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Reply to Marchenko et al.: Flux analysis of
GroEL-assisted protein folding/unfolding

Using NMR-based relaxation experiments,
we showed that exchange between the folded
state (F) of a metastable SH3 domain and a
folding intermediate (I) is an order of mag-
nitude faster when the SH3 domain is bound
to apo GroEL than in free solution (1). We
did not consider fluxes through the apo
GroEL-assisted and unassisted pathways.

Marchenko et al. (2) note that the ap-
proximate rate constants for the GroEL-
assisted interconversion between the F and
I states (kpop-Gol-Gor and kjo1-Gor-Gor) are
slower than the corresponding rate con-
stants (kg and ki) for direct interconver-
sion, as the binding of I to GroEL is
slower than the interconversion between
the GroEL-bound F and I states under the
conditions of the NMR experiments [i.e.,
(k2pP + KIG) < (kG + kf;), where K%FP is a
pseudo-first-order association rate con-
stant given by k,,[G]; see scheme in Fig.
1]. On this basis, Marchenko et al. (2) con-
clude that our data provide “strict experi-
mental evidence that apo GroEL does not
accelerate protein folding, although it does
accelerate one of its steps,” and therefore
corroborates their earlier hypothesis that
the interaction of GroEL with folding inter-
mediates hinders the formation of native
structure (3).

However, Marchenko et al. (2) fail to take
into account that binding of F and I to GroEL
are second-order processes dependent upon
the concentration of apo GroEL. The relative
contributions of GroEL-assisted and unas-
sisted pathways can be assessed by steady-
state flux analysis (4).

The flux through parallel and serial re-
action paths is given by Fpyraiq = ZF; and
Fopiar = [Z(U/E)Y, respectively, where F; is
the flux of the ith reaction step. For the ki-
netic scheme in Fig. 1, the fluxes between
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states F and I through the GroEL-assisted
and unassisted pathways are given by
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respectively, where [G] is the concentration of
free SH3 binding sites on GroEL (assumed to
be one per GroEL cavity). Fluxioh . ooy
and Fluxgoby o4 are plotted as a function
of total GroEL concentration in Fig. 14, and
the corresponding ratio of fluxes is shown in
Fig. 1B. In the NMR experiments, the total
concentration of GroEL 14 mer is 8.6 pM
(corresponding to 17.1 pM in cavities and
120 pM in subunits), and, under these condi-
tions, Fluxtok: ived is indeed slower than

FluxEl

GroEL-unassisted* However, when the total

concentration of GroEL is increased about
sixfold (~51 pM), the GroEL-assisted path-
way predominates. Moreover, the total flux
between the F and I states is always increased
in the presence of GroEL. Exactly the same
conclusions are reached using the formalism
of Marchenko et al. (2) when the dependence
of the apparent rate constants (kpop.Gor.ger
and kio1gor.gor) on GroEL concentration
are taken into account.

Thus, for any given protein substrate, the
relative importance of the GroEL-assisted
pathway will depend upon the concentration
of GroEL and the balance of the various rate
constants depicted in the kinetic scheme

shown in Fig. 1. Indeed, even a GroEL mini-
chaperone can facilitate protein folding
in vivo (5). The SH3 domain used in our
study (1) is a model substrate that folds rap-
idly on its own. The unassisted folding of
obligate GroEL substrates, however, may be
slow, and, therefore, in such instances, accel-
eration of folding/unfolding on the surface of
GroEL is likely to be functionally important.
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Fig. 1. Fluxes at equilibrium for the F to | interconversion through the GroEL-assisted and unassisted pathways. (A) Total (green), GroEL-assisted (blue), and GroEL-unassisted (red)
fluxes as a function of total GroEL concentration. Flux{:y) is given by the sum of the fluxes through the GroEL-assisted and unassisted pathways. Note that the decrease in the
GroEL-unassisted flux with increasing GroEL concentration is due to the concomitant decrease in the concentration of the free folded state F. (B) Ratio of GroEL-assisted to
unassisted fluxes. /nset in B depicts the reaction scheme and rate constants (1) for the direct, unassisted (red) and GroEL-assisted (blue) interconversion between the F and | states
of the metastable SH3 domain. Concentrations of all species at equilibrium were calculated by integrating the differential equations describing the reaction scheme shown in Inset
until the steady state is reached (6). The total concentration of SH3 domain is 100 pM. The total concentration of GroEL is expressed in terms of the GroEL 14mer.
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