SUPPLEMENTARY MATERIAL

Amplitudes of Protein Backbone Dynamics and Correlated Motions in a Small α/β Protein: Correspondence of dipolar coupling and heteronuclear relaxation measurements

G. Marius Clore*† and Charles D. Schwieters‡

†Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
‡Division of Computational Bioscience, Building 12A, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624

2 Figures
Fig. S1 Correlation between $<S^2_{NH}(jump)>$ derived from the two-, three- and eight-structure ensembles. The angle brackets denote averaging over 100 calculated ensembles.
Fig. S2 Correlation between the ω peptide bond torsion angle derived from the one- and two-structure ensemble calculations and those reported by Ulmer et al. (J. Am. Chem. Soc. 2003, 125, 9179-9191). The structure of Ulmer et al. was refined with a different procedure using a single-structure representation against the same set of RDCs, excluding those for the following 10 residues (residues 11-12, 24-26, 39-41 and 43). The angle brackets denote averaging over 100 calculated ensembles.

\[\langle \omega \rangle_{(N_e = 1)} \text{ (deg.)} \]

\[\omega \text{ (Ulmer et al.) (deg.)} \]

\[\langle \omega \rangle_{(N_e = 2)} \text{ (deg.)} \]

\[\omega \text{ (Ulmer et al.) (deg.)} \]

\[\langle \omega \rangle_{(N_e = 2)} \text{ (deg.)} \]

\[\langle \omega \rangle_{(N_e = 1)} \text{ (deg.)} \]