Supporting Information:

Mutations Proximal to Sites of Autoproteolysis and the α-Helix that Co-evolve under Drug Pressure Modulate the Autoprocessing and Vitality of HIV-1 Protease

John M. Louis*, Lalit Deshmukh, Jane M. Sayer, Annie Aniana and G. Marius Clore
Figure S1. Evaluation of the autodigestion, K_{dimer} and thermal melting of mature proteases. Published results of the time course of autoproteolysis of PR (A) and PR20 (B) by SDS-PAGE are shown here solely for comparison with PR^{PR20-123} and PR20^{PR-123} described in the main text.\(^1\) K_{dimer} of PR^{PR20-123} (B) and PR20^{PR-123} (C) in 50 mM sodium acetate, pH 5.0, containing 250 mM sodium chloride at 28 °C. K_{dimer} values were determined by fitting a previously described equation\(^2\) (shown below) to rate data, where PR\textsubscript{mono} is the concentration of PR expressed as monomers, V_x is the observed initial rate/[PR\textsubscript{mono}], and V_{max} is the extrapolated maximum rate/[PR\textsubscript{mono}] when the enzyme is fully dimeric. Data shown are scaled relative to a maximum activity of 100%.

$$V_x = V_{max} \left[1 - \left\{ \frac{(K_{dimer}/2 * [PR_{mono}])^{1/2} * ((K_{dimer}/2 * [PR_{mono}]) + 4)^{1/2} - (K_{dimer}/2 * [PR_{mono}])^{1/2}}{2} \right\} \right]$$

DSC thermograms of PR^{PR20-123} (E) PR20^{PR-123} (F) and their parent constructs PR and PR20, in the presence (solid lines) and absence (dashed lines) of a two-fold molar excess of darunavir. Data from previous work are shown for PR\(^3\) and PR20\(^1\) for comparison only.
Figure S2. Graphical representation of table 1.
Figure S3

Figure S3. Michaelis-Menten plots for hydrolysis of chromogenic substrate (measured at 310 nm) by 0.3 µM PRPR20-123 (A) and PRPR-123 (B) in 50 mM sodium acetate, pH 5.0, containing 250 mM sodium chloride at 28 °C. As higher substrate concentrations (> 450 µM) lead to weak inhibition by one of the cleavage products, the highest substrate concentration that could be used is below K_m for PRPR20-123 (A). Thus, only the estimated lower limits for these kinetic parameters are given. For PRPR-123 (B) both Michaelis-Menten and Lineweaver-Burk plots are shown.
Figure S4. Determination of K_i ($1/K_{\text{association}}$) for binding of inhibitors to PR$_{PR20-123}$ and PR$_{PR20-123}$ by ITC in 50 mM sodium acetate, pH 5.0, at 28 °C. For competitive inhibitors, $1/K_{\text{association}}$ for inhibitor binding by ITC is the same as determined kinetically. The apparent stoichiometry (N-value, indicated by the midpoint of the binding isotherm) for both titrations of PR$_{PR20-123}$, was lower than expected for the 1:1 ratio of the enzyme-inhibitor complex, likely due to autoproteolysis (see Figure 2). Therefore, the concentration was scaled in panels (C) and (D) to give an N-value of 1. No concentration correction was applied for PR$_{PR20-123}$ [panels (A) and (B)] as expected. DRV, SQV and RPB denote darunavir, saquinavir and reduced peptide bond inhibitor, respectively.
Figure S5. K_i determination for reduced peptide bond inhibitor (RPB) binding to (A) 0.5 µM PR20 and (B) 0.6 µM PR$^{PR20-123}$ by use of Dixon plots for hydrolysis of chromogenic substrate. Each complete data set comprising 2 or 3 substrate concentrations was processed together by use of the enzyme kinetics module of Sigmaplot 10. (C and D) Kinetic determinations of IC50 and K_i for saquinavir (SQV) mediated inhibition of 0.54 µM PR20$^{PR-123}$ at two substrate concentrations. For duplicate measurements average values with error bars are shown. The solid lines are curve fits of the Morrison equation5 (shown below) to the data with parameters IC50 and E, where V_o and V_{obs} are initial rates in the absence and presence of inhibitor, respectively, and I and E are total concentrations of inhibitor and active sites respectively.

$$\frac{V_{obs}}{V_o} = 1 - \left\{ \left[I + E + IC^{50} - \left[(I + E + IC^{50})^2 - 4*I*E \right]^{1/2} \right]/2*I \right\}$$

K_i values shown were calculated from IC50 by use of the equation $K_i = IC^{50}/(1 + [Substrate]/K_m)$.
Figure S6

Figure S6. 600 MHz 1H-15N TROSY correlation spectra of freshly prepared 15N or 15N/13C labeled proteins in 20 mM sodium phosphate buffer, pH 5.7, 20 °C. Spectra were acquired in the presence of the symmetric inhibitor DMP323. After acquiring the NMR spectra, samples were subjected to SDS-PAGE on homogeneous 20% Phastgels and stained with Phastgel blue R to visualize the bands. Inset lanes B and C denote PR20$^{PR-12}$ + DMP323 and PR20$^{PR-12}$, respectively. PR20$^{PR-12}$ undergoes rapid autoproteolysis in the absence of DMP323. M, FL and p denote molecular weight standards in kDa, full-length mature protease and products of autoproteolysis, respectively.
REFERENCES

