Accurate Orientation of the Functional Groups of Asparagine and Glutamine Side Chains Using One- and Two-Bond Dipolar Couplings

Mengli Cai, Ying Huang, and G. Marius Clore*

Laboratories of Chemical Physics and Molecular Biology
National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health
Bethesda, Maryland 20892

Received June 19, 2001
Revised Manuscript Received July 16, 2001

Residual dipolar couplings measured in a dilute liquid crystalline phase provide unique long-range orientational information that has been shown to lead to substantial improvements in backbone accuracy for NMR structures of proteins and protein complexes. Much of the focus has been on backbone dipolar couplings. Recently, it has been shown that χ_1 rotamers can be identified from analysis of 1D$_{CC\alpha}$, 1D$_{CON}$, 1D$_{CON}$, and 1D$_{CON}$, couplings. In this paper, we present a simple approach based on dipolar couplings for obtaining accurate orientations of the carboxamide functional group of Asn (χ_2) and Gln(χ_2) side chains. These are of considerable interest since the functional groups of Asn and Gln are often involved in specific hydrogen bonding interactions.

There are five easily measured dipolar couplings that can be used to determine the orientation of the carboxamide group of Asn and Gln in an NMR-based protein structure refinement: namely, 1D$_{N\beta-O\beta}$, 1D$_{N\beta-O\beta}$, 1D$_{O\beta-C\beta}$, 1D$_{O\beta-C\beta}$, and 1D$_{O\beta-C\beta}$ for Asn, and 1D$_{N\beta-O\beta}$, 1D$_{N\beta-O\beta}$, 1D$_{N\beta-O\beta}$, 1D$_{O\beta-C\beta}$, and 1D$_{O\beta-C\beta}$ for Gln. To make use of these couplings, it is first necessary to stereospecifically assign the side chain NH$_2$ protons of Asn and Gln. Methods based on three-bond scalar couplings between the NH$_2$ protons and Cβ atom for Asn and Cγ atom for Gln have been described. These experiments, however, are relatively time-consuming. We demonstrate a different approach using two-bond heteronuclear scalar (2J$_{HN\gamma}$) couplings between the NH$_2$ protons and side chain carbonyl carbon atoms (Cγ atom for Asn and Cδ for Gln). The Hδ21 (Asn) and Hϵ21 (Gln) protons are trans to the side chain oxygen (Oδ_1 and Oϵ_1, respectively) of the carboxyamid group, analogous to the relationship between the backbone amide proton and carbonyl oxygen in a trans peptide bond, and have a positive 2J$_{HN\gamma}$ coupling of 2.5–5.0 Hz; the Hδ22 (Asn) and Hϵ22 (Gln), on the other hand, are cis to the side chain oxygen, and have a negative 2J$_{HN\gamma}$ coupling of ~2.5 to ~5.0 Hz. These couplings are readily measured from a carbonyl-coupled n = 2 multiplicity-edited 2D 1H–15N heteronuclear quantum coherence (HSQC) correlation spectrum in which only cross-peaks corresponding to the side chain NH$_2$ groups are observed.

Figure 1. Stereospecific assignment and measurement of residual dipolar couplings for the side chain amide groups of Asn and Gln. (a) The basic fully decoupled, gradient-based, n = 2 multiplicity-edited 1H–15N HSQC experiment designed to selectively observe NH$_2$ correlations. Narrow and wide pulses correspond to flip angles of 90° and 180°, respectively. The length (τ_{900}) of the 180° 1Cβ/ 1Cβ/ 1Cβ resonances is chosen such that they have a null at the positions of the 1Cβ and 1Cβ/ 1Cβ/ 1Cβ/ 1Cβ resonances, respectively (τ_{900} = $\sqrt{2A}$, where A is the frequency difference between the 1Cβ/ 1Cβ/ 1Cβ/ 1Cβ and 1Cβ/ 1Cβ/ 1Cβ/ 1Cβ resonances). The delay τ is set to τ_{900} = 2.6 ms. The delay δ has a value of 400 μs. All pulse phases are x, unless otherwise specified. Phase cycling: $\varphi_1 = 2(y(2\pi-y]], \varphi_2 = x_0 − x_1; \varphi_3 = 4(x(4(y)), 4(−x), 4(−y)); and receiver phase = x_2(x_2(x_2), x_0 − x_1).$ Rance–Kay τ_1 quadrature detection is used, alternating the phase of φ_4 between x and −x in concert with the polarity of the pulsed field gradient (PFG) g_5. All PFGs are sine–bell shaped (30 G/cm except for which is 21 G/cm). The durations of g1, g2, g3, g4, and g5 are 1.5, 2.0, 0.3, 0.3, and 0.203 ms, respectively. For stereospecific assignments of the Hδ21 and Hϵ22 hydrogens of Asn and the Hϵ21 and Hϵ22 hydrogens of Gln, and for the measurement of side chain 1D$_{NC}$ and 1D$_{H\delta21}$ dipolar couplings, the 180° carbonyl pulse during the evolution period τ_t is omitted; for measurement of 1D$_{NC}$ side chain dipolar couplings, no broad-band decoupling is employed during acquisition. (b) 2D 1F$_\gamma$–carbonyl multiplicity-edited 1H–15N HSQC spectrum of LAP2 collected in isotropic medium (water) using the pulse sequence shown in (a) omitting the carbonyl 180° pulse during τ_t.

for the side chain NH$_2$ groups are observed (Figure 1a). The basic pulse sequence (fully decoupled version) employed is given in Figure 1a, and the F$_\gamma$–carbonyl coupled spectrum for the 168 residue protein LAP2, whose structure has recently been solved, (1)
is shown in Figure 1b. The $^3J_{\text{HN}}$ couplings are measured from the displacement of the upper component of the multiplet relative to the lower one in the 1H (F_2) dimension of the spectrum with positive and negative slopes indicative of positive and negative $^3J_{\text{HN}}$ couplings, respectively (Figure 1b). In this particular instance all the H$^\alpha$21 and H$^\beta$21 protons of Asn and Gln are downfield from their respective H$^\alpha$22 and H$^\beta$22 partners (Figure 1b).

The five dipolar couplings involving the side chain amides of Asn and Gln in LAP2 were measured in a liquid crystalline medium of phage pf10 (15 mg/mL). The side-chain $^1D_{\text{HN}}$ and $^2D_{\text{HN}}$ couplings are determined from the splittings in the F_1 and F_2 dimensions, respectively, of the F_1-carbonyl coupled version of the experiment shown in Figure 1a. The side-chain $^1D_{\text{NH}}$ couplings are measured in the t_2 acquisition dimension from the F_2^1-15N coupled 13C-decoupled version of the experiment.10

The presence of significant motion about χ_2 for Asn and χ_3 for Gln was assessed by recording a steady-state 15N–1H NOE experiment:11 the side-chain amide groups of Asn23, Gln49, Gln52, and Gln132 have 15N–1H NOE values of 0.87, 0.65, 0.50, and 0.30, respectively; all other side-chain amide groups had 15N–1H NOE values that were either close to zero or negative. Thus, the side-chain amide of Asn23 is essentially as rigid as the backbone, while the side-chain amide groups of the other Asn and Gln display varying degrees of internal motion.

We therefore chose to use the data on Asn23 to assess the usefulness and impact of side-chain dipolar couplings on the refinement of the positions of the carboxamide groups of Asn and Gln. Structures were calculated in torsion angle space by simulated annealing structures for the main chain atoms of residues 18–25 and the side-chain amide atoms of Asn23 of 20 simulated annealing structures calculated (a) without and (b) with $^1D_{\text{HN}}$, $^1D_{\text{NH}}$, $^2D_{\text{HN}}$, $^1D_{\text{NH}}$, and $^2D_{\text{NH}}$ dipolar couplings for Asn23. The main chain atoms are shown in green and the backbone carbonyl (C–O) of Glu19 in red; the side chain amide of Asn23 is in blue and the remainder of the Asn23 side chain in yellow. The distances in Å from the N02, H021, and H022 atoms of Asn23 to the backbone carbonyl oxygen atom of Glu19 are indicated.

\pm 17% for the second cluster. (In both cases, the χ_3 angle is very close to -60°.) In the first cluster, the NH$_2$ group of Asn23 could form a potential hydrogen bond with the main chain carbonyl oxygen atom of Glu19 (Figure 2a). While the N02(23)–O(19) distance of 2.64 Å is reasonable for such a hydrogen bond, the H021 and H022 atoms of Asn23 are almost equidistant from the carbonyl oxygen of Glu19 (2.74 and 3.07 Å, respectively) and the N02(23)–H021(23)–O(19) angle has a value of $84 \pm 2^\circ$. Thus, the hydrogen bond geometry for the first cluster is very poor. For the second cluster, the amide group of Asn23 is too far away and in an inappropriate orientation to form a hydrogen bond with the backbone of Glu19 (Figure 2a). When the side chain dipolar couplings of Asn23, however, are included in the calculation (Figure 2b), R_{exp} is reduced to 22 ± 1% and all simulated annealing structures display the same side chain orientation of Asn23 with a χ_3 angle of $-70 \pm 3^\circ$.

The distances from the N02 and H021 atoms of Asn23 to the backbone carbonyl oxygen of Glu19 are 2.82 ± 0.10 and 2.05 ± 0.09 Å, respectively, and the N02(23)–H021(23)–O(19) angle is $135 \pm 4^\circ$, fully consistent with good stereochemistry for a hydrogen bond between the H021 atom of Asn23 and the backbone carbonyl oxygen of Glu19.

We have shown that side-chain dipolar couplings involving the carboxamide group of Asn and Gln are readily measured and can have a significant impact on the accuracy with which the orientation of the functional group of Asn and Gln can be determined by NMR, thereby shedding light on and improving the geometry of specific hydrogen bonding interactions.

Acknowledgment. This work was supported by the AIDS Targeted Antiviral Program of the Office of the Director of the National Institutes of Health (to G.M.C.).

JA0164475