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Here we discuss two particular types of symmetry for rotational diffusion tensors D¢ for the case of
conformational exchange between two states. In addition we provide illustrative numerical Monte Carlo
simulations of C(t), and an illustrative calculation of the ratio of NMR relaxation rates for a protein
undergoing a hypothetical transition between two states.

Axially symmetric diffusion tensors

In this section we discuss the situation when a solute molecule adopts only two discrete conformation
states — A and B. We assume that in both of these conformations the overall rotational diffusion tensors
D4 and D, represented by 3 X 3 matrices, are axially symmetric with Df # Df = D5, DF = Df =
335, where DF, D and D7 denote three eigenvalues. Further, we explicitly denote two eigenvalues

i = D7 and D] = D = D§ corresponding to two vectors of the diffusion tensor principal axis frame
which are parallel and perpendicular to its axis of symmetry.

It is well know (1) that for the case of an axially symmetric diffusion tensor D¢, the eigenfunctions of the
differential operator LTD?L are the elements of Wigner rotation matrices

LTD?L DL (Qe) = A5 Dl (Q0) [s1]

where (), specifies the orientation of the principal axis frame of the diffusion tensor matrix ®¢. Here we
consider the case [ = 2 (appropriate for NMR relaxation). Then the five eigenvalues of Eq. [S1] are given
as

S = 6D + m*(Df — DY) [s2]

According to their definitions, in the axially symmetric case the unitary transformations U4 and
UB4 = (U4B)T specify transitions between two sets of D2,,(Q,) and DZ,,(Qz). However, due to the



axial symmetry of both D4 and D5, in this case the choice for Q, and Qg is not unique: it is only
necessary that the z axes of the principal axis frames of tensors D4 and DZare oriented along the axes
of symmetry of D4 and D? while the orientations of x and y are not fixed. We use this freedom in the
definitions of Q4 and Q5 to define transformations U4Z and UZ4 in the most convenient way. Thus, we
define the principal axis fames of tensors D4 and D? in such a way that their y-axes have the same
orientation. This is always possible for any mutual orientation of axially symmetric tensors D4 and DE.
In this case the transition between the sets of D2,,,(€,) and D2,,(Qp) can be encoded by a single Euler
angle B,p defining the tilt between axes of symmetry of D% and D4. Then the unitary transformation
U4B is

[UAB], = [(UPAYT] = 2, (Bap) [s3]

where d2,,(B) (see supplementary Table S1) are the elements of the reduced Wigner rotation matrix
which are used in definition (2) of the full D, (), where Q is specified in terms of Euler angles

{a' ﬁ’ y}l as
Dpm(Q) = e~ dpm (B)e™ ™ [s4]

For the case of axially symmetric 4 and DF the eigenfunctions of operators LT ®4L and LT DFL are
Wigner rotation matrices D2,,(€,) and D2,,(Qg). In this case the unitary transformations U4 and U2
are specified only by three dimensional rotations {14, and Qgy. Then,
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V@0V = |- ' D ©@anDE @) = I (@) [s5]
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for € = A, B and where (), specifies the orientation of the vector of interest in conformation & with
respect to principal axis frame of D%,

Anisotropic diffusion tensors

If diffusion tensors D4 and DF are not axially symmetric, the eigenfunctions of the differential
operators LT DL no longer coincide with the Wigner rotation matrices (1). However, the eigenfunctions
of those operators can be represented using a basis of Wigner rotation matrices as

l
i) = ) Dh(0)4%, [s6]
k=—1

with the elements of the transformation matrix A;k given for | = 2 explicitly as
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where we drop the index [ in the definitions for A® = A%2. The eigenvalues of LTDL for a fully
anisotropic D¢ are (1)

A%, = 3(DE + DE)

A%, = 3(D5 + DE)
& = 6D — 2A° [s8]
7 =3(D% +95)
¢ = 6DF + 2A°

with, Af= J(m —D5)" 4 (DL —DE)(DE —DE), wE = 2DE —DE —DE + 245, N° = 2,/]A%we,

uf = \/§(ch —Df,), and Df = (Df + Dy + D7)/3, except for the very specific case of axially
symmetric oblate tensor with D7 < Df = Dj, when the expressions for A® and w® should change their

signs: AS= —J(©§ - tD;)Z + (Df — DE)(DE — DE) and wé = —2DF + D + D — 24¢.

It is instructive to discuss the limiting transition of Egs. [S6], [S7] and [S8] to the axially symmetric case
when D5 = Dj. It can be verified that in this limit Egs. [S8] reproduce the eigenvalues of the axially
symmetric top in Eq. [S2]. However, is also easy to see that in this case wé/N¢ = 1, u®/N¢ = 0 and the
eigenfunctions defined by Eq. [S6] do not reduce to the definitions of the eigenfunctions of the axially
symmetric case [S1]. This discrepancy is due to the degeneracy of the eigenvalues, A, = A%,,, of the
LTDEL operators in the axially symmetric case. However, in the axially symmetric case, instead of
D% (Q.) and DZ_,,(Q.) one can use two orthogonal normalized linear combinations of these

eigenfunctions, such that ¥f,,(Q.) = (Dfl’m(gs) + D%’_m(gg)) JVZ for m>0 and ¥E,,(Q) =
(D2m(@e) = D2 () V2 form < 0.

In contrast to the axially symmetric case discussed above, for fully anisotropic diffusion tensors there is
no freedom in defining the orientations of the principal axis frames. In addition, since the eigenfunctions
of differential operators LT DL are no longer Wigner rotation matrices, the transformation matrix U4Z
is expressed as



U4B = (UB4)t = AYD(Q,p)AP1 [s9]

where matrix [D(Qag)lum = D2 (Qap) and Qup specifies the rotational transformation from the
principal axis frame of D? to the principal axis frame of D4. Similarly, in the case of anisotropic diffusion
tensors the product YZT(QISVH)Ug not only accounts for the orientation of the vector of interest but is also
dependent on the parameters of transformation A as follows

Y7 (Qf) U = Y (Q AT [S10]

Comparison with simulation results in the time domain

The closed form solution in the frequency domain for the Laplace transformed correlation function C (o)
is represented by the Egs. [22] and [23] of the main text. To convert this solution into the time domain
one needs to obtain the time domain representation of the rate matrices R®"?(ag) using the inverse
Laplace transform £~ (3) which is represented by the Bromwich integral

Y+iw

1
-1(pen — ; &n ot
LTHR#(0)}(t) = i a)l—l>m+oo | R¥(0)e’ do
y—iw

[S11]

According to the Cauchy residue theorem (4), a closed loop integral, like the Bromwich integral [S11], is
equal to the sum of the residues of the function of interest

LURTM(@NO) = ) lim (0~ 7R (@)e [s12]

where 73, are all the poles of R¥7(a) on the complex manifold. It is clear from Eq. [23] that these poles
originate from the roots of the matrix denominators of rate matrices R*7 (o) i.e. r; are given by the
algebraic equation

det(Q*U*P QP — kypkp, U*P) = det(Q®UP4Q* — kypkp,UP) = 0 [s13]

Finding these roots in closed form is not possible due to the high dimensionality of the problem and the
Abel-Ruffini impossibility theorem (5). However, it is always possible to obtain these roots by
numerically solving Eq. [S13] for any particular set of numeric parameters of the problem: i.e. transition
rates k,p and k,p, two sets of eigenvalues {D#, D3, D4} and {DE, DE, DE} of diffusion tensors D4 and
DB, and the parameters of Q.5 Which specify the rotational transformation between the principal axis
frames of D& and D. Note that the roots of Eq. [S13], and therefore, the time domain representation
of R¥"(a) depend only on these parameters, while the correlation function C(t) is also dependent on
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the orientation of the vector of interest: that is on the two sets of Euler angles Q4; and Qg; which
specify the orientation of this vector in the two conformational states with respect to the principal axis
frame of the diffusion tensor of the appropriate conformation.

Substituting the time dependent L™1{R®"(¢)}(t) from [S12] into Eq. [22] of the main text, instead of
the frequency dependent R®7(g), one obtains a numerical representation for C(t). To verify the
correctness of our solutions we compared the time domain numerical representation of C(t) derived
from Egs. [22], [23], [S12], and [S13] with the results of Monte Carlo simulations.

For simulations of C(t) we used the following approach. Initially we defined two sets of three mutually
perpendicular unit vectors representing the orientations of two principal axis frames of molecular
diffusion tenors in two conformations, A and B. In addition to these six unit vectors we also define two
other unit vectors representing orientations of the vectors of interest in these conformations. Choosing
the orientations of those eight unit vectors is equivalent to defining Qag, Qa1 and Qg;. We also chose
values of transition rates kyp and k,p and derived from them equilibrium occupation probabilities
P.q(A) = kyp/(kaptkps) and Pog(B) = kpa/(ksp+kpa). We then obtain the probability of being in
the initial conformation after unit time interval, At, as

P(n,At|n, 0) = Pog(n) + Py (e)e~(kastkpa)it [s14]

where 1 # €. In the simulations we always assume a unit time step At = 1. Given a current
conformation, orientations of the vectors of the principal axis frame of this conformation, and values of

the conformation-specific rotational diffusion coefficients {3)5,@;,@5}, one can always explicitly
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calculate a spatial transformation matrix which specifies a random “infinitesimal” diffusion rotation

appropriate for the current molecular conformation.

Thus, the Monte Carlo simulation routine runs as follows. For every Monte Carlo trajectory we choose a
random initial conformation state using equilibrium occupation probabilities P,;(A) and F,,(B). Then,
we calculate the infinitesimal spatial rotation matrix using the parameters of the current conformation
state. We apply the rotational transformation encoded by this matrix to all unit vectors and update their
orientations making certain that base vectors remain orthonormal and the vectors which represent the
vectors of interest remain of unit length. We record the orientation of the unit vector relevant to the
current conformation state. Then, using values of P(n, At|n,0) we choose randomly between the two
alternatives: to stay in the current conformation or to change the conformation. After making this
decision we close the simulation loop.

We calculate N,,. = 10* different Monte Carlo trajectories where every trajectory consists of Ny =
1.5 x 10° simulation time steps. For each simulated trajectory we calculate the orientation correlation
function of the vector of interest

NSC_Z

1

€)= ) Byln(k) - n(k+2)] [s15]
k=0

Nt



where z = t/At is a dimensionless discrete time variable. As can be seen from Eq. [S15] this method for
evaluation of C(z) yields different sampling efficacy for different time moments z due to the finite value
of Ng;. Thus, even in the case where the trajectories are relatively long, we limit the calculations of C(z)
to the relatively small value of z,,,, = 103 to maintain less than 0.07% difference in sampling number
between C(0) and C(z,,4,)- Finally, we average C(z) obtained from different Monte Carlo trajectories.

Fig. S1 presents the comparison between Cyp,.0-(t) calculated using theoretical expressions [22], [23],
[S12], [S13] and Cj;,, (t) obtained from simulations for the case where in both conformation states the
rotational dynamics of the molecule under consideration is described by fully the anisotropic diffusion
tensors D4 and D5. This figure shows that averaging more than a hundred Monte Carlo trajectories
yields simulation results that are virtually indistinguishable from the theoretical Cip,p0r-(t) curve. More
detailed comparison in Fig. S2 also reveals a clear tendency for the difference AC(t) = Cipeor(t) —
Csim (t) to decrease with increasing number of different Monte Carlo trajectories used for averaging

when estimating Cg;,, (t). In Fig. S3 the variance Var = \/((AC(t) — (AC(t)))?) obeys the theoretical

dependency Var~1/,/N,, where N, is the number of trajectories used for averaging.
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Fig. S1 Comparison between the theoretical time dependency of the orientation correlation function
Cineor (1), represented by the solid line, and the simulated Cj;,,, (t): the dashed line represents a single
Monte Carlo trajectory, while the dotted line represents C;,, (t) averaged over 10 trajectories. All the
calculations were performed for the following set of parameters: D4 =3 x 1074, iDJ“} =6x107%
D4=1x10"3 DE=2x107%, Dg =7x107% DB =6x%x1073, kyg =7x1073, kg =9 x 1073,
Qap:{aag = 27, Bag = 78,7ap = 17}, Qar: {aar = 72, Ba; = 37}, and Qg;: {ag; = 24, Bg; = 17} where
all the components of the diffusion tensors and transition rates are given per unit time interval At, and
all the angles are in degrees.
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Fig. S2 Difference, AC(t), between theoretical, Cipeor(t), and simulated, Cg;,(t), values of the
orientation correlation function for different numbers of Monte Carlo trajectories used for Cg;p, (1)
averaging: dashed line, 10%; dotted line, 10%; dash-dotted, 103; and solid line, 10* trajectories. All
calculations were performed using the set of parameters given in the legend of Fig. S1.
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Fig. S3 Dependence of the variance between theoretical Cyj .0 (t) and simulated Cy;yp, () on the number
of Monte Carlo trajectories used for Cg;,,, (t) averaging. Symbols represent the averaged values of
variances calculated for different possibilities for selecting N,,, trajectories for averaging from the total
number N;. of all calculated trajectories. The dashed line represents the theoretical
dependence Var~1/\/N_a,,. All calculations were performed using the set of parameters given in the
legend of Fig. S1.



Illustrative calculations of NMR relaxation rates

To illustrate the potential impact of the internal dynamics on experimental observables we present here
the results of numerical calculations on NMR relaxation data using a hypothetical protein system. We
calculate the ratio of R, and R;, the transverse and longitudinal relaxation rates, respectively. To
calculate these rates we use the standard relationships (6) between the spectral density, /(w), and
relaxation rates. The spectral density was obtained directly from Laplace image C(o) of orientation
correlation function defined by Eqg. [22] using the relationships between Laplace and Fourier

transformations J(w) = Re{C’(a))} = Re {C(U)lcr:iw}'

We calculated NMR relaxation rates for each backbone NH pair in the protein. We assumed no effects
of anisotropy of the chemical shielding tensor by assuming a CSA constant equal to zero. We evaluated
the relaxation rates at specific spectrometer frequency of 600.141 MHz.

We used the symmetric 128 kDa dimer complex of enzyme | (El), which is the first component of the
bacterial phosphotransferase system of Escherichia Coli, as an example of the system exhibiting large
scale conformation exchange between two states (7).

State "A"  kag State "B"
k
£ fag ™ T BA
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Fig. S4 Two conformation states of El dimer: N-terminal domains of the dimer are green, C-terminal
domains are blue.

We evaluated the components of the rotational diffusion tensors of each conformation using the built-in
computational facilities of Xplor-NIH (8) assuing that El tumbles in water at 300 K and obtained the

values
D4 =29.16 x 107 [s‘l],SDA =31.47 x 107 [s71],D4 = 32.43 x 107 [s7!]

D8 = 15.71 x 107 [s71], D5 = 15.82 x 107 [s~1], DF = 30.99 x 107 [s7"]

with the overall rotational correlation time 74 = 53.73 ns for state A and 78 = 79.99 ns for state B.

The process of conformational exchange between the two conformations depicted above purely
hypothetical. For our illustrative purposes we assume the transition rates k,z and kg, are equal
ks = kps which leads to equal occupation probabilities P.q(A) = P.q(B) = 1/2. We conducted
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calculations for three regimes: when the rates of conformational exchange are comparable to the scale
of overall rotational diffusion k = kg = kg, = 155.57 X 107 [s~1] and for the situations of fast and
slow exchange, kfqsr = 10 X k and kg0, = 0.1 X k. We also assumed that the conformation transition
depicted in Fig. S4 preserves orientation of the PAF of diffusion tensors.
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Fig. S5 Simulated ratios of El relaxation rates R,/R;. The blue curve corresponds to k = 155.57 x
107 [s™1], red line is for the case of slow exchange kg,,, = 0.1 X k, green line is for the case of fast
exchange, kfqqr = 10 X k. In this figure the N-terminal domain of El spans residues 1-259 and residues

260-573 comprise the C-terminal domain.
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Table S1 Components of the reduced Wigner rotation matrices d3 ., (8)

1 + cos (ﬁ))z

a8 = (—

43,8 =~ P inp)

6
Bo) = osin? ()

1—
10 = 2P i)

1 — cos (ﬁ))z

@ (F) = (—

1) =2 (3 cos) - 1)

3
dio(B) = - ﬁsin(ﬁ) cos(B)

@) =5 2.cosp) + 1)

3cos?(B) —1

d(%,o (.3 ) = 2

and the rest of matrix elements can be obtained using the symmetry relationships

drzlm(ﬂ) = (_1)m_nd12n,n(:8) = dgm,—n(ﬂ)
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