.20</td>
<td>1.51 ± 0.13</td>
<td>-5.02 ± 0.96</td>
<td>3.26 ± 0.69</td>
</tr>
<tr>
<td>5</td>
<td>-1.13 ± 0.19</td>
<td>0.91 ± 0.10</td>
<td>-3.06 ± 0.56</td>
<td>2.72 ± 0.54</td>
</tr>
<tr>
<td>7</td>
<td>-1.34 ± 0.19</td>
<td>1.10 ± 0.10</td>
<td>-3.96 ± 0.74</td>
<td>2.65 ± 0.53</td>
</tr>
<tr>
<td>8</td>
<td>-1.15 ± 0.19</td>
<td>0.87 ± 0.09</td>
<td>-3.33 ± 0.62</td>
<td>2.67 ± 0.52</td>
</tr>
<tr>
<td>9</td>
<td>-0.59 ± 0.31</td>
<td>0.88 ± 0.09</td>
<td>-2.60 ± 0.48</td>
<td>1.99 ± 0.38</td>
</tr>
<tr>
<td>10</td>
<td>-1.06 ± 0.21</td>
<td>1.01 ± 0.09</td>
<td>-</td>
<td>2.30 ± 0.45</td>
</tr>
<tr>
<td>11</td>
<td>-0.84 ± 0.22</td>
<td>2.74 ± 0.19</td>
<td>-3.95 ± 0.74</td>
<td>2.36 ± 0.46</td>
</tr>
<tr>
<td>12</td>
<td>-0.67 ± 0.26</td>
<td>1.20 ± 0.10</td>
<td>-1.94 ± 0.36</td>
<td>2.08 ± 0.40</td>
</tr>
<tr>
<td>14</td>
<td>-1.03 ± 0.19</td>
<td>1.35 ± 0.11</td>
<td>-1.90 ± 0.34</td>
<td>2.23 ± 0.43</td>
</tr>
</tbody>
</table>

a 13C$_{\alpha}$ and 15N $\Delta \omega$ values of the productive dimer (E_2) and tetramer (E_4) are assumed to be the same. To ensure a stable solution during minimization, the 13C$_{\alpha}$ $\Delta \omega$ values of the off-pathway dimer (E_2^*) were constrained to be positive, while those of the on-pathway dimer (E_2) and tetramer (E_4) (assumed to be the same) were constrained within a range of ±0.5 ppm from the values reported previously for the smaller htt$^{\text{N7Q7}}$ construct (2): specifically, 2.86, 2.56, 2.30, 2.32, 1.91, 2.33, 2.25, 2.32, 2.12 and 2.60 ppm for residues 4, 7, 5, 8, 9, 10, 11, 12, 14 and 15 respectively. The 13C$_{\alpha}$ $\Delta \omega$ values listed in the Table all fall well within these ranges.
Table S2. Residue-specific fitted values of 15N/1H-$\Delta \omega$ and 15N-R_2 (for hteex1 only) obtained from the global fit to the concentration-dependence of the 15N-δ_{ex} data for 15N-labeled profilin titrated with unlabeled hteex1 and the concentration-dependence of the 15N-δ_{ex} and 15N-ΔR_2 data for 15N-labeled hteex1 titrated with unlabeled profilin.

<table>
<thead>
<tr>
<th>Residue</th>
<th>15N-$\Delta \omega_{PE,PE',P',EE'}$ (ppm)</th>
<th>15N-R_2,PE (s$^{-1}$)</th>
<th>15N-R_2,PE (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.10 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>0.30 ± 0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>0.68 ± 0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.17 ± 0.02</td>
<td>11.0 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.30 ± 0.03</td>
<td>11.8 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0.15 ± 0.01</td>
<td>13.6 ± 1.3</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0.13 ± 0.01</td>
<td>11.0 ± 1.1</td>
<td></td>
</tr>
</tbody>
</table>
Table S3. Residue-specific fitted values of 15N/1H-$\Delta \omega$ and 15N-R_2 obtained for 15N-labeled profilin in the presence of unlabeled htt$^{NT}Q_7P_{11}K_2$, and for 15N-$\Delta \omega$, 13Cα-$\Delta \omega$ and 13Cα-R_2 obtained for 15N/13Cα-labeled htt$^{NT}Q_7P_{11}K_2$ in the presence of unlabeled profilin.

<table>
<thead>
<tr>
<th>Residue</th>
<th>15N-$\Delta \omega_{E_p}$ (ppm)</th>
<th>Residue</th>
<th>15N-$\Delta \omega_{E_p}$ (ppm)</th>
<th>15N-$R_2^{600\text{MHz}}$ (s$^{-1}$)</th>
<th>15N-$R_2^{800\text{MHz}}$ (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.09 ± 0.01</td>
<td>4</td>
<td>1.25 ± 0.06</td>
<td>12.3 ± 1.2</td>
<td>14.7 ± 1.5</td>
</tr>
<tr>
<td>137</td>
<td>0.19 ± 0.02</td>
<td>5</td>
<td>2.80 ± 0.10</td>
<td>18.5 ± 1.5</td>
<td>22.3 ± 2.1</td>
</tr>
<tr>
<td>138</td>
<td>0.61 ± 0.02</td>
<td>7</td>
<td>2.30 ± 0.09</td>
<td>15.9 ± 1.4</td>
<td>22.9 ± 1.8</td>
</tr>
<tr>
<td>32</td>
<td>1.62 ± 0.08</td>
<td>106</td>
<td>1.85 ± 0.07</td>
<td>19.7 ± 1.3</td>
<td>24.8 ± 1.7</td>
</tr>
<tr>
<td>1H-$\Delta \omega_{E_p}$ (ppm)</td>
<td>0.24 ± 0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residue</th>
<th>15N-$\Delta \omega_{E_p}$ (ppm)</th>
<th>Residue</th>
<th>13Cα-$\Delta \omega_{E_p}$ (ppm)</th>
<th>13Cα-$R_2^{600\text{MHz}}$ (s$^{-1}$)</th>
<th>13Cα-$R_2^{800\text{MHz}}$ (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>0.12 ± 0.01</td>
<td>P25-P33</td>
<td>-0.33 ± 0.02</td>
<td>20.2 ± 5.9</td>
<td>20.4 ± 4.9</td>
</tr>
<tr>
<td>23</td>
<td>0.18 ± 0.01</td>
<td>P34</td>
<td>-0.35 ± 0.02</td>
<td>15.0 ± 4.9</td>
<td>15.6 ± 5.8</td>
</tr>
<tr>
<td>35</td>
<td>0.07 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.17 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S4. Residue-specific fitted values of 15N-$\Delta \omega$ and 15N-R_2 obtained for the NT domain of 15N-labeled htt$^{\text{ex1}}$ in the presence of a saturating amount of unlabeled profilin.a

<table>
<thead>
<tr>
<th>Residue</th>
<th>15N-$\Delta \omega_{E_p}$ (ppm)</th>
<th>15N-R_{600MHz}^{2,E_p} (s^{-1})</th>
<th>15N-R_{800MHz}^{2,E_p} (s^{-1})</th>
<th>15N-R_{600MHz}^{2,E_p} (s^{-1})</th>
<th>15N-R_{800MHz}^{2,E_p} (s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.24 ± 0.12</td>
<td>7.9 ± 0.1</td>
<td>9.9 ± 0.1</td>
<td>10.1 ± 0.1</td>
<td>12.9 ± 0.1</td>
</tr>
<tr>
<td>4</td>
<td>3.18 ± 0.19</td>
<td>10.7 ± 0.1</td>
<td>14.5 ± 0.1</td>
<td>13.3 ± 0.1</td>
<td>18.7 ± 0.2</td>
</tr>
<tr>
<td>5</td>
<td>2.00 ± 0.08</td>
<td>10.6 ± 0.1</td>
<td>13.4 ± 0.1</td>
<td>12.6 ± 0.1</td>
<td>15.8 ± 0.1</td>
</tr>
<tr>
<td>7</td>
<td>2.47 ± 0.10</td>
<td>12.0 ± 0.1</td>
<td>15.3 ± 0.1</td>
<td>13.7 ± 0.1</td>
<td>17.7 ± 0.3</td>
</tr>
<tr>
<td>8</td>
<td>2.31 ± 0.10</td>
<td>12.1 ± 0.1</td>
<td>15.3 ± 0.1</td>
<td>13.6 ± 0.1</td>
<td>18.3 ± 0.1</td>
</tr>
<tr>
<td>9</td>
<td>1.46 ± 0.08</td>
<td>13.1 ± 0.1</td>
<td>16.2 ± 0.1</td>
<td>14.2 ± 0.1</td>
<td>18.1 ± 0.1</td>
</tr>
<tr>
<td>10</td>
<td>1.13 ± 0.09</td>
<td>12.2 ± 0.1</td>
<td>15.3 ± 0.1</td>
<td>13.4 ± 0.1</td>
<td>16.3 ± 0.1</td>
</tr>
<tr>
<td>11</td>
<td>2.87 ± 0.12</td>
<td>14.2 ± 0.1</td>
<td>18.7 ± 0.1</td>
<td>16.2 ± 0.1</td>
<td>20.9 ± 0.2</td>
</tr>
<tr>
<td>12</td>
<td>1.44 ± 0.08</td>
<td>12.5 ± 0.1</td>
<td>15.4 ± 0.1</td>
<td>13.4 ± 0.1</td>
<td>16.4 ± 0.1</td>
</tr>
<tr>
<td>14</td>
<td>1.41 ± 0.08</td>
<td>14.2 ± 0.1</td>
<td>17.7 ± 0.1</td>
<td>15.3 ± 0.1</td>
<td>18.9 ± 0.1</td>
</tr>
<tr>
<td>15</td>
<td>1.65 ± 0.08</td>
<td>13.7 ± 0.1</td>
<td>16.8 ± 0.1</td>
<td>14.6 ± 0.1</td>
<td>17.8 ± 0.1</td>
</tr>
</tbody>
</table>

aNote that the sign of 15N-$\Delta \omega$ cannot be defined by the 15N-CPMG data alone.
SI References

3. P. Lundstrom \textit{et al.}, (2007) Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Calpha and side-chain methyl positions in proteins. \textit{J Biomol NMR} 38(3):199-212.

