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An automated method, based on the principle of simulated
annealing, is presented for determining the three-dimensional
structures of proteins on the basis of short (<5 A) inter-
proton distance data derived from nuclear Overhauser
enhancement (NOE) measurements. The method makes use
of Newton’s equations of motion to increase temporarily the
temperature of the system in order to search for the global
minimum region of a target function comprising purely geo-
metric restraints. These consist of interproton distances sup-
plemented by bond lengths, bond angles, planes and soft van
der Waals repulsion terms. The latter replace the dihedral,
van der Waals, electrostatic and hydrogen-bonding potentials
of the empirical energy function used in molecular dynamics
simulations. The method presented involves the implemen-
tation of a number of innovations over our previous restrained
molecular dynamics approach {Clore,G.M., Briinger,A.T.,
Karplus,M. and Gronenborn,A.M. (1986) J. Mol. Biol., 191,
523 —551]. These include the development of a new effective
potential for the interproton distance restraints whose func-
tional form is dependent on the magnitude of the difference
between calculated and target values, and the design and
implementation of robust and fully automatic protocol. The
method is tested on three systems: the model system crambin
(46 residues) using X-ray structure derived interproton dis-
tance restraints, and potato carboxypeptidase inhibitor (CPI;
39 residues) and barley serine proteinase inhibitor 2 (BSPI-2;
64 residues) using experimentally derived interproton distance
restraints. Calculations were carried out starting from the
extended strands which had atomic r.m.s. differences of 57,
38 and 33 A with respect to the crystal structures of BSPI-2,
crambin and CPI respectively. Unbiased sampling of the con-
formational space consistent with the restraints was achieved
by varying the randoim number seed used to assign the initial
velocities. This ensures that the different trajectories diverge
during the early stages of the simulations and only converge
later as more and more interproton distance restraints are
satisfied. The average backbone atomic r.m.s. difference
between the converged structures is 2.2 + 0.3 A for crambin
(nine structures), 2.4 + 0.3 A for CPI (eight structures) and
2.5 + 0.2 A for BSPI-2 (five structures). The backbone
atomic r.m.s. difference between the mean structures derived
by averaging the coordinates of the converged structures and
the corresponding X-ray structures is 1.2 A for crambin,
1.6 A for CPI and 1.7 A for BSPI-2.

© IRL Press Limited, Oxford, England

Key words: three-dimensional structure/crambin/CPI/BSPI-2/
simulated annealing/distance restraints

Introduction

Determining the three-dimensional structures of proteins from
interproton distance data derived from NMR measurements pre-
sents a highly complex, non-linear optimization problem as the
data are limited in their number, accuracy and range (<5 A)
and there are numerous false local minima along the convergence
pathway. Over the past few years a number of methods with large
radii of convergence have been developed to tackle this problem.
These include distance geometry methods based on the metric
matrix (Crippen and Havel, 1978; Kuntz et al., 1979; Havel et
al., 1983; Havel and Wiithrich, 1984, 1985; Havel, 1986; Sippl
and Scheraga, 1986), restrained least-squares minimization in
torsion angle space with either a variable target function (Braun
and Go, 1985) or a sequence of ellipsoids of constantly decreasing
volumes, each of which contains the minimum of the target
function (Billeter er al., 1987), and restrained molecular dynamics
(Clore et al., 1985, 1986a; Kaptein et al., 1985; Briinger et al.,
1986; Nilsson et al., 1986). The first three methods are based
solely on the use of geometric restraints comprising interproton
distances, bond lengths, bond angles, planes and soft van der
Waals repulsion terms. In contrast, the restrained molecular
dynamics method makes use of a full empirical energy function
(comprising bonded and non-bonded interactions) supplemented
by an effective potential term representing the experimental inter-
proton distances. In terms of computational requirements, the
first three methods are comparable and approximately five times
faster than restrained molecular dynamics. Restrained molecular
dynamics, on the other hand, has the advantage that the struc-
tures generated tend to be better in energetic terms than those
obtained using the other methods, particularly with respect to
the non-bonded interactions. It is for this reason that we have
regularly employed restrained molecular dynamics either for the
entire structure determination or to refine converged structures
generated by the metric matrix distance geometry method (Clore
et al., 1986b, 1987a,b,c,d,e). In our experience, restrained
molecular dynamics refinement results not only in large improve-
ments in the non-bonded contacts (i.e. van der Waals energy)
as compared with the starting structures generated by distance
geometry calculations, but also improves significantly the agree-
ment with the experimental NMR data.

In this paper we present an alternative approach for the struc-
ture generation phase. This approach is based on the principle

of simulated annealing (Kirkpatrick et al., 1983). As originally *

described, the simulated annealing method makes use of the
Monte Carlo algorithm (Metropolis ef al., 1953) to increase the
temperature of the system temporarily in order to search for the
global minimum region of the target function. In our application,
we make use of Newton’s equations of motion to achieve the
same effect. The method, however, differs from conventional
restrained molecular dynamics insofar that it is based purely on
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geometric restraints and the non-bonded terms of the target
function are represented by a simple repulsion term (i.e. this
replaces the dihedral, van der Waals, electrostatic and hydrogen-
bonding potentials of the empirical energy function used in mol-
ecular dynamics). This has the advantage of significantly reducing
the computational time requirements to a level comparable with
the other methods mentioned above. In addition, two further
innovations over our previous restrained molecular dynamics
approach are implemented. The first involves the introduction
of an effective nuclear Overhauser effect (NOE) potential whose
functional form for a given interproton interaction is dependent
on the magnitude of the difference between the calculated and
target distance. This circumvents the need to classify the distances
into short (Ji—j| < 5) and long (|i—j| > 5) range, a procedure
which is somewhat arbitrary, and increases the likelihood of cor-
rect folding. The second involves the design and implementa-
tion of a protocol which is fully automatic and considerably more
robust than those employed in our previously restrained molecular
dynamics study on crambin. The novel method is illustrated us-
ing three examples. The first is the model system crambin with
the same distance set derived from the crystal structure that we
used before in our restrained molecular dynamics study (Briinger
et al., 1986; Clore et al., 1986a) and in the comparison of the
restrained molecular dynamics and metric matrix distance
geometry methods (Clore et al., 1987f). The second and third
examples are derived from our NMR work on potato carboxy-
peptidase inhibitor (CPI) and barley serine proteinase inhibitor
2 (BSPI-2) and make use of the same experimental interproton
distance data that were employed to solve their structures by a
combination of distance geometry and restrained molecular
dynamics calculations (Clore et al., 1987d,e). These three par-
ticular examples were chosen as the proteins exhibit quite dif-
ferent structural features as well as different sizes: crambin (46
residues) is composed principally of two a-helices and a mini-
antiparallel 8-sheet (Hendrickson and Teeter, 1981), BSPI-2 is
a predominantly S8-sheet protein with a small a-helix and a large
reactive site loop (McPhalen et al., 1985), and CPI has little or
no regular secondary structure (Rees and Lipscomb, 1982).

Methods

All calculations were carried out on a CONVEX-C1XP computer
using a modified version of the program XPLOR (Briinger et
al., 1987a,b) which is derived from the program CHARMM
(Brooks et al., 1983) and has been especially adapted for
restrained molecular dynamics (e.g. Clore er al., 1985, 1986a;
Briinger er al., 1986). Integration of the classical equations of
motion was performed using a Verlet (1967) integration algorithm
with initial velocities assigned to a Maxwellian distribution at
an appropriate temperature. The time step of the integrator was
0.001 ps and the non-bonded contact list was updated every 0.008
ps. Displaying of trajectories was carried out using a modified
version of the function network of FRODO (Jones, 1978) inter-
faced with XPLOR.

Results and discussion

The target function

The total target function Fy, for which the global minimum
region is searched is made up of the following terms:

Fiw = Feovalem + Frepat + FNoOE )]
F, in effect represents the potential energy of the system whose
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units in the present calculations are kcal/mol. These units are
purely arbitrary. Thus, the simulated annealing procedure
employed in this case involves the simultaneous integration of
Newton’s equations of motion:

X, 1 9
a7 = " m oX, FoX, Xo, .00 X)) @

for all n atoms in the system whose temperature is given by

2 n
(Temp), = m( El m,"?/2)l (3)

F_ovalen 1 the target function for maintaining correct bond
lengths, angles and planes, and is given by

— —r32 Y RYA _ 2
Feoutens = | By k(r=ro)® + mgmk,w 8o) +mp£persk”(“’ wp)? (4)

The values chosen for the force constants for the bond (kp),
angle (kg) and improper torsions (k,) are set to uniform high
values to ensure near perfect stereochemistry throughout the
calculations, namely 600 kcal/mol/Az, 500 kcal/mol/rad? and
500 kcal/mol/rad? respectively. (Note that the improper torsion
terms serve to maintain planarity and chirality.)

Frepy is the target function used to prevent unduly close non-
bonded contacts and is given by

0 ifr = s rom
F | = (5)
b kr(sz-rnfjﬂ— rz)2 if r < s-rpn

The values of r,,, are the standard values of the van der Waals
radii as represented by the Lennard —Jones potential used in the
CHARMM empirical energy function (Brooks er al., 1983); s
is a van der Waals radius scale factor, and k, the van der Waals
repulsion force constant. It should also be noted that the large
reduction in the computational time required to evaluate Fi.
compared with the usual full non-bonded interaction potential
represented in the empirical energy function is due not only to
the smaller number of terms that have to be calculated but also
to a reduction in the number of pairs that have to be included
in the non-bonded contact list. Thus, in the case of Fiy the
non-bonded contact list comprises only all pairs up to 4.5 A,
compared with pairs up to 8 A in the case of the full empirical
non-bonded energy function.

Fyok is the NOEtarget function and is a complex term made
up of three terms Figng, Fyor and Fipg, Whose functional form
depends on the difference between the calculated (r,) and target
(ri) value of a particular interproton distance, as well as on
the value of the variable force constant for the Fg,,, term (see
below). Our previous restrained molecular dynamics calculations
have used biharmonic (Clore et al., 1985) and square well (Clore
et al., 1986b) potentials. Such forms, however, give rise to severe
problems in simulations that start from initial structures containing
large violations between calculated and target distance values.
It was for this reason, for example, that in our restrained
dynamics model calculations on crambin starting from an ex-
tended strand, distances between residues separated by more than
five residues in the sequence were initially excluded from the
calculation and only introduced at a later stage once partial folding
of the helices had occurred.
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Fig. 1. Simplified flowchart of the simulated annealing protocol (L—J
signifies Lennard —Jones).

Calculational strategy

A simplified flowchart of the calculational strategy is shown in
Figure 1. Its design is based on three guidelines: (i) that secondary
structure elements should be formed prior to tertiary structure
folding; (ii) that converged NOE restraints and/or local structure
elements once formed should be retained; and (iii) that the incor-
poration of NOE restraints into the NOE target function Fnog
should be completely automatic {i.e. that no special treatment
of the NOE data, as was done for our previous restrained mol-
ecular dynamics calculations (Clore et al., 1986a), should be
necessary before the start of the simulation]. To achieve these
aims, the NOE violations are analysed and grouped into different
classes, depending on their size (see description below), at the
end of each cycle of simulated annealing, and a special potential
form is used that places greater weight on smaller violations. A
further requirement is that the value of the target function Fygg
should not exceed certain limits for technical reasons. This
necessitates the automatic adjustment of the NOE force constants,
as appropriate, during the course of the simulation.

The calculations have to start from unfolded structures (e.g.
an extended strand) rather than from entirely random structures
which may already be folded. The reason for this is that once
the polypeptide chain has folded incorrectly it can no longer
converge to the correct global minimum region. The random

Three-dimensional protein structures by simulated annealing

number seed, however, used for the assignment of the initial
velocities is sufficient to ensure good sampling of the available
conformational space consistent with the interproton distance data
(see following section).

The NOE restraints are initially classified into two classes, long
and short, depending on the difference (viol}}) between the cal-
culated (r;) and upper limit of the target (rj;) distances. Class
long contains NOE restraints which are violated by more than
rdist; g, class short contains all the others. In class long the
target function is switched off (i.e. Fiqe = 0). In class short the
target function has the following functional form:

ky(c*violjj + viol? +a) if viol, > rswitch
if
ky(violt y* if ry > ry and violj < rswitch
Fonon = (6)
0 if r,; sry = r;J’
ks(vwl,lj »* ifry, < r,}

The values of a and b are chosen such that F is continuous
and differentiable at rswitch. They are given by
a = Srswitch® — 2c-rswitch
@)

b = —4rswitch® + c¢-rswitch?

¢, the slope of the assymptote, is set to 0 in the present calcu-
lations. The initial values chosen for rswitch, rdist;s and the
force constant k, are 3 A, 10 A and 0.05 kcal/mol/ A2
respectively.

A diagram of the functional form of Fy,,, is shown in Figure
2. This potential form is designed to ensure that secondary struc-
ture elements defined by interproton distances between residues
close together in the sequence are formed prior to the incorpor-
ation of NOEs between residues far apart in the sequence. The
gradient of Fy,, is largest at rswitch + rj; so that NOEs which
are violated by about the value of rswitch experience the largest
force. At the beginning of the simulation rswitch is set to a low
value (~3 A); by progressively increasing its value, the maxi-
mum of the driving force is shifted to larger violations. Thus
once the formation of local secondary structures such as a-helices
has occurred, turns can be formed and tertiary structure folding
can gradually take place. For the same reason, NOEs that are
violated by more than rdistg; are placed in a class long where
they experience no force from the NOE restraints at all.

At the beginning of the calculations the hard sphere radii of
the atoms are chosen as in the Lennard —Jones potential (i.e. s
in equation 5 is set to 1.0). The calculations are initiated with
20 steps of Powell (1977) minimization to remove some bad non-
bonded contacts. This is followed by Phase 1 of the simulated
annealing protocol. The initial velocities at ¢ = O ps are chosen
from a Maxwellian distribution at 1000K. This temperature is
chosen to ensure that local minima along the convergence path-
way towards the global minimum region of the target function
F, can be overcome. Each cycle of annealing comprises 40
steps with a time step of 1 fs in which the non-bonded contact
list is updated every eight steps and the velocities are rescaled
to 1000K every 20 steps. After every cycle of annealing the force
constant k; for Fg,, is increased up to a maximum value of
15.8 kcal/mol/A? by multiplying its value by 10%'. The value
of FyoE is then evaluated with the new value of k;, and if Fyop
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Square well potential with soft asymptote
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Fig. 2. Potential form of F,, (equation 6) for r, = 3.0 A, k, = 1.0 kealVmol/A2, ' =20 A, r
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> 2500 kcal/mol k is divided by 10°! until Fyog < 2500 keal/
mol. Once k, has reached its maximum value of 15.8 kcal/mol/
Az’ the NOE restraints are further reclassified between class

ke (violy?
Fpig =10
k¢ (viol"*

short and class final if viol}j is less than rdistgs. The value of

rdistgs chosen is 1.0 A
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, and Fp, is a square-well function with
a force constant k¢ of 60 kcal/mol/ A2 which is never changed
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= 3.5 A, rswitch = 1.5 A and ¢ = 0. The positions

> r;) as a function of the value of the violation (r_q— (7] in the imutial
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Thus class final contains all the NOE restraints which have
converged. In addition, the restraints in the long and short classes
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Table 1. Atomic r.m.s. differences®

Atomic r.m.s. difference (A)

Crambin CPI (residues 2—39)° BSPI-2 (residues 22 —83)¢

Backbone atoms All atoms Backbone atoms All atoms Backbone atoms All atoms
Ini versus SA 38.4 38.3 33.2 33.8 58.0 58.1
<SA> versus <SA> 22 +£03 27 £ 04 24 £ 03 34 £ 05 2.5 £ 0.2 36 £ 03
<SA> versus SA 1.5 + 0.3 1.8 + 0.4 1.6 = 0.3 23 + 04 1.6 = 0.2 23 £ 0.2
SA versus (SA)r 0.5 0.7 0.6 0.8 0.7 0.9
<SA > versus (SA)r 1.6 = 0.3 1.9 + 0.4 1.7 £ 0.3 25+ 05 1.7 £ 0.2 24 £ 0.2
<DG> versus <DG> 1.8 £ 0.2 2.7 £ 03 1.7 £ 0.2 25 £ 05 1.6 £ 0.1 2.7 = 0.1
<DG> versus DG 1.2 = 0.1 1.8 = 0.1 1.2 £ 0.1 1.7 £ 0.2 1.1 £01 1.8 = 0.1
<RD> versus <_RD> 2.1 £ 0.2 27 £ 0.1
<RD> versus RD 1.4 £ 02 1.7 £ 0.1
<RDDG> versus <RDDG> 2.1 £ 04 2.8 £ 04 2.1 £ 03 31 £03
<RDDG > versus RDDG 1.4 £ 03 1.9 £ 0.3 14 £ 0.2 2.1 = 0.1
SA versus DG 1.3 1.8 1.3 1.7 1.4 2.0
_Siversus RB/RDDG 1.3 1.7 1.8 24 1.5 2.0
DG versus RD/RDDG 1.2 1.7 1.5 1.8 2.0 2.5
<SA> versus X-ray 1.9 = 0.3 25 £ 05 22 £ 03 33 + 04 23 £ 0.2 33 £ 03
Sivcrsus X-ray 1.2 1.7 1.6 2.5 1.7 2.4
(SA)r versus X-ray 1.2 1.8 1.8 2.7 1.7 2.5
DG versus X-ray 1.3 21 1.4 22 1.9 27
RD/RDDG versus X-ray 1.1 1.4 1.6 23 1.4 23

*The notation of the structures is as follows: Ini, the extended S-strand starting structure for the simulated annealing calculations; <SA >, the converged
structures produced by simulated annealing starting out from the extended S-strand structure Imi; <DG >, converged structures obtained by metric matrix
distance geometry calculations using the program DISGEO (Havel, 1986); <RD> and <RDDG >, converged restrained molecular dynamics structures
obtained starting from an extended strand and converged <DG> structures respectively; SA, DG, RD ) and RDDG, the mean structures obtained by
averaging the coordinates of the <SA>, <DG>, <RD> and <RDDG> structures respectively; (SA)r is the structure derived by restrained Powell
minimization of the mean SA structure. There are nine SA4 structures for crambin, eight for CPI and five for BSPI-2. The X-ray structures of crambin, CPI
and BSPI-2 are from Hendrickson and Teeter (1981), Rees and Lipscomb (1982) and McPhalen and James (1987). The <RD> and <DG> structures of
crambin are from Clore er al. (1986a) and (1987f) respectively; there are five <RD> structures and seven <DG> ones. The <DG> and <RDDG>
structures of CPI and BSPI-2 are from Clore er al. (1987d) and (1987¢) respectively; there are 11 structures of each type. (Note that in the case of CPI and
BSPI-2 all the restraned molecular dynamics structures are obtained starting from converged <DG> structures, while in the case of crambin, they are all

obtained stanmg out from extended type structures.)

bBest ﬁmng in the case of CPI was performed with respect to residues 2—39 as no NOEs involving residue 1 were observed (Clore er al., 1987d) In
comparisons with the X-ray structure of CPI, best fitting is carried out with respect to residues 2 —38, as residue 39 is cleaved from the protein in the
CPI—carboxypeptidase complex from which the X-ray structure of CPI is derived (Rees and Lipscomb, 1982).

€In the case of BSPI-2 the best-fits are carried out with respect to residues 22—83 as no NOEs could be detected involving restdues 20—21. Note that the
NMR on BSPI-2 was carried out on the 64-residue proteolytic fragment comprising residues 20—83 as the first 19 residues are disordered both 1n solution

(Kjaer et al.,

are counted and the smallest violation in class long is calculated.
Three cases are distinguished: (i) if both the long and short classes
are empty and Fyog has a value below its target value (in this
case 120 kcal/mol), gilobal as well as local convergence has
occurred, the Phase 1 calculation is stopped and the simulation
proceeds directly to Phase 2 of the annealing protocol; (ii) if only
the short class is empty and the value of Fygg lies below its
target value, ‘local convergence’ has been achieved, and the value
of rdist; g for the reclassification between classes long and short
is set to just above (0.02 A) the smallest violations in class long
so that one or only a few additional violations go into class short;
and (iii) if neither case (i) nor case (ii) applies then rdist g is
increased by 0.02 A . Additionally, in cases (i) and (iii) the value
of rswitch is increased by 0.01 A and the NOE restraints are
reclassified between classes long and short.

The rationale behind the grouping of all ‘converged NOE
restraints’ in class final is to ensure that once secondary structure
elements have formed they are preserved and not disrupted at
a later stage during the course of the simulation. This is required
since there is no force other than the NOE restraints to stabilize
such secondary structure elements, and the scale of the short

1987; Kjaer and Poulsen, 1987) and in the crystal structures (McPhalen er al.,

1985; McPhalen and James, 1987).

potential has to be reduced drastically at times as longer-range
NOEs are incorporated into Fy,. For this reason the force
constant on the final potential is never reduced. To ensure that
the reclassification only takes place once NOEs have really con-
verged and to allow some rearrangement of the local structure,
NOE:s are only reclassified between the final and short classes
when the force constant for Fg,,, is at its maximum value.

After every 10 cycles of annealing, the velocities are partially
(~25%) rerandomized by adding the x, y and z components of
the velocities assigned at 300K to the existing velocities and
dividing the resulting new velocities by /1.3 to restore the
velocities back to a temperature of 1000K. This is done to slow
down large-scale rigid body motions and to introduce a further
random element into the protocol, in addition to that arising from
the variation in the random number seed used to assign the initial
velocities at the beginning of Phase 1. The random element arises
insofar that a partial rerandomization of the velocities may change
the direction of motion of the atoms in a non-deterministic
manner.

The maximum number of cycles for Phase 1 was 250 for CPI
and crambin, and 350 for BSPI-2 (the larger the protein, the more
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Table II. NOE deviations and violations, deviations from ideality, van der Waals energies and radii of gyration®

Structure NOE, ;. NOE,,,° Deviations from ideality Van der Waals energy®  Radii of gyration
4 Bonds (&) Angles (deg) Impropers (deg) _(kcal/mol) (A)

Crambin .

No. of terms 249 642 1177 143

Ini 35.3 173 0.017 2.58 0.23 289 42.54

<SA> 0.12 + 0.1t 0.6 £ 0.5 0.010 + 0.004 278 £ 040 020 + 0.04 ~—113 + 18 9.99 + 015

SA 0.03 0 0.436 23.53 5.17 > 105 9.82

(SA) 0.09 1 0.007 423 0.15 -76 10.04

<DG> 0.14 = 0.04 1.9 + 0.2 0.017 + 0.001 3.79 + 0.29 0.15 + 0.05 230 + 336 992 + 0.08

<RD> 0.08 + 0.01 0.6 + 1.3 0.014 + 0.002 3.94 + 0.53 0.75 + 0.12 —157 + 10 9.38 + 0.17

X-ray 0.02 0 0.020 2.87 1.48 -213 9.64

CPI

No. of terms 318 565 1008 209

Ini 27.7 147 0.074 4.33 0.34 468 38.79

<SA> 0.10 = 0.01 0.1 + 0.4 0.010 + 0.003 3.48 + 0.53 031 £ 007 ~90 + 27 993 + 0.14

SA 0.07 3 0.456 21.10 .72 > 100 8.82

SAy 0.08 0 0.010 5.67 0.23 4 9.27

<DG> 0.14 = 0.05 6.7 + 4.5 0.021 + 0.002 422 + 027 2.71 + 0.95 368 + 1257¢ 10.10 = 0.10

<RDDG> 0.05 + 0.01 0.09 + 0.3 0.019 + 0.003 426 + 0.32 0.51 £ 0.04 —100 + 28 9.08 + 0.19

X-ray 0.41 24 0.24 5.00 3.34 841 9.29

BSPI-2

No. of terms 403 1069 1961 265

Ini 43.7 148 0.062 3.87 0.35 812 63.72

<SA> 0.10 + 0.02 10 £ 1.7 0.007 = 0.002 2.06 + 0.38 0.37 + 0.04 —180 = 10 11.80 + 0.21

SA 0.10 2 0.48 22.80 1.13 >10° 11.56

SAy 0.08 0 0.008 4.35 0.20 —a1 11.82

<DG> 0.17 = 0.02 13.2 + 3.4 0.020 + 0.003 430 + 0.28 3.07 = 0.62 776 + 669 11.57 + 0.13

<RDDG> 0.06 + 0.006 0.5 £ 07 0.021 = 0.002 4.18 + 021 0.73 + 0.06 —145 + 26 10.96 + 0.14

X-ray 0.32 22 0.015 3.33 1.73 -224 11.27

*The notation of the structures is the same as that in Table L.

"NOE,.m s is the r.m.s. difference (r.m.s.d.) between the calculated (ry) and target restraints, calculated with respect to the upper (r;) and lower limits (r,})

such that
[ry=r¥nl'? i r, > rf
rmsd. ={ 0 ifry<r, <rf

[(r,-j—r,'j)Z/n]”2 if ry < r,‘,I

NOE,, is the number of violations for which ry > (ry + 0.5 A). The interproton distance restraints for crambin, CPI and BSPI-2 are taken from Clore et
al. (1986a), (1987d) and (1987¢) respectively. In the case of crambin and CPI, the restraints include nine additional restraints for the three disulphide bridges
present in these two proteins. Distances involving methyl and methylene protons are calculated using centre averaging with the same corrections to the upper
limits of the target distances as that used in the essentially equivalent pseudo-atomn representation (Wiithrich er al., 1983).

“The van der Waals energy is calculated using the Lennard—Jones potential and parameters in the CHARMM empirical energy function (Brooks et al., 1983).
Note that this energy term is not included in the target function (cf. equation 1) whose global minimum is searched by simulated annealing. The only non-
bonded contact term present in the target function is a hard-sphere repulsion term (cf. equation 5).

%The van der Waals energy for the <DG> structures of CPI range from —67 to 4248 kcal/mol.

cycles required). If at this stage there are still violations in class
long, failure of convergence is presumed and the calculation
comes to a complete halt. If, on the other hand, there are no
violations in class long, the NOE restraints are once again
reclassified between classes short and final at 10 A in order to
place all the NOEs into the final class. This is followed by Phase
2 of the annealing protocol which comprises 20 cycles of 100
steps of annealing at 300K. The velocities are rescaled to 300K
after every cycle and the force constant k; for the repulsion
target function F, (cf. equation 5) is increased in steps of 0.2
from an initial value of 0.4 kcal/mol/A? to a final value of
4 kcal/mol/ A2, The values of the hard sphere atom radii are set
to 0.8 times their Lennard —Jones values (i.e. s = 0.8 in equation
5). The resulting values are approximately the same as those used
in the various distance geometry programs. The value of 4 kcal/
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mol/ A? for the force constant &, was found to be sufficient to
ensure that no close non-bonded contacts occur. Finally, Phase
2 is followed by 200 steps of restrained Powell minimization to
complete the simulation.

Calculations on crambin, CPI and BSPI-2

The calculations on crambin, CPI and BSPI-2 (the 64-residue
proteolytic fragment comprising residues 20—83) were carried
out starting from an extended 8-strand (r.m.s. atomic difference
of ~38 A, ~33 A and ~58 A from the respective crystal
structures) using the same NOE distance data set that was
employed in our previous studies (Clore et al., 1986a, 1987d,e).
In the case of crambin the NOE data set consisted of 240 inter-
proton distances derived from the crystal structure (Hendrickson
and Teeter, 1981), while for CPI and BSPI-2 they comprised
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Fig. 4. Atomic r.m.s. distribution of the backbone (C, C*, N, O) atoms of the <SA > structures about the mean structure SA (A, C and E), and atomic
r.m.s. difference between the <SA> (®) and (SA)r (A) structures on the one hand and the corresponding X-ray structures on the other (B, D and F) for
CPI (A and B), crambin (C and D) and BSPi-2 (E and F). The filled-in circles (®) represent the average r.m.s. difference between the <SA> structures
and either the mean SA structure (A, C or E) or the X-ray structure (B, D and F), and the bars represent the standard deviations in these values. In the case
of CPI, the <SA> structures are best fitted to residues 2—39 of the mean SA structure (A) and to residues 2—38 of the X-ray structure (B); in the case of

BSPI-2 all the best fits are carried out with respect to residues 22 —83.

309 and 403 interproton distances, respectively, derived from
NOE measurements. The lower limit (r,}) for all the restraints
was 1.8 A, while the upper limits (ry) were set 10 2.7, 3.3 and
5A, corresponding to strong, medium and weak NOEs. Figure
3 shows the distribution of NOE violations in the initial structures
revealing violations up to 88, 125 and 203 A for CPI, crambin

and BSPI-2 respectively. Note that crambin and BSPI-2 exhibit
distinctive gaps in the distribution of the initial violations, while
CPI shows a continuum of violations. As a result, class short
is empty at several stages during the calculations in the case
of crambin and BSPI-2, indicating that local convergence has
occurred. For CPI, on the other hand, long-range NOE restraints
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Fig. 5. (A) Best-fit superposition of the backbone (C, C*, N) atoms of the nine converged SA structures of crambin; (B) best-fit superposition of the
backbone (C, C%, N, O) atoms of the (SA)r structure (thick lines) with the X-ray structure of crambin (thin lines). The three-picture siereo system used in
this figure enables readers with both natural and cross-over stereo vision to view the images. For normal vision, select the left and centre images; for cross-
over vision, use the centre and nght images.

are taken into class short during almost the entire course of the
calculations. In the case of distances involving methyl and methyl-
ene protons, the NOE target function Fyog was calculated using
<r.> centre averaging with the same corrections of the upper
limits of the target distances used in the equivalent pseudo-atom
representation (Wiithrich er al., 1983). An additional nine
restraints were included for the three disulphide bonds present
in crambin and CPI. (Note for each disulphide bridge there are
three distance restraints, S;—S;, S;—C? and S;—C”; whose target
values were set t0 2.02 % 0.02, 2.99 + 0.5 and 2.99 = 0.5
A respectively.) These disulphide bridge restraints are treated
in exactly the same manner as the interproton distance restraints.

A total of 13 calculations were carried out for crambin, 10
for CPI and 10 for BSPI-2, differing in the values of the random
number seed used for the assignment of the velocities at 1 = 0
ps and for the partial rerandomization of velocities during the
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course of the simulations. Nine of the crambin calculations, eight
of the CPI ones and five of the BSPI-2 ones converged to similar
final structures with an average backbone (N, C*, CO, O)
atomic r.m.s. difference between them of 2.2 + 0.3,2.4 + 0.3
and 2.5 + 0.2 A respectively (Table I), all of which satisfied
the experimental restraints within the errors specified (Table II).
This success rate is comparable in our experience with that
obtained for these proteins with the metrix matrix distance
geometry program DISGEO (Havel, 1986) and significantly
higher than that obtained using the restrained molecular dynamics
protocols used previously in our model crambin calculations
(Clore et al., 1986a; Bringer et al., 1986; G.M.Clore, M.Nilges
and A.T. Briinger, unpublished data). Typical computing times
per simulation were ~1 h for CPI, ~1.5 h for crambin and
~4 h for BSPI-2 on a CONVEX-C1XP computer. Plots of
atomic r.m.s. difference as a function of residue number between
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Fig. 6. (A) Best-fit superposition of the backbone (C, C®, N) atoms of the eight converged SA structures of CPI; (B) best-fit superposition (residues 2-38) of
the backbone (C, C%, N, O) atoms of the (SA)r structure (thick lines) with the X-ray structure of CPI (thin lines). The three-picture stereo system used in this
figure enables readers with both natural and cross-over stereo vision to view the images. For normal vision, select the left and centre images; for cross-over

vision, use the centre and right images.

the individual converged <SA > structures and the mean SA
structure derived by averaging their coordinates are shown in
Figure 4, and stereoviews of best-fit superpositions of the con-
verged <SA > structures are shown in Figures 5—7.

From the atomic r.m.s. distribution of the < SA > structures
(Table I) it is clear that the size of the conformational space
sampled by simulated annealing is comparable with that sampled
by restrained molecular dynamics and slightly larger than that
sampled by metric matrix distance geometry. Although all the
simulated annealing calculations start off from the same initial
structure, it must be emphasized that varying the random number
seed used in the assignment of the initial velocities ensures that
different convergence pathways are followed such that the dif-
ferent trajectories do not possess any common intermediate struc-
tures. That is to say that during the initial stages of the simulation
the different trajectories diverge. In the case of the crambin
trajectories the maximum average and maximum absolute back-
bone atomic r.m.s. differences are 5.4 and 8.1 A respectively.
As the simulation proceeds, and more and more NOEs are satis-
fied, so convergence between the different trajectories gradually
occurs. This is illustrated in Figure 8. One cannot expect the
trajectories, however, to diverge to the extent that the distribution
of the structures between the different trajectories would be totally

random (with an expected mean backbone atomic r.m.s. differ-
ence of ~10 A for a protein the size of crambin; Cohen and
Sternberg, 1980). The reason for this is twofold. First, local
convergence, driven by the short-range NOEs, occurs from the
beginning of the calculations. Second, the structures have a
tendency to stay extended in the absence of tertiary folding forces

(i.e. the long-range NOEs) due to their intrinsic inertia (arising -

from the fact that the masses of the atoms enter explicitly into
the calculations; cf. equation 2). Nevertheless, we feel that this
does not introduce any significant bias into the end result, par-
ticularly as misfolding can also occur, and in our view it is equi-
valent to using a set of randomly chosen initial structures in static
real space methods (Braun and Go, 1985; Billeter ez al., 1987).

The non-bonded contacts in the converged structures are all
good, as evidenced by negative values for van der Waals energy
calculated using the CHARMM empirical energy function (Table
IT). Indeed they are comparable with those of the restrained
molecular dynamics structures. Thus, our choice of a final van
der Waals radius, a factor of 0.8 smaller than the one used to
compute the Lennard —Jones van der Waals energy, is completely
reasonable. Further, these results suggest that the converged
<SA> structures do not require any further refinement by
restrained molecular dynamics. In this respect, we note that the

35

2102 ‘L2 Ydre |\ uo /(JBJC]H Ul[eaH Josenliisu| euoieN e /610'3|eu1no[p10;xosp9d//:d11q wioJj papeojumoq


http://peds.oxfordjournals.org/

M.Nilges et al.

Fig. 7. (A) Best-fit superposition (residues 22 —83) of the backbone (C, C”, N) atoms of the five converged SA structures of BSPI-2; (B) best-fit
superposition (residues 22—83) of the backbone (C, C%, N, O) atoms of the (SA)r structure (thick lines) with the X-ray structure of BSPI-2 (thin lines). The
three-picture stereo system used in this figure enables readers with both natural and cross-over stereo vision to view the images. For normal vision, select the

left and centre images; for cross-over vision, use the centre and night images.

non-bonded contacts in the metric matrix distance geometry
structures are considerably poorer, insofar as the van der Waals
energies tend to be large and positive, and are only improved
by additional restrained molecular dynamics refinement.

The converged <SA > structures are all reasonably close to
the respective X-ray structures with an average backbone atomic
r.m.s. difference of 2—2.5 A (Table I). Averaging the structures
results in mean structures that are close to their respective X-ray
structure than any of the individual <SA > structures. The same
is true of the metric matrix distance geometry and restrained
molecular dynamics structures. Interestingly, the r.m.s. differ-
ences between the mean structures calculated by the three dif-
ferent methods are comparable with the difference between the
individual mean structures and the X-ray structures. The average
SA structures are clearly very bad both with respect to stereo-
chemistry and non-bonded contacts (Table IT). These are easily
corrected by 1000 cycles of Powell restrained minimization with
only minor accompanying atomic r.m.s. shifts to generate the
structures (SA)r (see Table I). In this procedure the restraints
force constant k; for the {inaf NOE potential Fyog is kept
constant at 60 kcal/mol/A?, the force constant k; for Frep is
multiplied by two every 20 cycles from an initial value of
0.2 kcal/ mol/A? to a maximum value of 4 kca]fmoLr‘Az, and
the hard-sphere van der Waals radii are kept constant at 0.8 times
their Lennard —Jones values. Best-fit superpositions of the (SA)r
and X-ray structures are shown in Figures 5 (crambin), 6 (CPI)
and 7 (BSPI-2).
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Examination of the radii of gyration indicates that the <SA>
structures, like the distance geometry structures, tend to be a little
expanded relative to the X-ray structure, whereas the restrained
dynamics structures tend to be compressed (Table IT). This is
due to the different representation of the van der Waals inter-
actions used in the different methods (i.e. simple repulsion terms
in the case of the simulated annealing and distance geometry
calculations compared with a full Lennard —Jones potential with
an attractive component in the case of the restrained molecular
dynamics calculations).

Concluding remarks

In this paper we have shown that simulated annealing is an
effective method of determining three-dimensional structures on
the basis of interproton distance data. The present calculations
indicate that it is comparable in speed with distance geometry
calculations and significantly faster than restrained molecular
dynamics calculations employing a full empirical energy function.
This is largely due to the replacement of the non-bonded inter-
action potentials in the empirical energy function by a simple
van der Waals repulsion term. In addition, the agreement with
the experimental interproton distance restraints and the quality
of the non-bonded contacts exhibited by the converged SA struc-
tures is comparable with that of structures obtained or refined
by restrained molecular dynamics and significantly better than
that of structures obtained by metric matrix distance geometry
calculations alone (see Table II). Critical to the success of the
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method is the protocol employed, in particular the way in which
the NOE distances are partitioned between different functional
forms.

At this stage we would not claim that the radius of convergence
of the simulated annealing method is any larger than that of the
various methods already published. Nevertheless, it forms a
useful addition to the arsenal of tools available to the NMR spec-
troscopist interested in solving three-dimensional structures of
proteins. This is particularly so as the convergence properties
of the various methods are likely to be dependent on both the
nature of the structure being solved and the extent of the experi-
mental data at hand.
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