Abrogation of prenucleation, transient oligomerization of the Huntingtin exon 1 protein by human profilin I

Alberto Cecon, Vitali Tugarinov, Rodolfo Ghirlando, and G. Marius Clore

Human profilin I reduces aggregation and concomitant toxicity of the polyglutamine-containing N-terminal region of the huntingtin protein encoded by exon 1 (htt^{ex1}) and responsible for Huntington's disease. Here, we investigate the interaction of profilin with htt^{ex1} using NMR techniques designed to quantitatively analyze the kinetics and equilibria of chemical exchange at atomic resolution, including relaxation dispersion, exchange-induced shifts, and lifetime line broadening. We first show that the presence of two polyproline tracts in htt^{ex1}, absent from a shorter huntingtin variant studied previously, modulates the kinetics of the transient branched oligomerization pathway that precedes nucleation, resulting in an increase in the populations of the on-pathway helical coiled-coil dimeric and tetrameric species (τ_{ex} ~ 50 to 70 µs), while leaving the population of the off-pathway (nonproductive) dimeric species largely unaffected (τ_{ex} ~ 750 µs). Next, we show that the affinity of a single molecule of profilin to the polyproline tracts is in the micromolar range (κ_{DIS} ~ 17 and ~ 31 µM), but binding of a second molecule of profilin is negatively cooperative, with the affinity reduced ∼11-fold. The lifetime of a 1:1 complex of htt^{ex1} with profilin, determined using a shorter huntingtin variant containing only a single polyproline tract, is shown to be on the submilliseconds timescale (τ_{ex} ~ 600 µs and κ_{DIS} ~ 50 µM). Finally, we demonstrate that, in stable profilin-htt^{ex1} complexes, the productive oligomerization pathway, leading to the formation of helical coiled-coil htt^{ex1} tetramers, is completely abolished, and only the pathway resulting in "nonproductive" dimers remains active, thereby providing a mechanistic basis for how profilin reduces aggregation and toxicity of htt^{ex1}.

Significance

Polyglutamine expansion within the N-terminal region of huntingtin encoded by exon 1 (htt^{ex1}) results in accumulation of htt^{ex1} aggregates in neurons, leading to Huntington's disease. Profilin is a ubiquitous intracellular protein that reduces aggregation and toxicity of htt^{ex1}. Prenucleation, transient oligomerization of the htt^{ex1} N-terminal amphiphilic domain proceeds along two branches: an on-pathway, "productive" branch resulting in a helical coiled-coil tetramer that supports nucleation of the polyglutamine tract and subsequent aggregation, and an off-pathway "nonproductive" branch that does not proceed beyond a partially helical dimer. Using NMR, we show that profilin binding to the proline-rich domain of htt^{ex1} blocks the on-pathway oligomerization pathway while leaving the off-pathway branch unaffected, thereby providing a mechanistic basis for profilin inhibition of htt^{ex1} aggregation.

Author contributions: A.C., V.T., and G.M.C. designed research; A.C., V.T., R.G., and G.M.C. performed research; A.C., V.T., and G.M.C. analyzed data; and A.C., V.T., and G.M.C. wrote the paper.

Reviewers: L.E.K., University of Toronto; and D.J.W., University of Maryland, Baltimore.

The authors declare no competing interest.

Published under the PNAS license.

Data deposition: The backbone chemical shifts of htt^{ex1} reported in this paper have been deposited in the Biological Magnetic Resonance Data Bank (BMRB), http://www.bmrwisc.edu (accession no. 50122). The experimental data in digital format, together with MatLab scripts used in global fitting, have been deposited on Figshare (DOI: 10.6084/m9.figshare.11887860). Note that the backbone assignments are explicitly indicated on the ¹H-¹⁵N correlation spectrum shown in Fig. 1. There are no atomic coordinates or structural restraints associated with the current submission.

To whom correspondence may be addressed. Email: mariusc@mail.nih.gov or vitali.tugarinov@nih.gov.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922264117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1922264117
of profilin completely abrogates the productive oligomerization pathway that leads to the helical coiled-coil tetramer, while leaving the nonproductive pathway, which does not extend beyond a dimer, unaffected. These results provide a molecular basis for the mechanism whereby profilin binding reduces the aggregation propensity and toxicity of httex.

Results and Discussion

Impact of the PRD Domain on the Kinetics of Transient httex Oligomerization. The domain architecture of the 73-residue httex construct used in the present work is shown in Fig. L4. The PRD domain comprises two polyproline tracts, P\textsubscript{i} and P\textsubscript{i+10}, separated by a 17-residue linker and followed by a 12-residue C-terminal sequence. In the current work, we have chosen to keep the length of the polyQ tract at seven glutamines to both facilitate comparison with our earlier work on httQ72 (26), as well as to ensure that the construct remains largely monomeric and stable during the course of the NMR experiments (several weeks). Sedimentation velocity experiments (SI Appendix: Fig. S1) confirm that the major, directly observable species of httex is monomeric (with a single peak at 0.74 S corresponding to an estimated mass of 7.9 kDa). The 1H–15N heteronuclear single quantum coherence (HSQC) spectrum of httex exhibits very limited 1H chemical shift dispersion (Fig. IB) characteristic of an intrinsically disordered polypeptide.

Quantitative characterization of the transient prenucleation oligomerization events involving the submillisecond interconversion between monomeric and sparsely populated multimeric species of httex was probed using the same experimental approach and data analysis employed previously for httQ72 (26). The experimental data comprised 15N and 13Cex Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersions (27, 28) at three concentrations (0.3, 0.6, and 0.8 mM), and 15N and 13C exchange-induced shifts (\(\delta_{\text{ex}}\)) (29) at 12 concentrations ranging from 50 \(\mu\text{M}\) to 1.2 mM (Fig. 2A and B and SI Appendix, Fig. S2). The NMR data were analyzed simultaneously within the framework of the branched kinetic scheme shown in Fig. 2C, which features on-pathway (productive) and off-pathway (nonproductive) self-association branches. The major observable species is the monomeric state E. The on-pathway pathway leads to the formation of an excited state tetramer \(E_{\text{ex}}\) via the productive dimer \(E_{\text{ex}}\) (Note that direct conversion of monomer to tetramer is not only physically unrealistic but leads to a steeper concentration dependence of \(\delta_{\text{ex}}\)). In the case of the off-pathway branch, the resulting dimer \(E_{\text{ex}}^{*}\) represents an “end state” that does not undergo further oligomerization. Details of the kinetic model, and data fitting procedures, as well as the assumptions and approximations used in the data analysis, are provided in SI Appendix.

The 13Cex and 15N chemical shift differences (SI Appendix, Table S1) between the monomer and the on-pathway dimer and tetramer (which are assumed to be the same) are fully consistent with the formation of a helical coiled-coil comprising residues 3 to 16 of the NT domain, while those between the monomer and off-pathway dimer are consistent with the formation of an ensemble of partially helical states of the NT domain, as described previously for httQ72 (26). The overall interconversion between E and \(E_{\text{ex}}\) is fast on the chemical shift timescale (\(\tau_{\text{ex}} \leq 50\) to 70 ms; SI Appendix, Fig. S3) and tetramerization is responsible for the curvature of the concentration dependence of the 15N/13C\textsubscript{ex} data (Fig. 2B). The off-pathway interconversion between E and \(E_{\text{ex}}^{*}\) proceeds on a much slower timescale (\(\tau_{\text{ex}} \approx 750\) ms). Both on- and off-pathway processes contribute to the CPMG relaxation dispersion data, with the contribution from the latter being suppressed at CPMG fields in excess of about 600 Hz; the contribution, however, of off-pathway dimerization to the concentration dependence of 15N/13C\textsubscript{ex} is negligible (SI Appendix, Fig. S4). No significant CPMG relaxation dispersions or concentration-dependent changes in 15N/13C\textsubscript{ex} values are observed beyond the polyO\textsubscript{7} tract (SI Appendix, Figs. S5 and S6), indicating that the PRD does not participate directly in the intermolecular interactions that drive the transient, prenucleation oligomerization events.

The rate constants for the on- and off-pathway kinetic steps are broadly comparable (within a factor of ~2) to those observed for the shorter httQ72 construct (26). However, at the highest concentration of 1.2 mM used in both studies, the populations of the on-pathway dimer \(E_{\text{ex}}\) and tetramer \(E_{\text{ex}}^{*}\) are significantly increased (~1.5- and ~2.5-fold, respectively) for httex relative to httQ72, which is reflected in proportionately larger \(\delta_{\text{ex}}\) values. Furthermore, the overall equilibrium dissociation constant of the tetramer into monomer, given by \(K_{\text{diss}}^{\text{ex}}\), is reduced by ~35% for httex (1.7 \(\mu\text{M}\)) relative to httQ72 (2.6 \(\mu\text{M}\)). These findings might be explained by the presence of additional transient interactions between the NT and PRD domains and in the case of the tetramer between the PRD domains as well. The population of the off-pathway dimer \(E_{\text{ex}}^{*}\), however, is the same for the two constructs (~1% at 1.2 mM).

Binding of Profilin to httex. The httex binding site on profilin I was delineated by 1H/15N chemical shift perturbation mapping in which the positions of cross-peaks in a series of 1H/15N HSQC
spectra of 15N-labeled profilin were monitored upon titration with unlabeled httex1. A contiguous, predominantly hydrophobic, binding surface, characterized by ΔH/N chemical shift perturbations in excess of 0.09 ppm upon addition of 0.9 mM httex1 to 0.4 mM profilin, is formed by the N-terminal end of helix α1 (residues 3 and 6), the C-terminal end of helix α3 (residues 130, 131, and 133 to 138) and the turns connecting strands β1 and β2 (residues 24 and 25) and strands β5 and β6 (residues 106 to 108) (Fig. 3A). The httex1 binding surface on profilin corresponds to that for poly-L-proline (23, 30, 31), and partially overlaps with the site of profilin self-association (helix α4) (32). However, at the concentration of profilin employed (0.4 mM), the population of dimeric and tetrameric states of profilin is insignificant (32).

1HN/15N chemical shift perturbation mapping of 15N-labeled httex1 upon titration with unlabeled profilin reveals chemical shift perturbations for residues immediately adjacent to the N- and C-terminal ends of both polyproline tracts as well as residues between the two polyproline tracts (Fig. 3B). Furthermore, the 1H–13Cα cross-peaks for the two polyproline tracts are broadened out very early on during the course of the titration (Fig. 3C). Thus, one can conclude that profilin binds to the P11 and P10 polyproline repeats.

Quantitative Analysis of Profilin–httex1 Binding Equilibria. To obtain a quantitative description of the equilibria involving the binding of httex1 to profilin, we globally fit 15N exchange-induced shift (15N-δex) data for 0.4 mM 15N-labeled profilin upon titration with unlabeled httex1 (Fig. 4A), and 15N-δex and 15N lifetime line broadening (15N−ΔR1.5kHz2) data for 0.1 mM 15N-labeled httex1 upon titration with unlabeled profilin (Fig. 4B) to the minimalistic binding scheme depicted in Fig. 4C (see SI Appendix for details of the global fitting procedure). Under these experimental conditions, the populations of oligomeric httex1 species (Fig. 2) are sufficiently low to be neglected. Initially, a single molecule of profilin (P) binds to either one of the two polyproline tracts of httex1 (E) to a helical coiled-coil helical dimer, E2, and an off-pathway branch that terminates in a “nonproductive” partially helical dimer, E2*. The populations of the various species at [httex1] = 1.2 mM, the highest concentration used in the NMR experiments, are provided above each state. The complete set of data used in the global fit is provided in SI Appendix, Fig. S2. For errors of 0.3 Hz and 0.6 s⁻¹ for δex and R2, respectively, the reduced χ² is 2.3.

Fig. 2. Quantitative analysis of transient oligomerization of httex1. Examples of (A) 15N (Left) and 13Ca (Right) CPMG relaxation dispersion profiles at three concentrations (0.3, 0.6, and 0.8 mM); and (B) 15N (Left) and 13Ca (Right) exchange-induced shifts (δex) over concentrations ranging from 200 μM to 1.2 mM (referenced relative to the shifts at 50 μM httex1). Experimental data, recorded at 900 MHz and 5 °C, are displayed as circles, and the best-fit curves obtained from a global fit to the kinetic scheme in C are shown as solid lines. (C) Minimal kinetic model for prenucleation transient oligomerization of httex1 that accounts for all of the experimental NMR data. The kinetic scheme comprises two branches: an on-pathway branch that leads to a helical coiled-coil tetramer (E4) via a “productive” coiled-coil helical dimer, E2, and an off-pathway branch that terminates in a “nonproductive” partially helical dimer, E2*. The populations of the various species at [httex1] = 1.2 mM, the highest concentration used in the NMR experiments, are provided above each state. The complete set of data used in the global fit is provided in SI Appendix, Fig. S2. For errors of 0.3 Hz and 0.6 s⁻¹ for δex and R2, respectively, the reduced χ² is 2.3.
\[aK_{\text{dis}}^\alpha = \frac{(K_{\text{dis}})}{\alpha}, \]
where \(\alpha \) is a cooperativity factor. The titration data for [15N]-labeled profilin report on all binding events since profilin contains only a single polyproline binding site (23), and the two polyproline tracts of httex differ by only a single proline in length. In the case of httex, however, binding of profilin to the two polyproline tracts can be monitored independently by making use of data from residues immediately preceding P11 (Gln22/Gln23) or following P10 (Gly62/Val65).

For all of the data used in the analysis of profilin-httex binding equilibria, exchange was assumed to be fast on the chemical shift timescale. For [15N]-labeled profilin, \(\delta_{\text{ex}} \) for residue \(i \) as a function of unlabeled httex concentration \([c_{\text{htt}}] \) is given by \(\delta_{\text{ex}} = \delta_{\text{ex}}(c_{\text{htt}}) = \Delta \delta_{\text{ex}}(p_{\text{PE}} + p_{\text{P2EE}}) \), where \(p_{\text{PE}} \) is the fractional population of each of the complexes, and the chemical shift differences between free and bound profilin (\(\Delta \delta_{\text{ex}} \)) are assumed to be the same for all complexes. For [15N]-labeled httex, \(\delta_{\text{ex}} \) as a function of unlabeled profilin concentration \([c_{\text{prof}}] \) is expressed by two separate relationships:

\[\delta_{\text{ex}}(c_{\text{prof}}) = \Delta \delta_{\text{ex}}(p_{\text{PE}} + p_{\text{P2EE}}) \]
for Gln22/Gln23 preceding P11 (Gln22/Gln23) or following P10 (Gly62/Val65).

\[\delta_{\text{ex}}(c_{\text{prof}}) = \Delta \delta_{\text{ex}}(p_{\text{PE}} + p_{\text{P2EE}}) \]

in Gly62/Val65 following the P10 tract, respectively. In both instances, the chemical shifts of the doubly occupied species, P2EE', are assumed to be the same as those of singly occupied ones (\(\Delta \delta_{\text{PE}/\text{PE}} = \Delta \delta_{\text{P2EE}/\text{PE}} = \Delta \delta_{\text{PE}} \)).

The increase in [15N] transverse relaxation rate, \(\Delta \delta_{\text{ex}} \), where a 1.5-kHz spin-lock field is used to suppress line broadening arising from chemical exchange, arises from the substantial increase in molecular weight of the singly and doubly occupied complexes relative to free httex. In the fast exchange approximation, [15N] = \(\Delta \delta_{\text{ex}} \) (PE) as a function of profilin concentration is given by

\[\delta_{\text{ex}} = \delta_{\text{ex}}(p_{\text{PE}}) + \delta_{\text{ex}}(p_{\text{P2EE}}) - \delta_{\text{ex}}(p_{\text{PE}} + p_{\text{P2EE}}) \]
for Gln22/Gln23 and by

\[\delta_{\text{ex}} = \delta_{\text{ex}}(p_{\text{PE}}) + \delta_{\text{ex}}(p_{\text{P2EE}}) - \delta_{\text{ex}}(p_{\text{PE}} + p_{\text{P2EE}}) \]
for Gly62/Val65, where \(\delta_{\text{ex}}(p_{\text{PE}}) \) and \(\delta_{\text{ex}}(p_{\text{P2EE}}) \) are the transverse relaxation rates for residue \(i \) of free httex, the two singly occupied PE and PE' species, respectively.
the ratio of the molecular weights of the doubly (17 residues), negative cooperativity may possibly be attributed to partial occlusion of the second polyproline tract once the first complex, respectively. The binding of the second profilin molecule to httex1, the population of the doubly occupied complex, and the fitted values of the equilibrium dissociation constants and cooperativity factor. For errors of 0.3 Hz and 0.6 s⁻¹ for δex and R2, the value of the reduced χ² is 0.81.

Kinetics of Profilin Binding to httNTQ7P11K2. To probe the kinetics of the interaction of profilin binding to the polyproline tracts of httex1, we made use of a shorter construct, httNTQ7P11K2 (Fig. S4, and SI Appendix, Fig. S8), comprising only the first polyproline tract, P11, followed by two lysines, as it would be problematic to the interaction of profilin binding to the polyproline tracts of httex1, we made use of a shorter construct, httNTQ7P11K2 (Fig. S4, and SI Appendix, Fig. S8), comprising only the first polyproline tract, P11, followed by two lysines, as it would be problematic.

Ceccon et al.
to determine the rate constants for the four-state binding scheme involving full-length httex1. Global analysis was based on exchange-induced shifts observed on 15N-labeled httNTQ7P11K2 upon titration with unlabeled httNTQ7P11K2 (Fig. 5B), exchange-induced shifts observed on 15N/13C-labeled profilin upon titration with unlabeled httNTQ7P11K2 (Fig. 5C), 15N-CPMG relaxation dispersion profiles for the prolines of 15N/13C-labeled httNTQ7P11K2 in the presence of a small amount of unlabeled profilin (Fig. 5D), and 15N-CPMG relaxation dispersion profiles and exchange-induced shifts for 15N/13C-labeled profilin in the presence of a small amount of unlabeled httNTQ7P11K2 (Fig. 5E). Of note, the residues of httNTQ7P11K2 and profilin that exhibit exchange-induced shifts shown in Fig. 5B and C, respectively, do not display any 15N-CPMG relaxation dispersions (SI Appendix, Fig. S9 A and B); 13C-CPMG dispersion profiles, however, are observed for the polyproline tract of httNTQ7P11K2 (Fig. 5D), and several residues of profilin also show 15N-CPMG dispersions (Fig. 5E and SI Appendix, Fig. S9C). These exchange conditions benefit from combined analysis of relaxation dispersion and exchange-induced shift data (29). Details of the fitting procedure are provided in SI Appendix, and the best-fit values of the residue-specific parameters are listed in SI Appendix, Table S3.

The lifetime of the profilin–httNTQ7P11K2 complex under the conditions of the CPMG relaxation dispersion experiments is \(\sim600\) ms with a \(K_{\text{diss}}\) value of \(\sim51\) \(\mu\)M. The association rate constant, \(k_{\text{on}}\), is \(3 \times 10^7\) M\(^{-1}\)s\(^{-1}\), consistent with a diffusion-limited reaction. The threefold weaker binding to the P1\textsubscript{10} polyproline tract of httNTQ7P11K2 relative to that of httex1 may possibly be due to end effects: namely, the absence of the linker as well as the second P1\textsubscript{10} polyproline tract in httNTQ7P11K2. The values of 15N-\(\omega_0\) obtained from the global fits for the residues of httNTQ7P11K2 and profilin that show 15N exchange-induced shifts, but no 13C-CPMG relaxation dispersions, are <0.6 ppm, while those residues of profilin that show 13C-CPMG relaxation dispersions are in the range 1.3 to 2.8 ppm (SI Appendix, Table S3), explaining why the exchange process occurs in different regimes on the chemical shift timescale for these sites. The values of 13C-\(\omega_0\) for Pro25–Pro33 and Pro34, obtained from the 13C-CPMG relaxation dispersion data, are \(-0.3\) ppm, and inspection of the corresponding cross-peaks in the \(\text{H}^1-\text{C}^\alpha\) HSQC spectra of 1 mM httNTQ7P11K2 in the absence and presence of 100 \(\mu\)M profilin (SI Appendix, Fig. S10), indicates that the exchange-induced shifts for the proline \(\text{H}^1\) and 13C nuclei are negative in sign, characteristic of a propensity toward PPII helix.

Fig. 5. Binding kinetics of the profilin–httNTQ7P11K2 interaction. (A) Schematic representation of the httNTQ7P11K2 domain architecture. (B) Exchange-induced 15N shifts (\(\Delta\delta\)) at 600 MHz for residues immediately N-terminal (Gln22/Gln23, red) and C-terminal (Lys35/Lys36, gray) to the P1\textsubscript{11} polyproline tract observed for 0.1 mM 15N/13C-labeled httNTQ7P11K2 upon titration with unlabeled profilin. (C) Exchange-induced \(\Delta\delta\) shifts at 500 MHz observed for 0.4 mM 15N/13C-labeled profilin upon titration with httNTQ7P11K2. (D) 13C-CPMG relaxation dispersion profiles of the spectrally overlapped prolines (Pro25–Pro33) (Left) and the C-terminal proline (Pro34) (Right) of the P1\textsubscript{11} polyproline tract measured on 1 mM 15N/13C-labeled httNTQ7P11K2 in the presence of 0.1 mM unlabeled profilin at 600 (red) and 800 (blue) MHz. (E) 15N-CPMG relaxation dispersion profiles (Left) and 15N-\(\omega_0\) shifts (Right) measured on 0.4 mM 15N/13C-labeled profilin in the presence of 15 \(\mu\)M httNTQ7P11K2. All experimental data were recorded at 5 °C. (F) Kinetic scheme for the binding of profilin (P) to httNTQ7P11K2 (ES). The experimental data in B–D are shown as circles, and the best-fit curves to the kinetic scheme are shown as solid lines, with the exception of the best-fit 15N-\(\omega_0\) values shown in D, which are shown as green circles. The population of the bound complex (P1\textsubscript{11}) for the observed species is indicated in D and E. For errors of 0.3 Hz, 2 Hz, and 0.6 s\(^{-1}\) for 13C-\(\omega_0\), 15N-\(\omega_0\), and 15N/13C \(\omega_2\text{eff}\) values, respectively, the value of the reduced \(\chi^2\) is 2.56.
formation (33). In addition, the very weak field dependence of the observed 15N-Δω shifts for profilin in the presence of httNTO$_2$P$_1$K$_2$ (right column in Fig. 5E) is fully consistent with the results of our analysis as explained in detail in SI Appendix, Fig. S11.

Extrapolation of the results of the kinetic study of httNTO$_2$P$_1$K$_2$–profilin binding to full-length httex1–profilin interactions, allows us to conclude that the interconversion between the free and bound species occurs on a moderately fast timescale (τ$_{ex}$ ~ 600 µs with k$_{ex}$ ≥ 4Δω/600 for the majority of httex1 or profilin sites), thus validating the approach used for analysis of httex1–profilin binding equilibria.

On-Pathway Transient Oligomerization of httex1 Is Inhibited by Binding of Profilin. Thioflavin T assays on httex1 constructs containing up to a 40-residue polyglutamine tract have shown that addition of profilin reduces the rate of httex1 fibrillation (25). We hypothesized that binding of profilin to the polyproline tracts of httex1 also modulates prenucleation, transient oligomerization of the NT domain.

To test the above hypothesis we examined the concentration dependence of 15N and 13C exchange-induced shifts (from 50 µM to 1 mM) and 15N-CPMG relaxation dispersions (at 0.4 and 0.75 mM) for httex1 in the presence of a fixed (4.8 mM) concentration of profilin, ensuring close to complete (~95%) saturation of httex1 with profilin. The large exchange-induced shifts seen in the absence of profilin are completely abolished in the presence of profilin (Fig. 6A). These data indicate that the on-pathway leading to the formation of a tetramer via a productive dimer is completely inhibited. 15N-CPMG relaxation dispersion, however, for residues within the NT domain (which does not bind profilin) are still observed (Fig. 6B and SI Appendix, Fig. S12) and arise exclusively from off-pathway dimerization.

The impact of profilin on the kinetic scheme for httex1 oligomerization is summarized in Fig. 6C. In terms of analysis, the only exchange process that contributes to the 15N-CPMG relaxation dispersions is the one between profilin-bound httex1 monomer EP and off-pathway (EP)2 dimer. This is because the residues analyzed are located within the NT domain and do not show changes in chemical shifts upon binding to profilin; hence exchange between free and profilin-bound httex1 monomer (shown in gray in Fig. 6C) does not generate 15N-CPMG dispersions. Furthermore, since httex1 is ~95% saturated with profilin, the populations of the free oligomeric species (shown in gray in Fig. 6C) will be too low (<0.05%) to make any measurable contribution to either the 15N-CPMG relaxation dispersion profiles or the 15N/13C exchange-induced shifts.

Best fitting of the 15N-CPMG relaxation dispersion data (see SI Appendix for details) reveals that the overall interconversion rate (τ$_{ex}$ ~ 600 µs) between the profilin-bound httex1 monomer, EP, and the profilin-bound off-pathway dimer, (EP)2, is comparable to that in the absence of profilin (τ$_{ex}$ ~ 750 µs; Fig. 2C). The equilibrium dissociation constant (K_{diss}) is 0.21 ± 0.02 M for the shown in gray, whose populations are <0.05%, do not make any measurable contribution to either the 15N-CPMG relaxation dispersion profiles or the 15N/13C exchange-induced shifts. Furthermore, the residues analyzed, all of which are located in the NT domain, do not show changes in chemical shifts upon binding to profilin, and hence the binding of profilin to free httex1 does not contribute to the CPMG relaxation dispersions either. The species populations listed in the figure correspond to those at the highest concentration of httex1 used in 15N-CPMG relaxation dispersion experiments (0.75 mM). The solid lines in B are the best-fit curves (reduced r^2 = 0.77 for errors of 0.3 s$^{-1}$ for R_{2eff}) obtained from global fitting of the 15N-CPMG relaxation dispersion data to the two-state exchange system depicted in black in C. The thick black solid lines in A are the backcalculated 15N (Top) and 13C (Bottom) exchange-induced shifts for 15N and 13C Δω values of 2 and 3 ppm, respectively. The 15N-Δω values were taken from the fits to the 15N-CPMG relaxation dispersion data (SI Appendix, Table S4); in the case of 13C-Δω, 3 ppm is comparable to the largest 13C-Δω value observed for free httex1 (SI Appendix, Table S1).
off-pathway (EP)\textsubscript{2} dimer is also largely unaffected by binding of profilin. The backcalculated \(^{15}\)N- and \(^{13}\)C\textsubscript{μ} exchange-induced shifts (thick black lines in Fig. 6A) expected for Δω values of 2 and 3 ppm, respectively, at 800 MHz are too small to be experimentally measurable over the 50 μM to 1 mM concentration range studied. The \(^{15}\)N-Δω values for (EP)\textsubscript{2} are ~2 ppm (SI Appendix, Table S4), about twofold larger than the corresponding values in the absence of profilin (SI Appendix, Table S1), possibly suggesting that the ensemble of partially helical states for the off-pathway (EP)\textsubscript{2} dimer may be somewhat more ordered in the presence of profilin.

Concluding Remarks. We have investigated the impact of human profilin I on the nucleation, transient oligomerization events involving the full-length exon 1 huntingtin protein, httex1, comprising the N-terminal oligomerization domain (NT), a short seven-residue polyglutamine tract, and a polyproline rich domain (PRD) containing two polyproline tracts. We show that when at least one profilin molecule is bound to the PRD of httex1, the on-pathway (productive) oligomerization pathway, leading to the formation of a transient, helical coiled-coil tetramer of the NT domain, is effectively abolished, and only the off-pathway leading to a nonproductive, partially helical NT dimer (that does not oligomerize further) is preserved (Fig. 6C). This result provides a clear mechanism whereby binding of profilin to the PRD inhibits fibrillation and subsequent aggregation and toxicity of httex1 (23–25). Furthermore, the fact that the on-pathway for early-stage oligomerization of httex1 is eliminated by profilin, validates the branched oligomerization scheme first proposed for the shorter httH47Q construct (26). Indeed, it is difficult to conceive a mechanism whereby the absence of an off-pathway leading to a nonproductive dimer of httex1 would be possible if only the latter is retained in the profilin– httex1 complex.

The above seemingly simple result required nonetheless a considerable amount of auxiliary investigations aimed at a quantitative description of transient oligomerization of the free (unliganded) full-length httex1 as well as the binding equilibria and kinetics of httex1–profilin interactions. First, using a combination of the state-of-the-art NMR techniques for the characterization of chemical exchange and binding equilibria, including CPMG relaxation dispersion, exchange-induced chemical shifts, and lifetime line broadening, we quantitatively characterized the impact of the C-terminal PRD domain, absent from the shorter huntingtin variant httH47Q studied earlier (26), on the nucleation transient, oligomerization events involving free httex1. We found that, although the equilibrium dissociation constant of httex1 tetramers into on-pathway (productive) dimers (Fig. 2C) is preserved between the shorter and full-length huntingtin exon 1 variants, the presence of the PRD in full-length httex1 somewhat stabilizes both on- and off-pathway dimeric species relative to the monomer. Second, we quantitatively described the equilibria involved in the binding of profilin to the two distinct polyproline tracts, \(\text{T}_{11}\) and \(\text{T}_{30}\), within the PRD using a four-state binding model. The equilibrium dissociation constants for the binding of the first molecule of profilin are in the 15 to 30 μM range, but binding of a second profilin molecule is ~11-fold weaker, indicative of negative cooperativity, possibly due to partial steric hindrance between spatially close profilin molecules. In this regard, we note that the intracellular concentration of profilin ranges from 10 to 40 μM (34), while that for huntingtin within whole brain is around 0.15 μM (35) and the estimated concentration of soluble httex1 fragments within neuronal inclusion bodies is ~10 μM (15). Hence, significant occupancy of profilin bound to httex1 can be achieved in vivo. The kinetics of profilin binding were investigated using a shorter huntingtin construct containing only a single polyproline tract. Exchange between the free proteins and the complex occurs on a moderately fast timescale (\(\tau_{\text{ex}} \sim 600 \mu\text{s}\)) relative to the observed chemical shift changes upon binding.

Building upon the quantitative information on the early stages of httex1 oligomerization as well as profilin– httex1 interactions, we were able to unambiguously demonstrate that early-stage on-pathway oligomerization events in the aggregation of httex1 leading to tetramer formation are abrogated by binding of profilin to the polyproline tracts. Since the PRD does not participate directly in the intermolecular interactions that stabilize the on-pathway dimer and tetramer formed by the NT domain (26), how does profilin binding exert its inhibitory effect? A possible explanation may lie in steric hindrance from the relatively large profilin significantly reducing the probability of forming the site-specific contacts required to form the on-pathway helical coiled-coil dimer and tetramer; the off-pathway dimer, however, does not appear to constitute a single structure but an ensemble of conformations with different registers and degrees of overlap (26), and hence the formation of the off-pathway dimer is only minimally impeded by profilin binding.

Experimental Methods
A detailed description of expression, purification, and isotope labeling of httex1 and human profilin I experimental details of NMR and analytical ultracentrifugation measurements, and details of all global data fitting procedures are provided in SI Appendix.

Data Availability Statement. All experimental relaxation dispersion, exchange-induced shift, and transverse relaxation data discussed in this paper are provided either in the main text or SI Appendix. The experimental data in digital format, together with MatLab scripts used in global fitting, have been deposited on Figshare (DOI: 10.6084/m9.figshare.11887860). In addition, the backbone chemical shifts for httex1 have been deposited in the Biological Magnetic Resonance Data Bank (36).

ACKNOWLEDGMENTS. We thank Drs. Enrico Rennella and Lewis E. Kay (University of Toronto) for providing backbone chemical shift assignments of human profilin I. We acknowledge the technical assistance of Drs. Dusty Baber, Dan Garrett, and Jina Yang (National Institute of Diabetes and Digestive and Kidney Diseases, NIH). This work was supported by the Intramural Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH (to G.M.C., DK029023-19).

5. B. A. Barbaro et al., Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum. Mol. Genet. 24, 913–925 (2015).

