Determination of the Secondary Structure of the DNA Binding Protein Ner from Phage Mu Using 1H Homonuclear and 15N-1H Heteronuclear NMR Spectroscopy

Angela M. Gronenborn,*,† Paul T. Wingfield,§ and G. Marius Clore*†

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, and Glaxo Institute for Molecular Biology SA, 46 Route des Acacias, CH 1211 Geneva, Switzerland

Received December 29, 1988; Revised Manuscript Received March 6, 1989

ABSTRACT: The sequential resonance assignment of the 1H and 15N NMR spectra of the DNA binding protein Ner from phage Mu is presented. This is carried out by using a combination of 1H-1H and 1H-15N two-dimensional experiments. The availability of completely labeled 15N protein enabled us to record a variety of relayed heteronuclear multiple quantum coherence experiments, thereby enabling the correlation of proton–proton through-space and through-bond connectivities with the chemical shift of the directly bonded 15N atom. These heteronuclear experiments were crucial for the sequential assignment as the proton chemical shift dispersion of the Ner protein is limited and substantial overlap precluded unambiguous assignment of the homonuclear spectra in several cases. From a qualitative interpretation of the NOE data involving the NH, C=H, and 3H protons, it is shown that Ner is composed of five helices extending from residues 11 to 22, 27 to 34, 38 to 45, 50 to 60, and 63 to 73.

The Ner protein of bacteriophage Mu plays a crucial role in the switch between lytic and lysogenic development of the phage, exerting its function at the transcriptional level (van de Putte et al., 1980). Ner negatively regulates early transcription, thereby autoregulating its own expression as well as inhibiting expression of the C repressor gene (van Leerdam et al., 1980). The target sequences on the DNA have been identified by genetic mapping (Goosen, 1984; Goosen & van de Putte, 1984) and foot-printing (Tolias & Dubow, 1986). These comprise two tandem repeats of a dodecanucleotide interrupted by a six nucleotide spacer. The Ner binding sites overlap the early promoter (Pe) as well as the repressor promoter (Pc-2).

Despite the functional similarities between the cro protein of λ and the Ner protein of Mu, no obvious homologies are apparent at the amino acid level. It is therefore not clear if the homology found for a large number of DNA binding proteins in the region of supersecondary structure involved in sequence-specific DNA recognition, the so-called helix–turn–helix motif (Anderson et al., 1982; Pabo & Sauer, 1984), is also present in the Ner protein. To date, nothing is known about either the secondary or tertiary structure of Ner, and there are no preliminary crystallographic reports in the literature on this protein. We therefore decided to embark on a nuclear magnetic resonance (NMR) study of the Ner protein in solution with the aim of determining its three-dimensional structure.

We recently described the construction of an expression system that directs high-level synthesis of the ner gene product in Escherichia coli as well as the large-scale purification and characterization of the 75 amino acid containing Ner protein (Allet et al., 1988) aimed at providing enough purified protein for our work.

In this paper we describe the use of a combination of two-dimensional 1H homonuclear and 15N-1H heteronuclear experiments to sequentially assign both the 1H and 15N NMR spectrum of Ner and to delineate its secondary structure.

MATERIALS AND METHODS

Sample Preparation. Ner protein was purified from E. coli B harboring the expression plasmid pl-ner that contains the ner gene behind an inducible λ promoter as described previously (Allet et al., 1988). Samples for NMR were dialyzed against 20–30 mM sodium phosphate buffer, pH 7.0, freeze-dried, and subsequently dissolved at a concentration of 2–3 mM protein. The final buffer concentration was 100–150 mM sodium phosphate in either 99.96% D$_2$O or 90% H$_2$O/10% D$_2$O. The pH of the samples was adjusted with small amounts of DCl.

The uniformly 15N labeled sample was prepared from bacteria grown in minimal medium using 15NH$_4$Cl as the sole nitrogen source.

NMR Spectroscopy. NMR measurements were carried out at 600 MHz on a Bruker AM-600 spectrometer equipped with digital phase shifters, a "reverse" mode 1H probe, and an Aspect 3000 computer. All two-dimensional spectra were recorded in the pure phase absorption mode by using the time proportional incrementation method (Redfield & Kunz, 1975) as described by Marion and Wüthrich (1983). NOESY spectra (Jeener et al., 1979; Macura et al., 1981) with mixing times of 100 and 200 ms and HOHAHA spectra (Braunschweiler & Ernst, 1983; Davis & Bax, 1985) with a WALTZ17 mixing sequence (Bax, 1989) of 30–60 ms sandwiched between 1.5-ms trim pulses were recorded at 27 and 36 °C and at several different pHs. 15N-1H HMQC spectra (Mueller, 1979; Redfield, 1983; Bax et al., 1983; Sklenar &

†This work was supported by the Intramural AIDS Targeted Antiviral Program of the Office of Director of the National Institutes of Health.

*Abbreviations: NMR, nuclear magnetic resonance; NOE, nuclear Overhauser effect; NOESY, two-dimensional nuclear Overhauser enhancement spectroscopy; DQF-COSY, two-dimensional double quantum filtered correlated spectroscopy; P-COSY, two-dimensional primitive correlated spectroscopy; PS-COSY, two-dimensional pseudo single quantum correlated spectroscopy; HOHAHA, two-dimensional homonuclear Hartmann–Hahn spectroscopy; HMQC, two-dimensional heteronuclear multiple quantum correlated spectroscopy; HMBC, two-dimensional heteronuclear multiple bond correlation spectroscopy.
Typically, 800–1024 increments of 2K data points were collected for each NOESY and HOHAHA experiment resulting in 2D spectra with a digital resolution of the order of 6–8 Hz/point in each dimension after zero-filling. In the case of the P-COSY and PS-COSY experiments 1024 increments of 4K data points were collected, and the digital resolution in F2 was 1.7 Hz/point.

For the P-COSY experiment, a reference one-dimensional FID was recorded with a 0° mixing pulse, τ1 = 0 μs, and 128 scans. The number of scans used per increment in the COSY experiment recorded with a 70° mixing pulse. By left shifting the data of this single reference FID as well as linear base-line corrections of both the initial FIDs prior to Fourier transformation in F2 and the F2 cross sections prior to Fourier transformation in F1 (Driscoll et al., 1989).

The sequential assignment of the Ner protein spectrum was carried out by identifying through-bond scalar and through-space connectivities (Billeter et al., 1982; Wüthrich, 1986). In contrast to the procedures generally used to date, which have relied entirely on 1H homonuclear experiments, we have made use of a combination of homonuclear and 15N–1H heteronuclear experiments. The availability of the completely 15N-labeled protein, which allowed us to record a variety of HMBC-relayed spectra, was of crucial importance for the assignment as the proton chemical shift dispersion of the Ner protein is limited and substantial overlap precluded unambiguous assignment of the homonuclear spectra in several cases. In addition, the protein is only stable over a pH range between 5 and 7, undergoing major conformational changes (unfolding) at pH values below 4 and an as yet unidentified conformational change around pH 7.8. Similarly, the allowed temperature range is fairly narrow, being limited to values below 40 °C.

Amino acid spin systems were identified by using P-COSY, PS-COSY, HOHAHA, HMQC, and relayed 1H–15N HMQC–COSY spectra, while through-space connectivities were established by means of NOESY and relayed 1H–15N HMQC–NOESY spectra.

It is worth pointing out two amino acids exhibiting extremely high field shifts, namely, Gly-50 (C'H, 2.73 and 2.20 ppm) and Ile-65 (C'H, 1.87; C'SH, 0.30 ppm). These resonance positions are about 1.7 ppm (Gly-50 C'H) and 2.5 ppm (Ile-65 C'H) upfield of the respective random coil position, most likely due to close spacial proximity of aromatic rings. By comparing the HOHAHA spectra, recorded at several different mixing times between 17 and 60 ms, with the P-COSY spectrum (not shown) direct, single, and multiple relayed connectivities could easily be distinguished. The aliphatic region of a HOHAHA spectrum in D2O is included as supplementary material.

Figure 1A shows the so-called fingerprint region (NH–C'H region) of a through-bond correlated spectrum recorded with 15N filtering. In the conventional 1H–1H DQF-COSY spectrum of the Ner protein less than 50% of the expected cross peaks were visible (spectrum not shown), principally due to the small size of 3JSHN couplings relative to the amide proton line widths. In the 15N-filtered pseudo single quantum COSY (PS-COSY; Bax et al., 1989) recorded on the uniformly 15N labeled sample shown in Figure 1A, most NH–C'H cross peaks can be observed. This improvement is due to the fact that one of the major line-broadening mechanisms for amide protons in proteins, namely, heteronuclear coupling to the nitrogen nucleus (Ernst et al., 1987), is removed by generating heteronuclear zero and double quantum coherences whose relaxation rates, to a first-order approximation, are not affected by heteronuclear dipolar coupling. The 15N chemical shift contribution is easily removed from the multiple quantum frequency, yielding a spectrum that has the same general appearance as a regular COSY or DQF-COSY spectrum except that the lines of the NH resonances are narrowed. The missing cross peaks are due to presaturation of the water resonance, which prevents the detection of fast-exchanging resonances and resonances whose C'H chemical shifts lie under the water resonance. Unfortunately, this cannot be avoided as the heteronuclear zero and double quantum coherences have to be present during the evolution period so that the C'H resonances have to be detected during τ2.
aliphatic region of this spectrum is shown in Figure 1B. (As
in the case of the PS-COSY spectrum, suppression of the water
resonance by presaturation cannot be avoided.) A comparison
of the two spectra clearly documents that the spread of NH–
C\(^{13}\)H cross peaks according to the NH proton chemical shifts
(Figure 1A) is quite different from that according to the \(^{15}\)N
chemical shift (Figure 1B). For example, the Trp-47 cross
peak is located at the upper left in the PS-COSY spectrum,
while it is found in the lower left in the HMQC-COSY one,
thus allowing one to extract complementary information from
the HMQC-COSY spectrum.

The \(^{15}\)N-\(^{1}\)H HMQC spectrum of the Ner protein at pH 7 is
shown in Figure 2A. Of the potential 69 \(^{15}\)N-\(^{1}\)H amide
correlation cross peaks, 61 are present in the spectrum, those
missing belonging to amide protons that undergo rapid ex-
change with water. (The HMQC spectrum was also recorded
with presaturation of the water resonance.) Of interest is the
very high field shifted NH resonance of Gly-50 (4.5 ppm) that
is correlated with the high-field chemical shifts of its C\(^{13}\)H
resonances (cf. Table I). In addition, correlation cross peaks
for the NH\(_{2}\) groups of asparagines and glutamines can be
observed as well as for tryptophan indole amide protons. The
glycine correlation peaks are found at the high-field end of
the amidic \(^{15}\)N chemical shift axis and are easily identified in
conjunction with the \(^{1}\)H-\(^{15}\)N HMQC-COSY spectrum (Figure 1B), thereby providing useful starting points for sequential
connectivities in the \(^{1}\)H-\(^{15}\)N HMQC-NOESY spectra.

NOESY spectra were employed to observe through-space
(<5 Å) connectivities. For the purposes of sequential as-
ignment, the NOEs involving NH, C\(^{1}\)H, and C\(^{2}\)H protons
are the most useful. In addition to the usual \(^{1}\)H-\(^{1}\)H NOESY
spectra, much emphasis was also placed on \(^{15}\)N-\(^{1}\)H HMQC-
NOESY spectra.

Figure 3 shows the NH–NH region of two NOESY spectra.
In the spectrum at pH 7 (Figure 3A) NH\((i)\)-NH\((i+1)\)
connectivities extending from residue 51 to residue 60 and from
residue 63 to residue 66 are indicated, while in the pH 5
spectrum (Figure 3B) connectivities from residue 9 to residue
17 and from residue 24 to residue 33 are shown. In the pH
7 spectrum, NH–NH and C\(^{1}\)H–NH connectivities involving
the NH protons of Arg-11, Leu-25, and Ser-26 are absent,
while they are clearly visible in the pH 5 spectrum. This must
reflect high exchange rates for these amide protons, resulting
in extensive line broadening, as the spectra were recorded
without perturbing the water magnetization. The structural
features of these regions, however, are probably very similar
at the two pH values as bridging NH–NH NOEs between
His-10 and Ala-12, Ser-24 and Ala-27, and Ser-24 and Leu-28
(Figure 3A,B) as well as the NOEs between the C\(^{1}\)H and C\(^{2}\)H
protons of His-10 and the NH proton of Ala-12 are present in
both spectra.

Complementing the NH–NH region of the NOESY spec-
trum is the NH(F\(_{2}\))-aliphatic(F\(_{1}\)) region shown in Figure 4
for the pH 5 data. Numerous C\(^{1}\)H(F\(_{1}\))-NH(F\(_{2}\)) and C\(^{2}\)H-
(F\(_{1}\))-NH(F\(_{2}\)) NOE connectivities, as well as some C\(^{1}\)H-
(F\(_{1}\))-NH(F\(_{2}\)+2,3) connectivities, are indicated that confirm the
NH(F\(_{1}\))-NH(F\(_{2}\)+1) connectivities shown in Figure 3. Thus,
for example, stretches of connectivities extending over residues
8–17, 23–27, and 55–60 are illustrated. This region of the
NOESY spectrum at pH 7 is given in the supplementary
material.

NH–NH NOESY connectivities in the \(^{1}\)H-\(^{15}\)N HMQC-
NOESY spectrum are illustrated in Figure 2B. Several
sequential stretches are indicated, namely, over residues
12–17, 18–23, 27–34, 55–58, and 63–66. Obviously, the
NH–NH connectivities are the same as those observed in a
conventional NOESY spectrum (Figure 3). The absence of
diagonal together with the fact that \(^{15}\)N chemical shifts are
in general not correlated with \(^{1}\)H ones makes it possible to
detect NOEs between NH protons with only slightly different
proton chemical shifts. As a further demonstration of the
usefulness of the \(^{15}\)N-\(^{1}\)H HMQC-NOESY spectra we de-
scribe the case of Gly-17 and Leu-18. Since the amide res-
onances of Gly-17 and Leu-18 are degenerate, one cannot
observe an NOE between them in the NH region of the
spectrum at pH 7. Inspection, however, of the aliphatic region
of this spectrum (Figure 2C) clearly shows C\(^{1}\)H(F\(_{1}\))-NH(F\(_{2}\)+
1) connectivities along the stretch comprising residues 13–23,
including the connectivity between Gly-17 and Leu-18. This
connection cannot be observed in the conventional \(^{1}\)H-\(^{1}\)H
spectra.
Figure 2: 15N-1H HMQC and 15N-1H HMQC-NOESY spectra of the uniformly labeled Ner protein in H$_2$O at 27 °C and pH 7.0. (A) 15N(F$_1$ axis)-NH(F$_2$ axis) region of the HMQC spectrum. (B) 15N(F$_1$ axis)-NH(F$_2$ axis) region and (C) 15N(F$_1$ axis)-aliphatic(F$_2$ axis) region of the relayed 15N-1H HMQC-NOESY (200 ms) spectrum. The cross peaks in (A) and (B) are labeled at the position of the intrarresidue 15N(i)-NH(i) connectivity, while those in (C) are labeled at the position of the 15N(i)-C$^\alpha$H(i) or 15N(i)-C$^\beta$H(i) connectivity (indicated by β). A number of sequential NH(i)-NH(i+1) connectivities are indicated in (B), while sequential C$^\alpha$H(i)-NH(i+1) and C$^\beta$H(i)-NH(i+1) NOE connectivities are indicated by continuous lines in (C). Some other types of NOE connectivities are indicated in (C) by dashed lines.
Table I: 15N and 1H Chemical Shifts (ppm) of Mu Ner at 27 °C and pH 7.0

<table>
<thead>
<tr>
<th>residue</th>
<th>15N</th>
<th>NH</th>
<th>C$^\alpha$H</th>
<th>C$^\beta$H</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6</td>
<td>125.0</td>
<td>8.22</td>
<td>4.22</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>119.9</td>
<td>8.28</td>
<td>4.53</td>
<td>1.83, 1.83</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>123.2</td>
<td>8.28</td>
<td>4.92</td>
<td>2.97, 2.69</td>
<td></td>
</tr>
<tr>
<td>W9</td>
<td>122.8</td>
<td>9.32</td>
<td>4.56</td>
<td>3.24, 3.09</td>
<td></td>
</tr>
<tr>
<td>N'</td>
<td>128.5</td>
<td>121.3</td>
<td>9.00</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>121.3</td>
<td>1.37, 3.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>126.3</td>
<td>9.59</td>
<td>4.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>119.8</td>
<td>8.95</td>
<td>4.17</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>117.5</td>
<td>7.74</td>
<td>4.56</td>
<td>3.09, 2.60</td>
<td></td>
</tr>
<tr>
<td>V14</td>
<td>123.2</td>
<td>7.83</td>
<td>3.79</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>I15</td>
<td>118.2</td>
<td>8.07</td>
<td>3.67</td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>121.8</td>
<td>8.48</td>
<td>4.23</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>G17</td>
<td>106.8</td>
<td>8.13</td>
<td>3.88, 3.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L18</td>
<td>122.6</td>
<td>8.12</td>
<td>4.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K19</td>
<td>121.7</td>
<td>8.44</td>
<td>4.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K20</td>
<td>120.4</td>
<td>8.07</td>
<td>4.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R21</td>
<td>117.3</td>
<td>7.18</td>
<td>4.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K22</td>
<td>113.9</td>
<td>8.09</td>
<td>3.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L23</td>
<td>118.0</td>
<td>8.07</td>
<td>4.86</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>S24</td>
<td>111.9</td>
<td>7.41</td>
<td>4.7</td>
<td>4.27, 3.94</td>
<td></td>
</tr>
<tr>
<td>L25</td>
<td>124.0</td>
<td>9.60</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S26</td>
<td>114.8</td>
<td>8.55</td>
<td>3.88</td>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td>A27</td>
<td>125.5</td>
<td>7.89</td>
<td>4.21</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>L28</td>
<td>119.5</td>
<td>8.24</td>
<td>4.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S29</td>
<td>114.4</td>
<td>8.41</td>
<td>4.14</td>
<td>4.25, 4.15</td>
<td></td>
</tr>
<tr>
<td>R30</td>
<td>118.2</td>
<td>7.88</td>
<td>4.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q31</td>
<td>121.0</td>
<td>8.24</td>
<td>4.26</td>
<td>3.30, 2.16</td>
<td></td>
</tr>
<tr>
<td>N'</td>
<td>119.3</td>
<td>7.57</td>
<td>4.40</td>
<td>3.43, 2.80</td>
<td></td>
</tr>
<tr>
<td>F32</td>
<td>114.8</td>
<td>7.81</td>
<td>3.97, 3.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G33</td>
<td>106.4</td>
<td>8.09</td>
<td>4.93</td>
<td>3.34, 2.98</td>
<td></td>
</tr>
<tr>
<td>Y34</td>
<td>118.7</td>
<td>8.38</td>
<td>4.62</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>A35</td>
<td>119.6</td>
<td>8.20</td>
<td>4.85</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>P36</td>
<td>102.5</td>
<td>7.31</td>
<td>4.28</td>
<td>4.46</td>
<td></td>
</tr>
<tr>
<td>T37</td>
<td>118.2</td>
<td>7.72</td>
<td>3.78</td>
<td>4.02</td>
<td></td>
</tr>
<tr>
<td>T38</td>
<td>120.3</td>
<td>7.80</td>
<td>4.29</td>
<td>1.78, 1.69</td>
<td></td>
</tr>
<tr>
<td>L39</td>
<td>118.6</td>
<td>8.30</td>
<td>4.01</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>A40</td>
<td>118.2</td>
<td>8.25</td>
<td>4.51</td>
<td>2.94, 2.63</td>
<td></td>
</tr>
<tr>
<td>N'</td>
<td>111.8</td>
<td>7.82</td>
<td>4.96</td>
<td>3.30, 3.10</td>
<td></td>
</tr>
<tr>
<td>P48</td>
<td>115.2</td>
<td>7.73</td>
<td>3.67</td>
<td>1.69, 1.19</td>
<td></td>
</tr>
<tr>
<td>G50</td>
<td>101.7</td>
<td>4.53</td>
<td>2.73, 2.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E51</td>
<td>118.9</td>
<td>7.73</td>
<td>3.65</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>Q52</td>
<td>117.6</td>
<td>8.06</td>
<td>3.76</td>
<td>2.11, 2.04</td>
<td></td>
</tr>
<tr>
<td>N'</td>
<td>110.7</td>
<td>7.39</td>
<td>3.34</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>I53</td>
<td>119.6</td>
<td>7.70</td>
<td>3.35</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>I54</td>
<td>119.2</td>
<td>7.70</td>
<td>3.35</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>A55</td>
<td>119.3</td>
<td>8.82</td>
<td>3.56</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>N56</td>
<td>115.3</td>
<td>8.51</td>
<td>4.47</td>
<td>2.97, 2.79</td>
<td></td>
</tr>
<tr>
<td>N'</td>
<td>111.8</td>
<td>7.82</td>
<td>4.96</td>
<td>3.30, 3.10</td>
<td></td>
</tr>
<tr>
<td>A57</td>
<td>124.0</td>
<td>7.60</td>
<td>4.16</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>L58</td>
<td>114.7</td>
<td>7.24</td>
<td>4.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E59</td>
<td>114.8</td>
<td>7.82</td>
<td>3.91</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>T60</td>
<td>114.2</td>
<td>8.18</td>
<td>4.69</td>
<td>3.87</td>
<td></td>
</tr>
<tr>
<td>K61</td>
<td>120.5</td>
<td>7.98</td>
<td>4.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E62</td>
<td>114.6</td>
<td>9.63</td>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V64</td>
<td>119.4</td>
<td>7.17</td>
<td>3.66</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>I65</td>
<td>118.9</td>
<td>6.07</td>
<td>1.87</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>W66</td>
<td>112.8</td>
<td>7.98</td>
<td>5.08</td>
<td>3.20, 2.89</td>
<td></td>
</tr>
<tr>
<td>N'</td>
<td>131.1</td>
<td>7.98</td>
<td>4.37</td>
<td>3.35, 2.44</td>
<td></td>
</tr>
<tr>
<td>A72</td>
<td>125.2</td>
<td>8.43</td>
<td>4.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G73</td>
<td>106.7</td>
<td>8.35</td>
<td>3.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E74</td>
<td>125.3</td>
<td>7.90</td>
<td>4.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1H chemical shifts are expressed relative to 4,4-dimethyl-4-silapentane-1-sulfonate, 15N ones relative to external liquid NH$_3$. * Resonance lies under the water resonance. * Discontinuity in the titration curve between pH 7.8 and 8.2. * Resonance is not visible in the pH 7.0 spectrum; the values given are for the pH 5.0 spectrum.
connectivities are easily apparent, however, in the HMBC-NOESY spectrum, since in this case the C\(^3\)H proton resonances are spread out according to their amide proton chemical shifts, which for residues 17 and 18 are identical. Several situations of this kind could be dealt with satisfactorily by using the HMBC-NOESY spectra. This works particularly well for helical and turn regions, since relatively large (4-6 Hz) three-bond C\(^3\)H(i)-\(^{15}\)N(i + 1) coupling constants are expected for backbone torsion angles in the range -40° to -80° characteristic of \(\alpha\)-helices and type I turns (Bystrøv, 1976). All long-range (three-bond) connectivities identified in this manner are shown in the first line of the sequential connectivity diagram of Figure 6. The combination of the HMBC and the HMBC-NOESY spectra was extremely useful for the sequential assignment providing confirmation for a variety of NOESY connectivities throughout the entire sequence.

From the analysis of all spectra described above, supplemented by information from spectra at different temperatures and pH values, it was possible to arrive at almost complete assignments for the \(^{15}\)N, amide proton, and C\(^3\)H proton resonances. A summary of the assignments to date is given in Table I, and the complete set of connectivities determined from both the homonuclear and heteronuclear spectra is summarized in Figure 6. No unambiguous assignments could be obtained for the first five amine acids due to the absence of convincing connectivities as well as the occurrence of multiple conformations in this region.

Qualitative interpretation (Wüthrich et al., 1984) of the short-range NOEs involving the NH, C\(^3\)H, and C\(^3\)H protons summarized in Figure 6 allows one to delineate the secondary structure of the Ner protein. It basically consists of five \(\alpha\)-helices, as evidenced by stretches of strong NH(i)-NH(i + 1) connectivities in conjunction with diagnostic C\(^3\)H(i)-NH(i + 3), NH(i)-NH(i + 2), and C\(^3\)H(i)-NH(i + 2) NOEs. The helical regions extend over residues 11-22, 27-34, 38-45, 50-60, and 63-73 and are schematically indicated at the bottom of Figure 6. For the first and fourth helices a number of C\(^3\)H(i)-C\(^3\)H(i + 3) as well as C\(^3\)H(i)-NH(i + 4) connectivities are observed, providing additional support for the \(\alpha\)-helical structure. For the third and fifth helices only a few C\(^3\)H(i)-NH(i + 3) connectivities were observed, but since all other sequential NOEs support a helical conformation, we believe that indeed those stretches are \(\alpha\)-helices. Additional evidence can be derived from the three-bond C\(^3\)H(i)-\(^{15}\)N(i + 1) correlations found in the HMBC spectrum, which also support a helical structure. At the present stage, however, it is not clear where the exact start and end of the helices is located, since turns located at the start or end of a helix are difficult to distinguish from the helix itself on the basis of sequential NOEs alone. For instance, considering the first helix, we observe weak sequential NH(i)-NH(i + 1) connectivities at pH 5 from residues 9-11 followed by strong ones from residue 11 upward (Figure 3B). At pH 7 we observe a stretch of medium-strength NH(i)-NH(i + 1) NOEs from residues 8-10 (Figure 3A), followed by strong ones from residue 12 upward. At pH 7, however, we cannot observe the NH resonance of Arg-11 due to fast exchange with water, suggesting that the NH of Arg-11 is not hydrogen-bonded. If the first helix would actually start at Asp-8, the first hydrogen-bonded amide would belong to Ala-12. Interestingly, this is exactly the amide proton resonance that exhibits a large pH dependence of its chemical shift, moving downward by 0.9 ppm as the pH is increased from 5 to 7. A somewhat smaller connectivities between \(^{15}\)N and C\(^3\)H atoms can be observed. Using the HMBC-COSY spectra (Figure 1B) to locate the intraresidue \(^{15}\)N(i)-C\(^3\)H(i) cross peaks, it is possible to sequentially walk along the polypeptide backbone via two-bond \(^{15}\)N(i)-C\(^3\)H(i) and three-bond C\(^3\)H(i)-\(^{15}\)N(i + 1) scalar connectivities in contrast to the through-space connectivities employed in the traditional sequential assignment strategy based on NOESY spectra. This is exactly the amide proton resonance that exhibits a large pH dependence of its chemical shift, moving downward by 0.9 ppm as the pH is increased from 5 to 7. A somewhat smaller
end of the first helix (or an adjacent turn) is more stable at higher pH values, reflected by the observed chemical shift changes. We found no evidence for stretches of β-strand or a β-sheet region in the Ner protein. We observed only two regions exhibiting strong consecutive CαH(i)-NH(i+1) connectivities characteristic of an extended conformation. The most prominent is located at the N-terminus (residues 6-8), for which no other sequential NOEs were found. This, together with the absence of sequential NOEs between residues 1 and 6, suggests that the first eight amino acids do not form a regular secondary structure, but rather adopt a random coil conformation. The second stretch of medium to strong CαH(i)-NH(i+1) connectivities was found between residues 21 and 26, which appears to form an exposed loop connecting the first and second helices.

It may be of interest to compare the NMR-derived secondary structure with the secondary structure predictions of the Chou–Fasman (1978) or Garnier-Robson (Garnier et al., 1978) algorithms. The former predicts α-helix throughout the sequence up to the last 10 amino acids that have β-sheet propensity, interrupted by two turns centered around proline 36 and proline 48; the latter predicts helix up to position 23, β-sheet from position 23 to position 30, followed by a turn (residues 31-33), a helix from residue 39 to residue 59, a turn centered around proline 62, and no preference for the last 10 amino acids. Apart from the fact that a predominantly helical structure is predicted, the agreement is not very strong. Only the third and fourth helices with the adjacent turns are predicted reasonably well, while the remaining parts of the sequence differ in the two predictions as well as from the experimentally determined secondary structure.

With the secondary structure elements of Mu Ner in hand, it is of interest to go back and look again for homologies with other helix-turn–helix-containing DNA binding proteins. A comparison with the secondary structure elements found in

FIGURE 4: NH/aromatic(F1 axis)–aliphatic(F2 axis) region of the 200-ms NOESY spectrum in H2O at pH 5.0. Stretches of CαH(i)-NH(i+1) connectivities extending over residues 8-17, 23-27, and 55-60 are indicated by continuous lines, while some longer range connections are marked by a dashed line.

FIGURE 5: 15N(F1 axis)–aliphatic(F2 axis) region of the 15N-1H HMBC spectrum of 15N-labeled Ner in D2O at 27 °C and pH 7.0. Cross peaks arise from long range two- and three-bond correlations of the type CαH(i)-15N(i), CαH(i-1)-15N(i), and CαH(i)-15N(i). Labels are at the positions of intraresidue cross peaks. Sequential connectivities are indicated over residues 11-17, 19-20, 29-32, 37-39, 41-43, 49-50, 56-57, and 72-74.
the three-dimensional structure of the cro protein of λ (Anderson et al., 1981) shows that in this case only three helices comprising residues 7–13, 15–23, and 27–36 are found, with the second and third helices forming the helix-turn-helix motif. The rest of the cro structure is made up of three β-strands forming an antiparallel β-sheet. Therefore, despite the functional homology between λ cro and Mu Ner, no stringent structural homology is found. A comparison, however, with the secondary structure elements found in the crystal structure of the λ repressor headpiece (Pabo & Lewis, 1982; Jordan & Pabo, 1988) and 434 repressor headpiece (Anderson et al., 1987; Aggarwal et al., 1988), both of which are similar in size to Mu Ner, yields the interesting observation that these two protein domains also contain five α-helices and no β-structure, similar to our findings for the Ner protein. In addition, a recent report of the crystal structure of a protein-DNA complex formed by the cro protein of a different phage, namely, phage 434, shows that the 434 cro structure is made up of five helices and has a very similar structure to that of the 434 repressor headpiece (Wolberger et al., 1988). It may therefore well be that the polypeptide fold of Mu Ner is structurally homologous to that of the headpieces of the two phage repressor proteins and 434 cro. Since at the present stage we cannot ascertain an alignment based on the amino acid sequence and no information is available as to the spatial arrangement of the helices for the Ner Protein, we cannot answer the pertinent question of whether the Ner protein contains a helix-turn-helix motif as found in these other DNA binding proteins. This has to await a full structural characterization of the complete protein structure based on additional NOE data and in particular NOEs between residues far apart in the sequence, which are currently being analyzed in our laboratory.

ACKNOWLEDGMENTS

We thank Dr. Ad Bax for useful discussions.

SUPPLEMENTARY MATERIAL AVAILABLE

Two figures illustrating the CαH(F1 axis)–aliphatic(F2 axis) region of a HOHAHA spectrum in D2O and the NH(F2 axis)–aliphatic(F1 axis) region of a NOESY spectrum in H2O at pH 7 (4 pages). Ordering information is given on any current masthead page.

REFERENCES

Goosen, N. (1984) Regulation of Transposition of Bacterio-
Dynamics of Antarctic Fish Microtubules at Low Temperatures†

Richard H. Himes† and H. William Detrich, III‡

Department of Biochemistry, University of Kansas, Lawrence, Kansas 66045, and Department of Biology, Northeastern University, Boston, Massachusetts 02115

Received November 4, 1988; Revised Manuscript Received March 1, 1989

ABSTRACT: The tubulins of Antarctic fishes, purified from brain tissue and depleted of microtubule-associated proteins (MAPs), polymerized efficiently in vitro to yield microtubules at near-physiological and supra-physiological temperatures (5, 10, and 20 °C). The dynamics of the microtubules at these temperatures were examined through the use of labeled guanosine 5'-triphosphate (GTP) as a marker for the incorporation, retention, and loss of tubulin dimers. Following attainment of a steady state in microtubule mass at 20 °C, the rate of incorporation of [3H]GTP (i.e., tubulin dimers) during pulses of constant duration decreased asymptotically toward a constant, nonzero value as the interval prior to label addition to the microtubule solution increased. Concomitant with the decreasing rate of label incorporation, the average length of the microtubules increased, and the number concentration of microtubules decreased. Thus, redistribution of microtubule lengths (probably via dynamic instability and/or microtubule annealing) appears to be responsible for the time-dependent decrease in the rate of tubulin uptake. When the microtubules had attained both a steady state in mass and a constant length distribution, linear incorporation of labeled tubulin dimers over time occurred at rates of 1.45 s⁻¹ at 5 °C, 0.48 s⁻¹ at 10 °C, and 0.18 s⁻¹ at 20 °C. Thus, the microtubules displayed greater rates of subunit flux, or treadmilling, at lower, near-physiological temperatures. At each temperature, most of the incorporated label was retained by the microtubules during a subsequent chase with excess unlabeled GTP. In contrast, when microtubules were assembled de novo in the presence of [α-32P]GTP at 5 °C and then exposed to a pulse of [3H]GTP, the 32P label was lost over time during a subsequent chase with unlabeled GTP, whereas the 3H label was retained. Together, these results indicate that the microtubules of Antarctic fishes exhibit, at low temperatures, behaviors consistent both with subunit treadmilling and with dynamic instability and/or microtubule annealing.

‡This work was supported by National Science Foundation Grant DPP-8614788 (to H.W.D.) and, in part, by American Cancer Society grant CH-98 (to R.H.H.) and National Institutes of Health Grant GM-36953 (to R.H.H.).

*To whom correspondence should be addressed.

†University of Kansas.

‡Northeastern University.