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SUMMARY 

The exact solution of the equations of mass transfer in a gel filtration chro- 
matography column, subject to realistic boundary values and initial conditions, is 
obtained by means of a formal inversion of the Laplace transform. The time spent 
by a molecule in the gel phase is also calculated. 

INTRODUCTION 

The equations describing mass transfer in a gel filtration chromatography 
column are well known. Their exact solution with realistic boundary values and 
initial conditions has proved refractory. Use has been made of compartmental 
analysisrA, the Mellin transforms, the Laplace transform6, and the numerical LaFlace 
transform’. In this paper we obtain the exact solution of the mass transfer equations, 
subject to realistic boundary values and initial conditions, by means of a formal 
inversion of the Laplace transform, and we derive an equation for the time spent by 
a molecule in the gel phase. This latter equation enables one to design an experiment 
whereby the time spent by a molecule both in the gel phase and in the mobile phase 
can be obtained from a single experiment. 

THEORY 

We define the following quantities: let l/T, be the probability, per unit time, 
that a molecule of the object species passes from the solution to the gel; l/T2 the 
probability, per unit time, for the reverse process; C, the concentration of the object 
species in the solution; C, the concentration of the object species in the gel; 
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G the ratio of the gel volume to that of the solution; V the linear velocity of the 
mobile phase; K the total amount of the object species supplied; and t the width 
(in time) of the input pulse. Other quantities will be defined as they arise. Then the 
rate of transfer of the object species to the gel is Cl/T,, the rate of the reverse process 
(per unit volume of solution) is GCJT,, and so the equations of mass transfer per 
unit volume of solution, neglecting longitudinal diffusion in the mobiIe phase, are: 

ac, c, GCz 
G- _- 

at = ?y- T2 
(2) 

(1) 

These have to be solved subject to the following boundary conditions: 

c, (0,x) = 0 - c, (0,x) (x > 0) (3) I- - 

Cl ($0) = -I pv (0 <- t < t) 
0 2 4 

c, (r,O) = 0 0 3 0) (5) 

Let Tl (SJ) and T2 (SJ) be the Laplace transforms of C, and C,, respectively. 
Then 

v~+(+s),+=o (6) 

G(+- ) Tl 
+s T,--TX=0 

Tl (s, 0) = $[l -exp(-sst)] (8) 

EIimin&ing F, we find 

where 

P(s) = +- + s - 
VT, 

1 1 -t T,s 
=s[l ++(l +T,s)-‘] 

The solution is 

TI (~4 = --f& [I - exp (- s t)] exp (- 9) 

Combining eqns. 10 and 11 we have 

8) 

w-0 

(11) 

Tt ‘“5”’ = &- [I -exp(-sst)]exp (-9 --X2- T2s ) 
VT, 1fT’s 

(12) 

where y = T,/T,. 
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We introduce the following non-dimensional parameters (L = length of 
column) : 

a = L/VT, & = t/T2 
/3=yL/VT+ z=lfT,s - (13) 
u = t/7-, 

and we find from eqn. 12 and the inversion theorem (which is valid at times t > 
[t-i-x(1 +-7)/v] since then the coefficients of s in the exponents of the integral tend 
to real positive numbers as [ s 1 -+ co) that, for c > 0 

-exp[.s(‘-z-$-)]}exp(- lTT>z) 

K 1 d+icr, 

=-- 

-cV 2ici I d_ia? $i {=P C@ - 4 (2 - 1)l - 

- exp [(u - E - a) (2 - I)]} exp (=@$--2j (14) 

Defining 4 (u,@) to be the function whose Laplace transform (using rt,z instead 
of t.s) is 

ql(z, 8) = ---& exp [-” (t - “1 . 

we see that 

G 0, 0 = +[exp(n -U)q(u--,p)-exp(a+E 

We find q (u,B) as follows: 

6 q&, 8) = --exp (-8) + exp (B/z) 

- 4q(u --E 

By AbGmowitz and Steg& (29.3.81)8, this is the transform of 

+ 4(u, IO = -exp (+) lo (2dpi) (u > 0) 

=o (u ( 0) 

- 

(1% 

(16) 

(17) 

(18) 

Moreover, for p = 0 we have 

q1(z, 0) = & (19) 
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Now we note that 

exp (-0) IO (2dAK) o cok do = (-Qk [& X(a, A)] 
0=l 

so that, in particular 

J,, = exp (A) 

.il = (l+l,)exp(A) 

J,=(2i-4il+ A’)exp(L) 

Substituting these into eqn. 23 for the appropriate values of k we find 

MO = Kl-2 - b t [Iexp (-A) dA [exp (A) - exp (A)]} = K t 

and using eqn. 13 : 

M =K (l-i-Y)L 
1 E V 

+ $1 

whence the mean arrival time (i) is 

i = Ml/M, = 
(l-Fy)L 1 

V 
-t--t 

2 

- 

5 

(25) 

(26) 

(27) 

(28) 

(2% 

(1 + 2 f all} 

(30) 

(31) 

Now, analagously to Mk for k = 0, 1,2, . . . we form M2T, the second moment, 
but relative to i: 

M2i = V jrn (t - f))’ C, (r, L) dt = M2 - Mlz/Mo 
0 

=K{$(a’+ ;, a&-F- Et 

+ JI dA[(2 f 4A f A2 f 2 (a f E) (1 + A) + (a _t E)~) .- 

(32) 
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Let us rewrite eqn. 14 as follows: 

(33) 

where P(s) is given by eqn. 10. Eqn. 33 is equivalent to 

Cl(&-‘C) =t-1 c, (t - LI, _Y) drr (34) 

where 

c; (t, -4 = & jfYfm exp SF-+(l+ { ’ ds 
f LQ 1 f sT2 (35) 

If we can neglect T compared with the width (in time) of the output pulse, we 
use eqn. 35 at x = L to estimate the half-width of that pulse. Let us change the 
variable to v where 

vt - L = yL(1 i_ fp)L 

so that icorresponds to q~ = 0. Then 

I’dt = 2yL (1 + q) dg: 

and 

C: (t, L) Vdt = 

(36) 

(37) 

=W (1 + ~1 dp = 
VT, exp C-S (2 t 297 + $)I (1 + fp)-1 r, [2p (1 i- v)] (38) 

Assuming B to be fairly large, we use the asymptotic formula [Abramowitz and - . 
Stegun (9.7.1)*] 

11 [28 (1 t VII - exp W (1 + ~31 
c4N3 (1 + dlf 

whence for small 9 

( 3 

* - 16/!?(1+9) +--- ) (39) 

C: (t, L) Vdt m Kdy 
( 

P 
n(l -I- q) 

)* exp WV) (1 

This is a pulse of half-width 

Llql = 2#3-+ (ln 2)* 

corresponding to 

At = ‘LL - Ag? = 3.33 (yLTJ V)+ 

3 -- 
16P 

+ . . . 
1 (40) 

(41) 
c 

(42) 
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using eqn. 13; or 

Ax = Vdt = 3.33 ($T,V)+ (43) 

If it is possible to measure At or Ax (full width at half height) reasonably accurately, 
this gives T,, since y is known from f (using eqn. 3 I), and T, is then the only remaining 
unknown in eqns. 42 or 43. Thus we have, using eqn. 42 

T,-= ’ - 0.09 (At)’ 
YL 

We suggest the following procedure for estimating At; ic will not he successful 
unless the output is collected in “buckets” of length h (in time), where h is consider- 
ably less than At (i.e. unless several consecutive “buckets”, at least 4 and preferably 5 
or 6, are needed to contain say 90% of the total output; and unless t is about as 
small (see Appendix 1)). 

Let the output be collected in “buckets” of length h (in time), i.e. we measure 
for a range of values n 

l,,th 

Pn= v s G @, Q dt (45) 
‘n 

where p,, is the amount of the object species per unit area, t, = to f nh, and to is 
chosen so that p. is the largest of the pm; thus we are interested in p,, for n = 0, f 1, 
f2, ---I -&IV say, where N is moderate (or may even be large, giving increased 
accuracy, if h is small enough), and is defined by the range including virtually all the 
output (say 99 %)_ 

Then we have 

M,,= ;p,, 
-N 

and, approximately 

whence 

Analogously 

(46) 

(47) 

-. 

(48) 

(49) 
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(using ~zt instead of n to avoid confusion) where 

(note: Z is not an integer). Thus, if we write for k = 0, 1,2, _ _ _ 

(50) 

we have (since we can use nz or rz as the variable of summatibn) 

since nt = Q,/Q,. By choosing the origin r,, so that p. is the largest of the pn, we have 
made sure that Q,/Q, is not large and so eqn. 52 is well conditioned. Using eqns. 29 
and 32 we have 

. . . 

and using eqns. 46, 51 and 52 we have 

M2 _=+&_(#] 
MO 

so that 

By eqns. 48 and 55 we have 

V 
I+-ya- 

L I to j- ; (h - t) + h 0, 
0 -0 3 

Combining eqns. 55 and 56 we have 

2 
T2 = -z-f Ih2 -3 

2yL 
I _.a___ co 0: )I 

0, 121 
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APPENDIX 1 

The expected error on QJQ,, caused by a finite h is about -l/12. Decreasing h 
increases the mean value of n2 and so increases QJQ,, relative to this fixed error. 
Alternatively, one can add l/12 to QJQ,,, so that eqn. 57 becomes 

(58) 

By keeping t and h as small as practicable, this error is made small compared to 

QdQo- 

APPENDIX 2 

A simple approach says that any given molecule spends T2/(Tl + T,) of its time 
stationary in the gel phase, and T,/(T,+T,) of its time moving with velocity V. Its 
average velocity (JJ) is therefore 

VT, V 

‘= T,fT, = I+~ 
(59) 

which is eqn. 31 in another guise. Moreover, it gets stuck on the gel N = L/VT1 times 
during its passage on average, with standard deviation of the order of N*, and each 
time suffers a delay T2. The output pulse width is therefore of the order of N’T2, 
which is certainly consistent with eqn. 32 although our lengthy analysis is needed to 
get the exact expression_ 

APPENDIX 3 

In this section we show how other similar models can be put into the form of 
eqns. I and 2 so that our theory can apply. Suppose we have 

This is the most general conservative form. We define: 

G = 6-l; Tl = c-‘; i’-, = (&‘)-I (62) 

and divide eqn. 61 by 5. Then we recover the form of eqns. 1 and 2. Thus we have 

Y = TJT, = 5JEq ; Tz = (ET,+-’ (63) 

so that the previous method allows us to find these two quantities, but not 5 and q 
separately. 
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