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COMMUNICATIONS 
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In recent years considerable success has been  achieved in determining three-dimen- 
sional structures of macromolecules in solution on  the basis of approximate interpro- 
ton distance restraints derived from nuclear Overhauser enhancement  measurements 
(l-4). Improvements in the precision of such structure determinations can poten- 
tially be  obtained by increasing either the number  or the accuracy ofthe experimental 
restraints. To  this end, several groups have been  seeking to obtain more accurate 
interproton distances using full relaxation matrix analysis of the NOE data in order 
to account fully for mu ltispin effects and  overcome the errors arising from the appli- 
cation of a  simple two-spin approximation (5-14). The  strategies generally proposed 
involve an  iterative approach. A trial structure is first computed on  the basis of a  
set of initial approximate interproton distance restraints using one  of the available 
structure determination methods such as metric matrix distance geometry ( 15-I 7)) 
m inimization in torsion angle space ( 18, 19), restrained mo lecular dynamics (20- 
22)) or dynamical simulated anneal ing (23-25). Based on  this trial structure, a  theo- 
retical two-dimensional NOE (NOESY) spectrum is computed and  compared to the 
experimental one. Adjustment of the interproton distance restraints and  further 
structure refinement yield a  new trial structure. The  entire process is repeated until 
the experimental and  theoretical NOESY spectra match up  (26). Alternatively the 
matrix of theoretical NOESY cross-peak and  diagonal-peak intensities derived from 
the trial structure can be  merged with the experimental one  to calculate a  new set 
of interproton distances with which to refine the structure and  produce a  new trial 
structure; the process is again repeated in an  iterative manner  until no  change in the 
interproton distances is observed from one  cycle to the next ( 9-Z I ) . Because struc- 
ture refinement is computationally intensive, it has generally been  considered that 
one  only needs to carry this process out for a  single starting structure. The  interproton 
distances derived in this manner  are then assumed to accurately represent the true 
interproton distances and  to provide a  reliable data set with which to compute an  
ensemble of structures in order to obtain a  measure of the conformational space con- 
sistent with the experimental NOE data (8) _  The  underlying assumption in such an  
approach is that the interproton distances, or more specifically the cross-relaxation 
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FIG. 1. Stereoview of deoxycytidine in a B-DNA conformation taken from the coordinates of classical 
B-DNA (35). This structure is used to derive the interproton distances used in the present calculations. 

rates, are well determined by the NOESY cross-peak build-up curves. To our knowl- 
edge, however, this assumption has not been tested. 

In this paper we analyze how accurately interproton distances in macromolecules 
can really be determined from NOE build-up curves. In order to treat multispin 
effects appropriately and at the same time preserve sufficient simplicity so that the 
geometric relationship between the interproton vectors can still be readily appreci- 
ated and visualized, we have chosen to use deoxycytidine as our model structure. The 
distances derived from this structure are then used to simulate the time dependence 
of NOESY cross-peak intensities in the ~7, $ 1 spin diffusion lim it. A stereoview of 
deoxycytidine is shown in Fig. 1. It has 9 protons and 35 interproton vectors, all of 
which are less than 6 A, and only 7 have values greater than 5 A. The distances for 
these vectors are given in the first column of Table 1. Although a nucleoside was 
chosen to extract a set of interproton distances, the general conclusions from the 
calculations apply equally well to any other multispin system in the ~7, %  1 regime. 

The behavior of the system in a NOE experiment can be described by a series of 
coupled linear first-order differential equations (27, 28) 

da,- 
d7m - -tRlj + C aij)a, + C ui”i~~ [II 

!+I l+J 

where a, is the magnetization of protonj, ati the cross-relaxation rate between protons 
i and j, and Rlj the leakage rate to the lattice for proton j. For a 2D NOESY experi- 
ment, the intensity of a given diagonal peak and its associated cross peaks, as a func- 
tion of the m ixing time T,,,, is obtained by solving Eq. [ 1 ] with the element of the 
magnetization vector a corresponding to the diagonal peak set to 1 and all other 
elements of a set to 0 at 7, = 0. The interproton distances Ylj (in units of A) are related 
to the cross-relaxation rates ai, by the well-known equation (2 7) 

5.7 x lo7 al, = 
r$ 

7, - [21 

where T, is the effective correlation time of the i-j vector. 
Our approach to the problem involves first calculating, under conditions where ~7, 

9 1, the exact NOE build-up curves for the cross-relaxation network of deoxycytidine 
by numerical integration and adding an appropriate amount of random noise to sim- 
ulate real experimental data. (For simplicity all leakage rates to the lattice are set to 
0.5 s-l.) Only the time dependences of the cross-peak intensities are included in the 
model data as, in general, the intensities of diagonal peaks cannot be measured accu- 
rately for either protein or oligonucleotide spectra owing to extensive spectral overlap. 
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The complete set of model NOESY cross-peak build-up curves is then best fitted 
simultaneously by carrying out successive numerical integration runs under control 
of a nonlinear least-squares optimization routine, varying the values of the interpro- 
ton distances and overall correlation time. All calculations were carried out using the 
program FACSIMILE (29, 30) which employs Curtis’ modified version (31) of 
Gear’s backward difference method (32) for numerical integration, and Powell’s 
method of optimization (33) which does not require the computation ofpartial deriv- 
atives. The level of noise chosen to mimick actual experimental data was kO.009 (i.e., 
+ - 1% relative to the intensity of a diagonal peak at T, = 0), and in all cases the 
values of the distances and overall correlation time to be optimized were set to initial 
values of 4 A and 10 ns, respectively. Note that these calculations do not involve any 
reference to Cartesian coordinates. 

To obtain a quantitative measure of how well each varied parameter P, is deter- 
mined by the data, we proceeded as follows. When the minimum residual sum of 
squares is reached, a sensitivity matrix, expressing the dependence of each residual 
x,, on the natural logarithm In (P,) of each parameter at its optimum value, is calcu- 
lated by adding 0.2 to each ln( P,) in turn and examining the effects on each x,. (Note 
the reason that this is carried out on ln( P[) rather than on PI is that it is computation- 
ally both more efficient and more reliable to vary ln( P,) rather than P/.) The normal 
matrix is then calculated from the sensitivity matrix and inverted to obtain the vari- 
ante-covariance matrix which refers to ln( Pr). The variance of each ln( P[) is given 
by the diagonal elements of this matrix, and from this the 5 and 95% confidence 
limits of P, are obtained (29, 30). 

The model data at 17 mixing times ranging from 10 to 400 ms calculated for an 
overall correlation time of 5 ns at a spectrometer frequency of 500 MHz are shown 
in Fig. 2. This correlation time is not meant in any way to represent the actual correla- 
tion time of deoxycytidine but rather to reflect the correlation time of a macromole- 
cule with molecular weight around 10,000 for which UT,+ 1. As the cross-relaxation 
rates are proportional to both the correlation time 7, and ri6, either one distance or 
the correlation time must be fixed to fit the data. In real systems there are always 
vectors whose distances are fixed by covalent geometry so that in practice this does 
not pose a problem. Thus, in the case of deoxycytidine there are three vectors whose 
distances are conformation independent: ru5-u6 = 2.47 A and rH2’-n2” = rH5’-n5” 
= 1.79 A. Three optimization runs were carried out, fitting all the data simulta- 
neously. In all three cases the overall correlation time was varied and the H5-H6 
distance held fixed at 2.47 A, leaving a total of 34 unknown distances. In the first 
case, all 34 distances were varied. In the second, the 28 distances less than 5 A in 
deoxycytidine were varied and the remaining 6 were set to a value of 10 A (which is 
equivalent to giving them near-zero cross-relaxation rates). Finally, in the third run, 
14 distances corresponding to those vectors which clearly could not contribute sig- 
nificantly to the relaxation pathway between the corresponding two protons on the 
basis of geometrical considerations were set to 10 A, and the remaining 20 were var- 
ied. Thus, for example, it is clear from inspection of the structure (Fig. 1) that the 
direct relaxation pathway between the H2’ proton and the H4’ proton will not con- 
tribute significantly to the time development of the H2’-H4’ NOESY cross peak as 
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FIG. 2. Comparison of the 5 ns correlation time model data with the computed best-fit time courses of 
the cross-peak intensities for deoxycytidine. The best-fit parameters for this set of calculated curves are 
given in Table 1 under calculation number 3 (column 5). The calculated curves are shown as either contin- 
uous or interrupted lines, and the cross-peak intensities for the model data by solid circles or squares. The 
proton at the diagonal of the NOESY spectrum for each set of curves is indicated at the top right hand 
corner of each panel. Note that the time dependence of the diagonal peaks is not included in the model 
data as their intensities cannot in general be measured accurately for macromolecules owing to severe 
spectral overlap. (See text for further details.) 

the predominant relaxation pathway will involve the almost linear H2’ + H3’ + 
H4’ indirect route. 

A summary of the results is given in Table 1 and a comparison of the best fit be- 
tween the data and the third simulation run is shown in Fig. 2. It is clear that agree- 
ment between the calculated curves and the model data is within the errors of the 
data for all three optimization runs. Note that in the third run there are some m inor 
systematic errors in the fits of a few curves at longer m ixing times (cf. the H 1 ‘-H3’ 
curve); these errors, however, lie well within the overall standard deviation of the 
data. The determination of the optimized parameters varies widely. In general, a dis- 
tance rii will be well determined within an error of less than ~0.1 A if the direct i + j 
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pathway is the principal source of cross-relaxation (~95%) between protons i and j. 
This, for example, is true for rn&u2’, rnrf-n2“, rn2’-HZ”lH)‘, ru2”.+,3’, ru3’-n4’lH~‘~n~“, 
rH4~-H5~lH5~~, and rH5,-H5’l. As the contribution to cross-relaxation between protons i 
and j from indirect pathways increases, so the accuracy with which the distance r,, 
can be determined decreases. Providing the contribution from direct cross-relaxation 
is still significant (>20-30%) the i-j distance can be determined within an accuracy 
of better than +-0.5 A, as is true for rn&n1’/n3’/n5’ and rn1’-H2’,H4’. Finally, the i-,j 
distance cannot be determined at all by the data if the contribution from the direct 
i + j cross-relaxation pathway is negligible. This will be manifested by a significant 
lag phase in the time development of the aij cross peak, as is the case, for example, 
for all cross peaks arising from NOES between the H5 base proton and all sugar pro- 
tons (Fig. 2 ). Thus, for example, setting the values of these distances to an arbitrarily 
large value of say 10 A has little or no effect either on the goodness of fit between the 
calculated and the model “experimental” data or on the optimized values ofthe other 
distances. This applies not only to distances larger than 5 A (cf. the results of the 
second optimization run given in column 4 of Table 1) but also to shorter distances 
in cases where the direct contribution to the corresponding NOESY cross peak is 
small (cf. the results of the third optimization run given in column 5 of Table 1). It 
should also be noted that the 5-95% confidence limits in the values of the optimized 
parameters may underestimate the true errors as there are cases where the target val- 
ues lie outside the limits (e.g., see the optimized values for rn3’-u5”). 

At this stage it is also interesting to compare these results with those obtained using 
a simple two-spin approximation in which the initial slopes of the curves are simply 
measured manually and the distances calculated using the initial slope of the H5-H6 
vector as an internal reference. With this approach, the cross-relaxation rate for a 
vector i-j can clearly never be determined if the time dependence of the intensity of 
the a,j cross peak exhibits a lag phase. Where no lag phase is apparent, however, it 
can be seen that the results of the two-spin approximation compare reasonably well 
to those of the complete analysis as can be seen from a comparison of the first and 
last columns of Table 1. This applies not only to very short distances such as rH6-n1’ 
but also to longer ones such as rHI ‘+,4’ for which hardly any indirect contributions 
occur. When indirect cross-relaxation is sizable, the distance is clearly underesti- 
mated as in the case of the distance rn&n3’ where the H6 + H2’ -+ H3’ pathway 
contributes significantly to the intensity of the H6-H3’ cross peak. There are also 
instances where the lag phase is so small that it could easily be overlooked (Fig. 2)) 
in which case a serious underestimation of the actual distance would be obtained. An 
example of this type of behavior is provided by the H6-H2” NOESY cross-peak 
build-up curve where magnetization transfer via the indirect H6 + H2’ + H2” route 
is not only the predominant relaxation pathway but is also exceedingly fast owing to 
the very short H6-H2’ and H2’-H2” distances. Even the complete analysis, however, 
does not yield reliable values in such cases, as evidenced by the results of the third 
optimization run where the value of r H6 _ HZ” is fixed at 10 A with no untoward effect 
on the values of the other optimized distances. (Note, of course, that in molecular 
terms the maximum value of rn&u2” is given by the sum of rn&n2/ and rH2f-H2rJ.) 

In a real experimental case involving a protein or nucleic acid fragment, the accu- 
rate measurement of NOESY cross-peak intensities at 17 mixing times between 10 
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and 400 ms would be nothing less than a tour de force, and in most cases quite im- 
practical. It is therefore useful to investigate how well the distances can be determined 
from only a few mixing times. To test this we have carried out two further calcula- 
tions: one with 50, 100, and 200 ms mixing times, the other with only a single 100 
ms mixing time. The known values of rHS-u6, ru2’-nZ”, and rHS’-u5” were held con- 
stant, those distances greater than 5 A were fixed at 10 A, and the remaining 26 
distances were varied together with the overall correlation time. The results of these 
calculations (columns 6 and 7, Table 1) show that the accuracy with which the dis- 
tances are determined is considerably decreased for both reduced data sets compared 
to the full 17-time-point data set. This is most significant for cross peaks where the 
contributions from both direct and indirect cross-relaxation during the initial growth 
phase are significant. For example, the distance between the H6 and the H 1’ protons 
which could be determined from the full data to an accuracy of better than +0.5 A is 
ill-determined by both reduced data sets. 

The second issue concerning the application of full relaxation matrix analysis to 
real systems is the effect of potential variations in effective correlation times arising 
from internal motion. To test what effect this would have on the estimation of inter- 
proton distances, we calculated a set of model data using a correlation time of 5 ns 
for the base-base, base-H1 ‘, and Hl ‘-H4’ vectors and a correlation time of 2.5 ns 
for the other vectors. Again we varied all distances less than 5 A, excluding those fixed 
by covalent geometry, together with an overall correlation time. Three optimization 
calculations were performed using the full 17-time-point data. In the first only rnS-H6 
was fixed, in the second rn2’-u2 v was fixed, and in the third ?&-n6, ru2’-n2”, and 
rHjJvHjv were fixed. The results are summarized in Columns 3, 4, and 5, respectively, 
of Table 2. When only one known reference distance is fixed, the model data set can 
be fitted within its errors. The extent to which the distances are determined by the 
data is the same as that in the model calculations with the single 5 ns correlation time. 
However, this time, there are obvious Systematic errors present. Thus, when ru5-n6 is 
fixed, the distances for those vectors with the smaller correlation time are systemati- 
cally overestimated and the value for the optimized correlation time is close to 5 ns. 
When ru2’-& is fixed, those distances with the longer correlation time are systemati- 
cally underestimated and the optimized value of the overall correlation time is 2.8 
ns. When the reference distances for the different correlation times are held fixed, the 
agreement between calculated and model data is still approximately equal to the er- 
rors in the data, systematic errors in the distance estimations are present throughout, 
and the optimized value of the overall correlation time is intermediate between 2.5 
and 5 ns. In all cases, however, the magnitude of these systematic errors is rather 
small and of the order of 0.2-0.3 A. Thus, significant errors are only introduced into 
those distances that are determined to an accuracy of better than kO.2 A by the data. 
For example, with the H5-H6 distance fixed, the H2’-H2” distance is overestimated 
by 0.2 1 A, although its optimized value is determined by the data to a precision of 
kO.02 A. For a distance such as !&-us on the other hand, the difference between the 
optimized values is within the confidence limits of their estimation. These conclu- 
sions also hold for both the 3-time-point and the l-time-point reduced data sets 
(columns 6 and 7, respectively, of Table 2). However, as the distances are in any case 
less well determined by the reduced data sets, the errors arising from the variations 
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in effective correlation time are small in relation to the uncertainty in the values of 
the optimized parameters. Clearly, however, differences in effective correlation times 
much larger than a factor of 2 may have a sizable effect on the errors. 

In conclusion, we have investigated the extent to which inter-proton distances can 
be determined from time-dependent NOE data in the presence of multispin effects 
for a system in the 07, % 1 regime. It is clear that a full relaxation matrix analysis of 
the data can yield more accurate information than the two-spin approximation for 
interproton distances where both direct and indirect cross-relaxation pathways con- 
tribute significantly to cross-relaxation between the corresponding proton pairs. It 
does not, however, provide any useful information for interproton distances in cases 
where indirect effects dominate the cross-relaxation pathways. Moreover, it is impor- 
tant to bear in mind that, with the exception of situations where cross-relaxation 
between a given proton pair is dominated almost entirely by direct effects, the data 
can be fitted allowing for quite large variations in the values of the interproton dis- 
tances. Consequently, any structure determination strategy that relies exclusively on 
an iterative refinement procedure to obtain a set of more accurate distances starting 
from a single trial structure is likely to introduce significant bias in the final outcome. 
In particular, the atomic rms distribution of the resulting ensemble of calculated 
structures will probably be lower than is justified by the data and the conformational 
space sampled will constitute only a subset of the conformational space consistent 
with the NOE data. This suggests a more fruitful approach in which a whole series of 
trial structures generated from the initial approximate interproton distance data are 
refined against a target function which seeks to minimize, among other terms relating 
to covalent and nonbonded interactions, the difference between calculated and ob- 
served NOESY cross-peak intensities directly, rather than the difference between cal- 
culated and estimated interproton distances. Such an approach has been suggested 
(34) but not yet subjected to test. The result would be the generation of an ensemble 
of refined structures which satisfied the NOE data but were not necessarily identical 
in terms of their interproton distances. 
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