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A new real space method, based on the principles of simulated annealing, is presented for determining protein structures 
on the basis of interproton distance restraints derived from NMR data. The method circumvents the folding problem 
associated with all real space methods described to date, by starting from a completely random array of atoms and intro- 
ducing the force constants for the covalent, interproton distance and repulsive van der Waals terms in the target function 
appropriately. The system is simulated at high temperature by solving Newton’s equations of motion. As the values of 
all force constants are very low during the early stages of the simulation, energy barriers between different folds of the 
protein can be overcome, and the global minimum of the target function is reliably located. Further, because the atoms 
are initially only weakly coupled, they can move essentially independently to satisfy the restraints. The method is illustrat- 
ed using two examples of small proteins, namely crambin (46 residues) and potato carboxypeptidase inhibitor (39 resi- 

dues). 
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1. INTRODUCTION 

Over the last few years a number of computa- 
tional methods for determining three-dimensional 
structures of proteins from interproton distance 
data obtained by two-dimensional NMR spec- 
troscopy, in particular nuclear Overhauser 
enhancement (NOE) measurements, have been put 
forward [l-13]. As recent publications show 
[12-171, there is still considerable interest in 
developing new methods and improving existing 
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ones. The calculations, which may be carried out 
in either real space [l-7] or n-dimensional distance 
space [8-l 11, involve locating the global minimum 
of a target function which is made up of 
stereochemical and experimental restraints and has 
many false local minima. A method especially 
adapted to this type of nonlinear optimization 
problem is simulated annealing [ 181, which has 
been used in areas as diverse as electrical circuit 
design 1181 and X-ray crystallographic refinement 

1191. 
Two different strategies involving the applica- 

tion of simulated annealing for protein structure 
determination from NMR data have recently been 
proposed [ 16,171. The first is a hybrid of the metric 
matrix distance geometry and simulated annealing 
methods [ 161: substructures which contain only 
about a third of the atoms and have approximately 
the correct fold, are first generated by projection 
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from n-dimensional distance space employing a 
metric matrix distance geometry algorithm 
(without checking the triangle inequalities), and 
are subsequently used as starting structures for the 
simulated annealing calculation. By this means, 
the folding problem inherent in all real space 
methods proposed to date is avoided, and the con- 
cept of simulated annealing is mainly used to im- 
prove the local conformation of the substructure. 
In the second approach, simulated annealing is 
used to fold an extended strand [17]. This involves 
using a soft asymptotic NOE potential and varying 
the NOE-target function such that interproton 
distances between protons far apart in the se- 
quence are gradually incorporated into the calcula- 
tion. This is similar in spirit to the variable target 
function algorithm of Braun and Go [l] and is 
designed to avoid incorrect folding of the polypep- 
tide chain. 

The force constants of the potential terms for bonds, angles, 
impropers (which serve to maintain planarity and chirality) and 
the peptide bond dihedral angle o are set to uniform values 
which are varied during the calculation (see fig.1). All other 
dihedral angle force constants are set to 0 as the dihedral poten- 
tial at rotatable bonds is effectively a non-bonded interaction. 
Disulfide bridges are introduced as bonds in their own right 
from the start of the calculations. (Note that the same would 
apply to a cyclic peptide bond.) 

The non-bonded interactions are represented by a simple van 
der Waals repulsion term with a variable force constant k,,, 
[16,17]: 

F 
0 , if r 2 S.rmin 

““’ = krep(?rmin2 - r’)‘, if r < s’rmin 

The values of r,,,i. are the standard values of the van der Waals 
radii as represented by the Lennard-Jones potential used in the 
CHARMM empirical energy function [24]. s is set to 1 .O in the 
structure determination phase of the present calculations and to 
0.825 in the second (cooling) phase. The resulting radii in the 
second phase are similar to the radii used in the various distance 
geometry programs [1,2,9]. 

The NOE distance restraints are represented by a square-well 
potential with a variable force Constant kNoE [25]: 

In this paper, we describe a new real space 
method based on the principles of simulated an- 
nealing which circumvents the folding problem 
completely, and sets out to obtain correctly folded 
structures starting out from a completely random 
array of atoms. The method is illustrated with two 
examples: the model system crambin (46 residues), 
which has been used in several of our previous 
studies [4,5,16,17], with interproton distance data 
derived from the crystal structure [20]; and the 
potato carboxypeptidase inhibitor CPI (39 
residues), which has been investigated by NMR 
[21] and for which an independent crystal structure 
is available [22]. 

t 

kNoE(rij - r$)* , if rij t rt 
F NOE = 0 if l+j < rij < $j (4) 

kNoE(rij - dj)’ 1 if rij 5 dj 

where rt and & are the upper and lower limits of the target 
distance restraints, and rij the calculated values. 

The calculational strategy is relatively straightforward. First, 
a starting conformation with a random array of atoms is 
generated by assigning random values to the x, y and z coor- 
dinates of the atoms according to a Gaussian distribution with 
a standard deviation of 1.0 A centred about the coordinate 
origin. (Note that the exact form of the distribution is of no 
relevance.) One of the starting conformations for crambin is 
shown in fig.ZA. The starting structure can be envisaged as a 
very high temperature conformation of the system. Very close 
non-bonded contacts are first removed by a few cycles of 
Powell [26] minimization with all force constants set to very low 
values (0.001 kcal.mol-’ .A-* for the bond and NOE terms, 
0.001 kcal.mol-’ .Ae4 for the Frepcl term and 0.001 
lkcal . mol-t. rad-’ for the angular terms). The force constants 
lfor Fcovalcnt and FNOE are then set to values such that the initial 
potential energy Ftot is approximately equal to the kinetic 
energy at 1000 K. All force constants are set to identical values 
apart from the repulsion force constant k,e, which is set to 
0.001 kcal . mol-’ AT4. Initial velocities are assigned according 
to a Maxwell distribution at 1000 K and all masses are set to 
uniform values (10 a.u.). 

2. CALCULATIONAL STRATEGY 

The total target function F,,, for which the global minimum 
region is searched is made up of the following terms: 

Ftot = Fcovalent + %,I + FNOE (1) 

The system is simulated at a temperature T by solving Newton’s 
equations of motion using the molecular dynamics program 
XPLOR (Briinger, A.T., unpublished; (4,191). This is in con- 
trast to the original applications of simulated annealing [18] 
which made use of the Metropolis algorithm [23]. Ftot 
represents the effective potential energy in the dynamics 
calculation and the temperature is related to the kinetic energy 
of the system (see eqns 2 and 3 in [16]). 

Fcovdcnt maintains correct bond lengths, angles, chirality and 
planes, and is given by: 

F cova~cnt = b&kdr - d + an$ekt@ - &)* + 

z: k& -A,)* + 5 k,(l + coso) 
impropers 

(2) 
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The first phase of the calculation consists of -45 cycles of 
dynamical simulated annealing, each comprising 1 ps dynamics 
with a time step of 1 fs at 1000 K. The exact number of cycles 
depends on the initial values of the force constants (see above). 
The velocities are resealed whenever the temperature is lower 
than 500 K or higher than 1250 K. At the beginning of each cy- 
cle, the force constants (covalent and NOE) are increased by 
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multiplying them by a factor of 1.25, up to maximum values of 
100 kcal~moi-‘~A-2 for k~oa, 500 kcal~mol-‘~A-2 for /o,, 
and 500 kcal.mol-‘.rad-2 for the angle, dihedral and im- 
proper terms. The repulsion force constant kreP is left un- 
changed until the bond force constant kb reaches a value of 

100 kcal~mol-‘~A-2, at which time k,, is increased by 
multiplying its value by a factor of 1.5 at the beginning of each 
subsequent cycle, up to a maximum value of 
0.25 kcal.mol-‘.A-4. Although the value of k,, is very low 
during the early stages of the protocol, it is sufficient to define 
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Fig. 1. Time dependence of the bond force constant kB, the van der Waals repulsion force constant krrp and the backbone (N, c”, c, 
0) atomic RMS difference versus the crystal structure during the course of a dynamical simulated annealing calculation on crambin. 

131 



Volume 239, number 1 FEBS LETTERS October 1988 

Table 1 

Structural statistics 

(SA) structure? 

Crambin CPI 

NOERMS @lb 0.036 ? 0.007 0.098 + 0.013 

Non-bonded contacts 
F rrpe~ (kcal . mol- ‘)’ 34.2 + 19.1 25.6 + 9.8 
EL-J (kcal.mol-‘)d - 127.1 f 35.2 -84.3 + 36.9 

Deviations from idealized geometry 
Bonds (A) 0.020 + 0.006 0.017 f 0.001 
Angles (“) 2.008 t 0.085 2.457 f 0.010 
Impropers (“)’ 1.540 + 0.037 1.433 + 0.036 

a There are seven final converged SA structures each for 
crambin and CPI 

b The RMS deviations from the interproton distance restraints 
are calculated with respect to the upper and lower limits of the 
distance restraints [S] 

’ The values for the van der Waals repulsion term Frepel (eqn 3) 
are calculated with a force constant of 4 kcal . mol-’ . k” and 
with the hard sphere van der Waals radii set to 0.825 times the 
standard values used in the CHARMM empirical energy 
function [24] 

d EL-J is the Lennard-Jones van der Waals energy calculated 
using the CHARMM empirical energy function 1241 

’ The improper terms serve to maintain planarity and 
appropriate chirality 

and maintain the global structure while allowing atoms to get 
very close to each other and even move through each other to 
improve the structure locally. As the values of all force con- 
stants are very low during the early stages of the simulation, 
energy barriers between different folds of the protein can be 
overcome, and the global minimum of the target function is 
reliably located. Because the atoms are initially only weakly 
coupled, they can move essentially independently to satisfy the 
restraints, thereby avoiding problems associated with folding. 

The path of the calculations is illustrated in figs 1 and 2 for 
a typical crambin trajectory. Fig.1 shows the increase in the 
bond and repulsion force constants, together with the backbone 
(C, C”, N, 0) atomic RMS difference versus the crystal struc- 
ture of crambin, as a function of time. Fig.2B shows snapshots 
of the ‘trajectory’ every 4 ps, and fig.ZC shows the best fit 
superposition of the final structure with the X-ray structure. 
Note that the global features of the structure begin to emerge 
at remarkably low values of the force constants. The atoms first 
arrange themselves roughly in their correct global position, 
prior to the evolution of local structural elements. 

Varying force constants rather than the temperature is mainly 
a matter of convenience, as no variable time step integrator is 
required when the calculations are carried out at a constant 
temperature. While the two methods are not exactly equivalent, 
the former has the additional advantage that the force constants 
can be easily varied at different rates which improves the effi- 
ciency of the method [17]. For a potential that is harmonic in 
the coordinates, scaling of a force constant by a factor c cor- 
responds to simultaneously scaling the temperature by l/c and 
the time by l/Jc. 

In stage 2 of the protocol, which consists of 20 cycles of 
0.1 ps dynamics, the parameters of the van der Waals repulsion 
term Frcpei are set to their final values (s = 0.825, k,, = 
4 kcal.mol-‘.A-4), and the temperature is cooled down to 

Table 2 

Atomic RMS differences” 

Atomic RMS difference (A) 

Crambin 

Backbone All 
atoms atoms 

CPI (residues 2-39)b 

Backbone All 
atoms atoms 

(SA) vs % 0.86 f 0.07 1.17 * 0.12 1.05 i 0.28 1.63 + 0.31 
(SA) vs X-ray 1.23 k 0.17 1.73 f 0.18 1.87 f 0.33 2.88 + 0.38 
Zi vs X-ray 0.90 1.27 1.55 2.38 

a The notation of the structures is as follows: (SA) are the seven converged 
structures produced by dynamical simulated annealing starting from different 
random arrays of atoms; and G is the mean structure obtained by averaging the 
coordinates of the (SA) structures best fitted to each other. The X-ray structures 
of crambin and CPI are from [20] and [22], respectively 

b Best fitting in the case of CPI was performed with respect to residues 2-39 as 
no NOES involving residue 1 were observed [21]. In comparisons with the X-ray 
structure of CPI, best fitting was carried out with respect to residues 2-38, as 
residue 39 is cleaved from the protein in the CPI-carboxypeptidase complex from 
which the X-ray structure of CPI is derived [22] 
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24~s 26 ps 

Fig.2. Path of a dynamical simulated annealing calculation on crambin. (A) Initial structure comprising a random array of atoms with 
the backbone and side chain bonds shown as thick and thin lines, respectively; (B) snapshots at 4 ps intervals during the first phase 
of the dynamical simulated annealing calculation (only the N, C” and C backbone atoms are shown); and (C) best fit superposition 
of the backbone (N, C”, C, 0) atoms of a final dynamical simulated annealing structure (thick lines) resulting from the trajectory 

shown in (B) on the X-ray structure of crambin (thin lines). 
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300 K. The NOE force constant is set to 50 kcal.mol-‘.A-*. 
These relative values of the final force constants have been 
found to ensure that the experimental restraints are satisfied 
within the error bounds, nearly perfect stereochemistry is 
achieved and no unduly close non-bonded contacts appear in 
the structure (see [17,18] and table 2). Stage 2 is followed by 200 
cycles of restrained Powell minimization. 

3. RESULTS ON CRAMBIN AND CPI 

The results of the calculations on crambin and 
CPI are summarized in tables 1 and 2. The sets of 
NOE restraints were identical to those employed in 
the previous calculations [4,5,16,17,21]. In the 
case of crambin the NOE data set consisted of 240 
interproton distances derived from the crystal 
structure [20]; for CPI it comprised 309 inter- 
proton distances derived from NOE measurements 
[21]. The distances were classified into three 
distance ranges, 1.8-2.7, 1.8-3.3, and 1.8-5.0 A, 
corresponding to strong, medium and weak NOES 
[25,27]. Distances to methyl, methylene and 
aromatic ring protons that were not assigned 
stereospecifically were calculated with respect to 
the average position of these protons and the upper 
limits of the corresponding restraints were cor- 
rected appropriately as described [28]. Disulfide 
bridges, of which there are three for both crambin 
and CPI, were treated as normal bonds from the 
start of the calculations. 10 structures were 
calculated for both crambin and CPI. In the case 
of crambin all calculations converged to the cor- 
rect polypeptide fold, while in the case of CPI 9 of 
the 10 calculations converged. All structures which 
had a positive Lennard-Jones van der Waals 
energy (evaluated with the CHARMM empirical 
energy function [24]) were rejected (two for CPI, 
three for crambin). Note that this energy term is 
not used during the calculations but only serves as 
an independent check at the end of the calculation. 
In the five structures with positive Lennard-Jones 
energies, the poor non-bonded contacts always oc- 
curred at the disulfide bridges. 

The quality of the structures as regards devia- 
tions from ideal stereochemistry, van der Waals 
contacts and NOE RMS differences is comparable 
to those previously published (see table 1; [ 16,171). 
Atomic RMS distributions and RMS differences 
with respect to the crystal structures are also of 
similar size (table 2). Some of the calculated struc- 
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tures for the model crambin calculations show very 
good agreement with the crystal structure with 
backbone atomic RMS difference values as low as 
-0.9 A (see for example fig.2C). 

To test further the convergence power of the 
protocol we performed one calculation for cram- 
bin taking the mirror image of the crystal structure 
as the initial conformation (i.e. a conformation 
containing only D-amino acids). In this starting 
conformation, all terms in the total target func- 
tion, with a single exception are ideally satisfied. 
The only term which discerns this starting confor- 
mation from the correct solution is the improper 
term maintaining the chirality at the tetrahedral 
carbon atoms. Thus a mirror image of the true 
solution represents a deep false minimum, and, as 
the whole structure has to be inverted, very high 
energy barriers have to be overcome to reach the 
correct global fold. The calculation, however, con- 
verged with a final backbone atomic RMS dif- 
ference of 1.3 A with respect to the X-ray 
structure. 

4. CONCLUDING REMARKS 

In this paper, we have presented a new approach 
for determining three-dimensional structures from 
interproton distance data by simulated annealing. 
By starting from a completely random array of 
atoms and introducing the force constants for the 
various terms in the target function appropriately, 
the folding problem associated with all real space 
methods described to date is efficiently avoided. 
The key to the method lies in reducing the force 
constants of all terms in the target function to 
values such that the barriers between different 
folds are of the order of the kinetic energy of the 
system. Thus, the atoms can move virtually in- 
dependently of each other to satisfy the restraints. 
The quality of the structures generated using this 
approach is comparable to those reported 
previously using dynamical simulated annealing 
[16,17] and significantly better than those 
generated by metric matrix distance geometry 
alone [29]. In addition, the success rate of the pre- 
sent calculations is very high. At the same time, 
this method has the good sampling properties of 
simulated annealing and restrained dynamics 
calculations. The protocol should perform 
satisfactorily even if there are few or no long range 
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distances as, for example, in extended structures 
for which metric matrix distance geometry 
methods, in our experience, perform poorly [30]. 

The protocol described here also offers an easy 
and straightforward approach, similar to that sug- 
gested by Pardi et al. [31], for dealing with the 
problem of stereospecific assignments at prochiral 
centers. When two separate signals are observed 
for two fl methylene protons which cannot be 
specifically assigned, they may be assigned ar- 
bitrarily to pi and Pz; the corresponding 
tetrahedral improper for the prochiral center is left 
out, and the assignment which best satisfies the 
NOE data is automatically selected during the 
course of the calculation. If only one signal is 
observed, the pseudo-atom representation [28] is 
used. As the two protons are equivalent in this 
case, inclusion of a tetrahedral improper is not 
necessary. For methylene proton resonances that 
are stereospecifically assigned, an improper term 
for the prochiral center is introduced. In contrast 
to the method suggested in [31], the force con- 
stants need not be lowered and raised again 
specifically at the prochiral centers, but they are 
varied together with all other force constants. 

While the CPU times needed for the calculations 
(several hours on a CONVEX Cl-XP or a VAX 
8550) are of course larger than those of our hybrid 
distance geometry-dynamical simulated annealing 
method [ 161, they are by no means prohibitive, and 
still considerably shorter than for a restrained 
molecular dynamics calculation employing a full 
empirical energy function [3-61. We note, 
however, that, as the non-bonded cutoff radius is 
only 4 A, computational times rise linearly with 
the number of atoms. As a result, the time re- 
quirements for the dynamical simulated annealing 
method become increasingly favourable with in- 
creasing size of the protein, relative to other 
distance geometry methods [ 1,2,7-l 11. 
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