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a b s t r a c t

We present a new version of the 3D TROSY HNCO pulse scheme, referred to as HR-TROSY HNCO, with
comparable resolution in the 15N dimension to a 2D 1H–15N HSQC experiment. In the conventional 3D
TROSY HNCO, the constant time period (1/2JNC ! 32 ms) severely limits the maximum resolution in
the 15N dimension. In the HR-TROSY HNCO experiment presented here, both constant time periods
(!32 ms each) for coherence forward and backward transfer between 15N and 13C0 are utilized to double
the 15N evolution time. This leads to a dramatic enhancement in peak separation along the 15N dimen-
sion, making the HR-TROSY HNCO an ideal pulse scheme for accurate paramagnetic relaxation enhance-
ment and residual dipolar coupling measurements.

Published by Elsevier Inc.

1. Introduction

In recent years, several NMR methods, which complement tra-
ditional NOE-based approaches, have been developed to facilitate
three-dimensional structure determination, to characterize molec-
ular motions, and to visualize lowly-populated transient species. In
particular, residual dipolar couplings (RDC) yield bond vector ori-
entations relative to an external alignment tensor that are particu-
larly useful for structure determination of multidomain proteins,
protein complexes and nucleic acids [1–4]. In addition, accurate
RDC data can potentially be used to study protein dynamics [5–
13]. Paramagnetic relaxation enhancement (PRE) provides long-
range distance information (up to !35 Å in suitable cases) that is
particularly useful in the study of macromolecular complexes
[14–16] and has been recently exploited to characterize highly
transient, lowly-populated species [17–24], as well as unfolded
and disordered states of proteins [25–27].

In cases where resolution permits, conventional backbone
amide RDCs and PREs can be measured using 2D 1H–15N HSQC-
or TROSY- [28] based experiments [29,20], allowing the rapid mea-
surement of a large number of RDCs and PREs. However, for larger
proteins, or moderately-sized proteins with high a helical or
unstructured coil content, cross-peak overlap greatly decreases
the accuracy of the measured peak splittings and intensities.

Yang et al. extended the 2D 1H–15N correlation experiment to a
3D TROSY-based HNCO to separate overlapped peaks along an

additional 13C0 dimension for the measurement of 1DNH RDCs
[30]. In principle, a similar HNCO scheme can also be implemented
for PRE C2 measurements by simply replacing the first INEPT ele-
ment by a PRE measuring block [20]. However, the conventional
TROSY-based HNCO [31] suffers from extremely low resolution
along the 15N dimension because the maximum 15N evolution time
is limited by the constant time period (1/2JNC0 ! 32 ms), for coher-
ence back transfer from 13C0 to 15N, and resolution is inversely pro-
portional to this evolution time. As a result, RDCs and PREs
measured along the 15N dimension in a conventional TROSY HNCO
would result in lower precision compared to the 2D 1H–15N HSQC
counterpart.

Here, we present a high-resolution version of the TROSY HNCO,
which we refer to as HR-TROSY HNCO, in which both constant time
periods (!32 ms each) for coherence forward and backward trans-
fer between 15N and 13C0 are utilized to maximize the 15N evolution
period, thereby extending the 15N evolution time of 64 ms. This
experiment separates cross-peaks along the 13C0 dimension while
maintaining high resolution along the 15N dimension. An HNCO
pulse scheme with improved resolution along the 15N dimension
was previously proposed by Madsen and Sørensen [32]. In the lat-
ter implementation only the 15N to 13C0 (forward) INEPT transfer
period (!32 ms) is utilized for 15N chemical shift evolution, and
improved resolution along the 15N dimension is realized by varying
the evolution period from "32 to 32 ms by shifting the 180! pulses
from one end of the constant time period to the other. This concept
can also be easily incorporated into our HR-TROSY HNCO pulse se-
quence which would further extend the evolution time from "64
to 64 ms. We demonstrate the utility of the 3D HR-TROSY HNCO
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experiment on a 1:1 complex of U-[15N, 13C, 2H]-labeled mouse KIX
with phosphorylated KID (pKID) [33].

2. Experimental

2.1. Materials

A 29 residue peptide (pKID) comprising the kinase-inducible
domain of the cAMP response-element binding protein (CREB, res-
idues 119–146) was synthesized by solid state methods with
Ser133 phosphorylated, the N-terminus acetylated, and the C-ter-
minus amidated (Biopeptide Co., San Diego). U-[15N, 13C, 2H]-la-
beled mouse KIX domain (residues 586–672 of the CREB binding
protein) was expressed and purified essentially as described previ-
ously [33].

2.2. NMR experiments

All NMR spectra were recorded at 27 !C on a Bruker 600 MHz
spectrometer equipped with a z-gradient triple resonance cryo-
probe. A 2D 1H–15N HSQC spectrum (non-constant time) was re-
corded as a reference with 128(t1) # 512(t2) complex points
along the 15N and 1H dimensions corresponding to acquisition
times of 64 and 63.9 ms, respectively. The data matrix for the
HR-TROSY HNCO comprises 100(t1) # 10(t2) # 512(t3) complex
points along the 15N, 13C0 and 1H dimensions corresponding to
acquisition times of 63.24, 8.28 and 77.4 ms, respectively. The
HR-TROSY HNCO spectrum was recorded with 16 scans per incre-
ment and an interscan delay of 1.1 s, resulting in !18 h of total
measurement time. For comparison, a conventional TROSY HNCO
was recorded with 50(t1) # 10(t2) # 512(t3) complex points along
the 15N, 13C0 and 1H dimensions corresponding to acquisition times
of 31.62, 8.28 and 77.4 ms, respectively, using 32 scans per incre-
ment, resulting in the same total measurement time as the HR-
TROSY HNCO. For both the HR-TROSY HNCO and conventional
TROSY experiments the 15N, 13C0 and 1H carrier frequencies were
placed at 117, 176 and 4.75 ppm, respectively, and the sweep
widths in the corresponding dimensions were 26, 8 and
11.02 ppm, respectively. (The same carrier frequencies and sweep
widths for 1H and 15N were also used for the 1H–15N HSQC.) The
conventional TROSY and HR-TROSY HNCO spectra were processed
identically using linear prediction and zero-filling along the 15N
dimension, giving final spectra with 256 and 512 frequency data
points, respectively. Replacing the first INEPT element (dashed
block in Fig. 1A) with the PRE measuring block (Fig. 1B) adapts
the HR-TROSY HNCO pulse sequence to one suitable for PRE C2

measurements. By setting the transverse relaxation delay T1 to
be 0 and 14 ms and acquiring the data for both delays in an inter-
leaved manner [20], the total experimental time is !39 h. All data
sets were processed using the NMRPipe package [34].

3. Results and discussion

Fig. 1A provides a schematic of the 3D HR-TROSY HNCO pulse
scheme. After the first INEPT, magnetization on 15N is transferred
to 13C0 and MQ coherence between 15N and 13C0 is generated by
the 90! 13C0 pulse (/2). By synchronously shifting the 180! 15N
and 13C0 pulses (as indicated by the arrows), the chemical shift of
15N is encoded during both constant time periods for the coherence
forward and backward transfer between 15N and 13C0, thereby
extending the maximum 15N evolution time to as long as 1/
JNC0 ! 64 ms. This allows the resolution along the 15N dimension
of the 3D HR-TROSY experiment to be comparable to that of the
2D 1H–15N HSQC counterpart. A similar approach has been previ-
ously reported for the 3D HNCA TROSY used for sequence specific

backbone assignments [31], in which the maximum 15N evolution
time was 1/(1JNCa + 2JNCa(i"1)) ! 44 ms. The 3D HR-TROSY HNCO of-
fers even higher resolution along the 15N dimension, which results
in better separation of amide cross-peaks and yields clearer 2D
planes and strips.

Fig. 2A shows the overall 2D 1H–15N HSQC spectrum for the KIX/
pKID complex, and an expansion of the most crowded region is
provided in Fig. 2B. 1HN–13C0 planes of the HR-TROSY HNCO and
conventional TROSY HNCO spectra are displayed in Figs. 2C and
D, respectively, taken at the 15N chemical shifts corresponding to
the dashed lines a–e in Fig. 2B. A comparison of Figs. 2C and D
clearly demonstrates that the HR-TROSY HNCO spectrum is cleaner
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Fig. 1. (A) Pulse sequence of the 3D HR-TROSY HNCO with high resolution along the
15N dimension. The radio-frequency pulses on 1H, 15N, 13C0 and 13Ca are applied at
4.75, 117, 176 and 56 ppm, respectively. Narrow and wide black bars indicate non-
selective 90! and 180! pulses, respectively. Water suppression is achieved using the
Watergate pulse train. 13Ca decoupling is carried out using GARP with a field
strength of cB2 = 0.625 kHz. Sine bell shape 1H pulses are water selective 90! pulses.
The duration and strength of the pulsed field gradients applied along the z-axis are
as follows: g1: 0.7 ms, 25 G/cm; g2: 1.0 ms, 60 G/cm; g3: 0.7 ms, 50 G/cm; g4:
0.45 ms, 50 G/cm; g5: 0.3 ms, 21 G/cm; g6: 0.3 ms, 19 G/cm. The delays are
T = 16 ms, s1 = 2.72 ms. The phase cycling is as follows: /1 = y, "y, x, "x; /2 = 4x,
4("x); /3 = "y; /4 = y; /5 = "y; /rec = y, "y, "x, x, "y, y, x, "x. All other radio-
frequency pulses are applied with phase x except as indicated. A phase-sensitive
spectrum in the 15N (t1) dimension is obtained by recording a second FID for each t1
value, with /1 = y, "y, "x, x; /3 = y; /4 = "y; and /5 = y. Quadrature detection in the
13C0 (t2) dimension is achieved using States-TPPI applied to the phase /2. The
resolution can be further improved [32] by simultaneously shifting the 15N and 13C0

180! pulses from one end of the constant time period 2T to the other for the
coherence forward and backward transfer between 15N and 13C0; that is by simply
replacing the two T " t1/4 periods by 2T " t1/4 periods, and the two T + t1/4 periods
by t1/4 periods, thereby extending the 15N evolution period from "64 to 64 ms. (B)
Modification of the 3D HR-TROSY HNCO pulse sequence for measurement of PRE C2

rates [20]. The INEPT element (dashed block in (A)) is replaced by the PRE
measuring block (B). A two-time point measurement with different values of the
relaxation delay T1 is carried out in an interleaved mode. (C) Modification of the 3D
HR-TROSY HNCO pulse sequence for measurement of 1HN–15N dipolar couplings
along the 15N dimension. In the first instance (not shown), the anti-TROSY
component of 15N is simply selected by swapping the phases of /3 and /4 in (A):
i.e /3 = y; /4 = "y. In the second instance, a (J + D) coupling scaling element jt1 is
inserted without changing anything else [35] as indicated by the dashed lines.
Usually the value of the scaling factor j can be set to 1.
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and better resolved than the conventional TROSY HNCO, which
exhibits significant peak leakage between different 1HN–13C0 planes
due to the lower 15N resolution. Indeed, the 1HN–13C0 planes taken
from the conventional TROSY HNCO at the 15N chemical shifts b
and c are completely overlappped (identical). Fig. 3 provides a
comparison of 1D traces along the 15N dimension for the reference
2D 1H–15N HSQC (taken at the 1H chemical shifts indicated by the
red dashed lines in Fig. 2), the 3D HR-TROSY HNCO (taken at the
cross-peak positions indicated by the green stars in Fig. 2C) and
the conventional 3D TROSY HNCO (taken at the cross-peak posi-
tions indicated by the blue stars in Fig. 2D). These traces corre-

spond to peaks for W6, V50, E80, E81, K82 and R83 (all peaks in
the green traces have narrower linewidths than those in the blue
traces). The increased resolution along the 15N dimension makes
the HR-TROSY HNCO particularly well suited for RDC and PRE mea-
surements because peak positions and intensities can be measured
more accurately in the 3D HR-TROSY HNCO than in the conven-
tional 3D TROSY HNCO or 2D 1H–15N HSQC experiments.

During the constant time periods of the HR-TROSY HNCO, no
decoupling or 180o pulse is applied on 1H to maintain the 15N
coherence under the TROSY state. To minimize intensity attenua-
tion on MQ coherence due to passive J couplings between 1H and
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Fig. 2. Demonstration of increased 15N resolution in the HR-TROSY HNCO spectrum. (A) 600 MHz 2D 1H–15N HSQC spectrum of 0.25 mM U-[15N, 13C, 2H]-labeled mouse KIX
complexed with pKID (1:1 stoichiometry) at 27 !C. (B) Expansion of a region with a high degree of spectral overlap to illustrate the high 15N resolution afforded by the 3D HR-
TROSY HNCO. Peaks assignments are annotated with the residue numbering for the KIX domain of CBP. (C), 1HN–13C0 slices taken from the 3D HR-TROSY HNCO spectrum at
the 15N chemical shifts indicated by the dashed lines a–e in (B), showing a very clean spectrum with well-resolved cross-peaks. (D) The corresponding 1HN–13C0 slices taken
from the conventional 3D TROSY HNCO spectrum are shown for comparison. In the conventional TROSY HNCO, 1HN–13C0 slices taken at the 15N chemical shifts of dashed lines
b–c are identical owing to complete overlap due to the low resolution along the 15N dimension. In (C) and (D), peaks with red contours have negative signs arising from
folding in the 13C0 dimension. The red dashed lines in (B) and the green and blue stars in (C) and (D), respectively, indicate the positions where the 1D slices along the 15N
dimension shown in Fig. 3 were taken from the reference 2D 1H–15N HSQC, the 3D HR-TROSY HNCO and the conventional 3D TROSY HNCO, respectively.
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15N (e.g., 2JHaN and 3JHa(i"1)N) during the long 15N evolution period
(64 ms) and between 1H and 13C0 (e.g., 2JHaC0 and 3JHbC0) during the
13C0 evolution period (t2), we recommend perdeuterated samples
for this type of experiment even for proteins of moderate molecu-
lar size. This is especially important when measuring peak intensi-
ties. Clear recognition of resolved cross-peaks with nearly
undistorted peak shape is critical for measuring both peak position
and intensity, which are important for accurate measurement of
1DNH RDCs and 1HN PRE relaxation rates, respectively.

Indeed, this basic 3D HR-TROSY HNCO pulse scheme is easily
adapted to pulse sequences for the measurement of 1HN–15N PRE
C2 rates [20] (Fig. 1B) and 1DNH RDCs (Fig. 1C). For PRE measure-
ments, the INEPT element (delineated by the dashed block in
Fig. 1A) is replaced by the PRE measuring block (Fig. 1B). For
RDC measurements, two alternative schemes are available. For
proteins of moderate molecular size, where the anti-TROSY com-
ponent of 15N is not extremely broad and the peak shape re-
mains undistorted, the anti-TROSY component can be directly
selected by simply swapping the phases of /3 and /4 in the
pulse scheme shown in Fig. 1A; selection of the TROSY and
anti-TROSY components of 15N can be run in an interleaved
mode to obtain a pair of peaks, from which the splitting J or
(J + D) is measured. When the relaxation of the anti-TROSY com-
ponent of 15N is too fast or the peak shape is severely distorted,
a (J + D) coupling scaling element jt1 is inserted [35] as indi-
cated by the dashed lines in Fig. 1, and no other changes are
necessary. In this case, the relevant coherence is under the TRO-
SY state during the two constant time periods (total as long as
64 ms), which better optimizes the relaxation properties of the
pulse scheme. Insertion of the jt1 element allows the relevant
coherence to evolve under the Hamiltonian (J + D). The measured
splitting between the peak of this scheme and that of the origi-
nal HR-TROSY HNCO along the 15N dimension is (J + D) scaled by
a factor of j/2. In most cases, the optimal value of the scaling
factor j is 1. Lerche et al. [36] previously suggested a scheme
for measuring 1DNH RDCs along the 1HN dimension in which
the anti-TROSY and TROSY components of 1HN or the neutral
(decoupled or refocused) 1HN chemical shift are chosen for the
measurement of the couplings (J or J + D). To avoid potential
linewidth broadening along the 1HN dimension due to passive
1H–1H RDCs, we made use of an ST2-PT element [37] in our
pulse sequence to select the TROSY or anti-TROSY component

for measuring 1DNH RDCs along the 15N dimension while detect-
ing 1HN under the TROSY state.
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