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data with backbone residual dipolar couplings, sparse 1HN-1HN 
NOE data9 or distance restraints extracted from remote homology 
models10 can extend the size limit of the de novo structure genera-
tion approach, but the steeply increasing computational cost with 
increasing protein size poses serious challenges.

Here we introduce a more direct approach for integrating 
chemical shift and sparse NOE data into existing, powerful  
comparative modeling algorithms. We modified the Rosetta  
comparative modeling method, RosettaCM11,12, to take advantage  
of the NMR data when filling in the missing parts and for  
energetically refining the final structures. Comparative modeling  
of a protein structure from a sequence principally consists of 
two steps: first, finding related templates from known structures  
that have some sequence similarity to the query sequence and 
optimally aligning the query sequence with the sequence of the 
templates, and second, generating full 3D models guided by  
information from the aligned templates.

Best alignment between two sequences is usually obtained 
through optimization of an alignment scoring function consisting  
of two components: a matrix of pairwise substitution scores for 
matching each residue in the database protein to every residue 
in the query sequence, and a gap penalty function. Once an  
optimized scoring function has been obtained, efficient dynamic 
programming is used to search for the optimal alignment between 
any pair of sequences. Many excellent comparative modeling 
methods are available, including the widely used MODELLER 
program13 and I-TASSER14.

Backbone torsion angles are encoded in NMR chemical shifts, 
and even though they are strictly local in character and often not 
unique, these chemical shifts contain far more information about 
structural homology than sequence alone. Much of the success of 
the popular chemical shift–based Rosetta (CS-Rosetta) method 
stems from the fact that chemical shifts facilitate the finding  
of structurally homologous peptide fragments in the protein  
structure database (PDB)7,15.

The protocol we introduce here relies on a novel chemical 
shift–guided protein-alignment procedure, POMONA (protein 
alignments obtained by matching of NMR assignments), fol-
lowed by adaptation of RosettaCM12 to take advantage of the 
available chemical shifts. In the first step in the POMONA-based 
CS-RosettaCM structure-determination protocol (Fig. 1a), 
experimental 13Cα, 13Cβ, 13C′, 15N, 1Hα and 1HN chemical shifts 
are analyzed to generate a φ/ψ probability map for each residue. 
This map, calculated using the neural network–based TALOS-N  
program16, assigns a normalized probability to each 20° × 20° 
voxel of the Ramachandran map. POMONA uses these residue-
specific Ramachandran probability maps to search the PDB 
for structures that are compatible with these φ/ψ probabilities, 
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We describe an approach to the structure determination of  
large proteins that relies on experimental NMR chemical 
shifts, plus sparse nuclear Overhauser effect (NOE) data if 
available. Our alignment method, POMONA (protein alignments 
obtained by matching of NMR assignments), directly exploits 
pre-existing bioinformatics algorithms to match experimental 
chemical shifts to values predicted for the crystallographic 
database. Protein templates generated by POMONA are 
subsequently used as input for chemical shift–based Rosetta 
comparative modeling (CS-RosettaCM) to generate reliable  
full-atom models.

High-resolution protein structures, obtained by either X-ray 
crystallography or NMR spectroscopy, are available for only a 
small fraction of all known proteins. Computational methods are 
commonly used to model structures for the remainder. Current 
protein-structure prediction methods can be broadly separated 
into two classes: comparative modeling and de novo methods. 
Comparative modeling methods rely on detectable similarity 
between the query sequence and at least one protein of known 
structure and can be used to generate models for all proteins in 
a family using a single representative structure as the starting  
point1,2. De novo methods, which use only the amino acid 
sequence and no structural template, rely on an effective con-
formation-searching algorithm and good energy functions and 
can be used to build structural models from scratch. However, 
because of computational bottlenecks in the sampling of a  
conformational space that increase exponentially with the number 
of residues, this method remains restricted to small proteins3.

NMR chemical shifts of proteins encode important structural 
information and are obtained at the early stage of any NMR 
structural study, even for large proteins4. It has long been recog-
nized that integration of these data or other very limited, ‘sparse’ 
restraints into structural modeling can be highly beneficial5. This 
idea led to the development of powerful and popular de novo 
protein-structure prediction programs, including CHESHIRE6, 
CS-Rosetta7 and CS23D8, which can generate good-quality,  
all-atom models for proteins with up to approximately 125 resi-
dues and a variety of folds. Supplementing the input chemical shift 
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allowing for gaps and inserts in the residue sequence. After an 
automated clustering and selection procedure, the representative  
homologs identified by POMONA are used as structural tem-
plates for a modified comparative modeling protocol, based 
on the RosettaCM program12, to generate all-atom structures. 
Further details are presented in the Online Methods.

To evaluate POMONA’s accuracy and coverage, we relied on 
the widely used MaxSub score17, which ranges from 1.0 for two 
aligned structures that have a Cα r.m.s. deviation of 0 Å for the 
full length of the query sequence to ~0.0 for sequences that lack 

detectable similarity. Typically, a MaxSub score greater than 
~0.3 is indicative of notable structural similarity (Fig. 2a and 
Supplementary Fig. 1).

When one is evaluating the performance of POMONA in  
identifying suitable homologous structures in the PDB, a key 
question is, “How many suitable structures exist?” This can be 
answered with the program DALI, which is designed to identify 
structurally similar proteins, regardless of residue sequence18.  
A comparison of DALI alignments and POMONA-identified 
structural homologs was carried out for a set of 16 test proteins  
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Figure 1 | POMONA–CS-RosettaCM structure  
generation. (a) Flowchart of the POMONA– 
CS-RosettaCM structure-generation protocol.  
(b–e) Results of POMONA–CS-RosettaCM structure  
generation for four representative test proteins: NSP1, sensory rhodopsin, Maxacal and maltose-binding protein (MBP). (b) For each of the test proteins, 
the POMONA alignment scores (H′; equation (10) in Online Methods) of the top 1,000 protein chains in the PDB are plotted versus the Cα r.m.s. deviation, 
calculated over the aligned residues between the query and the database protein. Gray and black dots correspond to sequence identities of <20% and 
≥20%, respectively, between the query and database protein. After clustering analysis for the alignments with <20% sequence identity, alignments 
contained in the ten highest-scoring clusters were marked according to cluster number (red, purple, blue, magenta, light blue, yellow, cyan, orange, gray 
and brown open circles for clusters 1–10, respectively). Only the two highest-scoring alignments from each of these ten clusters were used as structural 
templates for CS-RosettaCM modeling. (c) ROSETTA all-atom energy, including the experimental chemical shift score, for the CS-RosettaCM models versus 
their Cα r.m.s. deviation relative to the experimental structure. Colors correspond to those of the starting template (b). For comparison, the horizontal 
line and the graph at the bottom of each plot represent the lowest Rosetta all-atom energy and the normalized number of structures, respectively, 
obtained by CS-Rosetta. (d) Same as c but for POMONA–CS-RosettaCM modeling including additional sparse 1H-1H NOE data. (e) Ribbon models of the 
lowest-energy CS-RosettaCM structure (red) (calculated without sparse NOEs) superimposed on the corresponding experimental structure (blue).
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Figure 2 | Comparison of protein-structure 
alignments obtained by different methods for 
the 16 proteins listed in Table 1. (a) Histogram 
of protein-structure alignment quality, 
represented by a MaxSub score, for the top 1,000 
alignments identified by POMONA (red bars),  
the sequence alignment method HHsearch  
(black bars) and the structure alignment method 
DALI (blue bars). Results are shown only for  
PDB proteins with <20% sequence identity  
to the target protein, and DALI and HHsearch 
results correspond to default thresholds  
of Z ≥ 2 and probability ≥ 10%, respectively, used by these programs to identify homologs. The DALI histogram indicates the limit of how well any  
search program could possibly function. Positive POMONA alignments are taken from the top ten clusters (red bars) within the top 1,000 alignments 
(red + pink bars), as identified by the highest H′ score (equation (10) in Online Methods). (b) Comparison of alignment quality obtained via DALI and 
POMONA methods. For each of the positive alignments identified by both DALI and POMONA, the MaxSub scores are compared, with color representing 
sequence identity to the query protein (gray, ≥30%; blue, 20%–30%; red, <20%) as observed in the DALI alignments. The diagonal line represents the 
approximate limit for the MaxSub score that could potentially be reached for any pair of proteins.
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with available chemical shift information and representing 
a diverse set of folds (Table 1). This comparison showed that 
POMONA-identified structural homologs approached the  
maximum attainable alignment (or MaxSub score) provided 
by the DALI method (Fig. 2b), performing much better than 
sequence-based alignment by, for example, the powerful HHsearch 
method19 (Supplementary Fig. 2).

The quality of POMONA alignments roughly correlated 
with the alignment score (Fig. 1b and Supplementary Fig. 3). 
However, there also was considerable scatter in this correlation, 
which meant that we could not simply use the top POMONA 
alignments as starting templates for CS-RosettaCM. Instead, 
we found it important to generate a diverse pool of structure  
templates by subjecting the top-scoring alignments to a clus-
ter analysis and retaining only the two top-scoring alignments 
in each of the first ten clusters (Online Methods). For most of 
our 16 test proteins, the highest MaxSub score observed for this  
subset of up to 20 members was comparable to that obtained for 
the top 1,000 positive alignments (Table 1). For all but one of 
the 16 proteins, the best alignment in the selected representative 
alignments had a MaxSub value in the range of 0.25–0.69, making 
them useful structural templates for structure generation. Only 
for protein Mad2 did POMONA fail to find a suitable template. 
DALI found three suitable templates for Mad2 in the database, but 
all contained large gaps (>100 residues), preventing their identi-
fication by POMONA.

For four representative cases, we plotted the database proteins 
corresponding to the top 1,000 POMONA-derived alignment 
scores against their Cα r.m.s. deviation relative to the experimental  
reference structure (Fig. 1b). For comparison, POMONA hits for 
more homologous proteins (≥20% sequence identity) were included 
in the plot, but these were not used in our study, as they typically 
can be identified by standard homology search programs.

When the two highest-scoring members of each cluster were 
subjected to the CS-RosettaCM protocol, a clear correlation was 
seen between the lowest total all-atom energy reached for each 
cluster and the Cα r.m.s. deviation (Fig. 1c). Even though for all 
four proteins the highest POMONA alignment scores were com-
parable between the top clusters, the clusters that had the lowest 
Cα r.m.s. deviation relative to the native structure refined to lower 
total energy during CS-RosettaCM modeling. Correspondingly, 
the lowest-energy CS-RosettaCM models provided the best match 
to the query protein. However, because it is by no means guaran-
teed that a correct solution can be found, especially when there 
are no proteins with a similar fold in the database (e.g., as for 
Mad2, mentioned above), it is useful to compare the total energy 
with what can be achieved with the standard CS-Rosetta protocol. 
CS-Rosetta will typically fail for large proteins, and a requirement 
for accepting a CS-RosettaCM structure therefore is that the total 
energy, including the chemical shift scoring term, falls well below 
the lowest values obtained by CS-Rosetta. A second requirement 
for acceptance is that the ten lowest-energy structures have  
converged—that is, they cluster within a Cα r.m.s. deviation  
normalized for 100 residues of ≤2.5 Å from their average.  
We used both requirements to inspect all 16 proteins tested in 
our study (Table 1).

Immediately after backbone resonance assignment, it is usually 
straightforward to rapidly assign a limited number of unam-
biguous backbone 1HN-1HN NOEs. These sparse NOEs can be 
exploited both for guiding POMONA alignment and as restraints 
during CS-RosettaCM modeling. To evaluate their utility, we gen-
erated two sets of such artificial HN-HN NOE distance restraints 
by randomly selecting N/10 such distances from the total set that 
were ≤5 Å in the experimental structure and at least five resi-
dues apart in sequence, where N is the total number of residues 
in the protein. In practice, a somewhat larger number of such 

Table 1 | Performance of POMONA alignment and CS-RosettaCM structure generation for 16 test proteins

Protein name Sizea
PDB/BMRB 
numberb Fold

Homologs and alignments CS-RosettaCM CS-Rosetta

DALIc POMONAd r.m.s. deviationmean
e r.m.s. deviationexp

e r.m.s. deviationexp
e

NSP1 113 2gdtA/7014 α/β 2/0/2 (0.50) 0.30/0.30 2.18 ± 0.63 3.30 ± 0.73f 12.1 ± 1.3
HR2876B 117 2ltmAb/18489 α/β 2/4/75 (0.47) 0.41/0.41 2.89 ± 0.72 4.21 ± 0.55 6.41 ± 2.76
YR313A 119 2ltlAb/18487 α/β 1/2/52 (0.45) 0.26/0.25 1.60 ± 0.27 3.67 ± 0.45 2.80 ± 0.68g

OR36 134 2lciAb/17613 α/β 4/5/799 (0.50) 0.36/0.34 2.19 ± 0.73 4.32 ± 0.56 3.05 ± 0.35
OR135   83 2ln3Ab/18145 α/β 1/1/651 (0.70) 0.52/0.40 1.35 ± 0.49 1.88 ± 0.42 1.21 ± 0.13f

HR2876C   87 2m5oAb/19068 α/β 4/4/723 (0.57) 0.35/0.33 1.77 ± 0.27 2.24 ± 0.42 1.17 ± 0.20f,g

MTH1958 153 1tvgA/6344 β 5/14/147 (0.76) 0.53/0.51 1.30 ± 0.18 2.35 ± 0.17f 10.4 ± 4.9
SgR145 173 3merA/16806 α/β 3/43/896 (0.72) 0.66/0.52 2.30 ± 0.58 3.05 ± 0.74 8.2 ± 2.8
Fgf2 125 1basA/4091 β 262/23/449 (0.83) 0.74/0.65 1.06 ± 0.18 1.56 ± 0.19f 11.7 ± 1.5
tpx 167 2jszAb/15797 α/β 49/376/389 (0.70) 0.69/0.68 1.60 ± 0.23 2.32 ± 0.22f 17.7 ± 2.0
YwIE 150 1zggA/6460 α/β 17/66/308 (0.65) 0.69/0.69 1.19 ± 0.18 1.86 ± 0.23f 11.0 ± 3.7
FluA 184 1n0sA/5756 β/α 11/38/413 (0.63) 0.51/0.51 2.01 ± 0.49 3.46 ± 0.34f 8.5 ± 1.5
Mad2 196 1go4C α/β 42/10/3 (0.44) 0.13/0.11 12.74 ± 4.45 19.81 ± 1.01 15.8 ± 2.6g

Sensory rhodopsin 222 2ksyAb/16678 α 23/153/149 (0.64) 0.62/0.62 2.32 ± 0.43 3.09 ± 0.51f 17.8 ± 3.5
Maxacal 269 1svnA α/β 273/79/4 (0.51) 0.50/0.50 3.29 ± 0.57 4.51 ± 0.85f 19.4 ± 2.6
MBP 370 1dmbA α/β 276/31/182 (0.52) 0.52/0.51 2.73 ± 0.50 4.24 ± 0.73f 26.3 ± 2.1
BMRB, Biological Magnetic Resonance Data Bank. 
aNumber of residues. bThe PDB code for proteins with an NMR-derived structure as the reference. cNumber of alignment hits with sequence identity of ≥30%, 30%–20% and <20%,  
respectively, and a minimum alignment length of at least 2/3 of the total number of target residues; the highest MaxSub value observed for the alignments with a sequence identity  
of <20% is listed in parentheses. dHighest MaxSub value observed among all top 1,000 POMONA alignments (sequence identity of <20%) and among the up to 20 templates used for  
subsequent CS-RosettaCM modeling. eCα r.m.s. deviation value calculated for all nonflexible residues (as identified by a random coil index order parameter (S2) ≥ 0.6 (ref. 20)).  
r.m.s. deviationmean is the Cα r.m.s. deviation between the ten lowest-energy models and their mean coordinates. r.m.s. deviationexp is the Cα r.m.s. deviation between the ten lowest-energy 
models (derived using database proteins with sequence identity <20%) and the experimental reference structure. fCS-RosettaCM and CS-Rosetta structures that met the acceptance criterion  
(Online Methods). To convert a calculated r.m.s. deviation value to its corresponding r.m.s. deviation value at 100 residues (r.m.s. deviation100, used in our work to evaluate convergence  
(Online Methods)), r.m.s. deviation100 = r.m.s. deviation/(1 + ln(N/100)), where N is the number of residues of the protein. gCS-Rosetta models with a lower Rosetta energy than obtained  
with the POMONA–CS-RosettaCM approach.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



750  |  VOL.12  NO.8  |  AUGUST 2015  |  nature methods

brief communications

NOEs is often obtained, particularly in work with perdeuterated  
proteins4. The inclusion of sparse NOEs enables POMONA to 
find improved alignments, resulting in better convergence and 
lower energies during the subsequent CS-RosettaCM modeling 
stage (Fig. 1d and Supplementary Table 1).

Whereas conventional CS-Rosetta approaches its convergence 
limits for proteins larger than about 100 residues, CS-RosettaCM 
remains robust in generating converged results, largely because it 
is inherently a comparative modeling method. Note, however, that 
the POMONA–CS-RosettaCM protocol is not aimed at reaching 
maximum convergence; rather, the clustering approach used by 
POMONA emphasizes diversity in the input templates to avoid 
false convergence to a wrong solution. As a result, the conver-
gence rate for small structures can actually be higher for standard  
CS-Rosetta than for our new protocol.

For proteins larger than approximately 20 kDa, standard protein 
NMR structure determination typically remains quite labor inten-
sive, even though chemical shift assignment and the collection of 
amide-amide NOEs are relatively straightforward. Considering 
that similar structures are already present in the PDB for ~90% 
of the newly deposited structures, we believe that the POMONA–
CS-RosettaCM approach could dramatically reduce the workload 
required for protein-structure determination while extending the 
size of proteins that can readily be studied by NMR. The approach 
will fail, however, when no adequate structural template exists in 
the PDB, or when the only good potential templates have large 
alignment gaps.

Finding suitable templates is an efficient process that can be 
completed in a matter of hours, but subsequent CS-RosettaCM 
modeling is far more computationally intensive. Nevertheless, 
when suitable input templates are used, CS-RosettaCM does not 
suffer from the combinatorial explosion that restricts conventional 
Rosetta and CS-Rosetta applications. For large, multidomain  
proteins, it is important to note that the NMR chemical shifts 
do not contain information on relative domain orientation or  
position, and that this information stems strictly from the PDB 
template used for modeling. However, the measurement of resid-
ual dipolar couplings is often straightforward for larger systems 
and can be readily integrated into the modeling procedure to 
resolve such issues.

The POMONA software and server are at http://spin.niddk.nih.
gov/bax/software/POMONA.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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As seen in equation (1), our local structure-similarity score 
between residues i and j includes terms for its two immediate 
neighbors, that is, between residues i – 1 and j – 1 and between 
residues i + 1 and j + 1. The weights wtorsion and wSS of these 
terms have been optimized empirically, together with other para
meters used by the POMONA alignment method, such that the  
calculated substitution scores S(i,j) range from −2.0 to 3.0. The 
maximum contribution to S(i,j) from residue-type similarity 
(term 2 in equation (1)) is less than approximately 10% when 
chemical shifts are available. For query residues that lack chemical  
shifts, only the sequence similarity and secondary-structure 
matching term in equation (1), with a comparable weight,  
are used to calculate an S(i,j) score, which is then scaled to the 
same range of −2.0 to 3.0.

Gap penalty function used for protein alignment. An important 
element in evaluations of the alignment of two protein sequences 
is the concept of alignment gaps, or the presence of insertions or 
deletions in the sequence of either protein, which are counted as 
a penalty to the overall alignment score. For POMONA, a varied 
gap penalty (VGP) function23 with a conformation-specific form 
is used as outlined below.

For opening a gap that extends from positions i′ to i in the 
sequence of the query protein (referred to as the sequence block) 
and from j′ to j in the sequence of the database protein of known 
structure (referred to as the structure block), as illustrated below 
for an example of aligned segments,

i’          i
Sequence block:   KT-------LTG
Structure block: EKAPKARIG-DL

j’ 	     j

the varied gap penalty function G(i, j, i′, j′) of Madhusudhan  
et al.23 is used. 

G i j i j
l l

R u l l v
( , , , )

( )
′ ′ =

= ′ =
× + + ′ ×





0 0 0 and 
otherwise

l i i= − ′ −1

′ = − ′ −l j j 1

R W j j i i W D j jd= + × ′ + ′ + × ′1 HS HS HS[ ( , ) ( , )] ( , )

where l and l′ are the lengths of the insertions in the sequence and 
the structure blocks, respectively, v is the gap-extension penalty,  
u is the gap-opening penalty, and R is the function that modulates 
the gap-opening penalty depending on the secondary structure at 
the position of the insertion in the sequence and structure blocks. 
R is at least 1 and can be larger to make the opening of gaps more 
difficult in the following circumstances: within elements of regu-
lar secondary structure (helices or strands), and between two spa-
tially distant database residues. W denotes the weight of various  
properties in R. HS(i,i′) and HS( j,j′) are the consensus values 
for helical (or β-strand) content at position i in the sequence 
block and at position j in the structure block, respectively.  
The binary value of HS( j,j′) is either 1 or 0 depending on whether 

(3)(3)

(4)(4)

(5)(5)

(6)(6)

ONLINE METHODS
Measurement of local structure similarity. The optimal align-
ment between two protein sequences typically is based on a resi-
due-substitution score for all residue pairs of the two sequences. 
Such substitution scores, which normally are derived from 
the amino acid similarity scores, are then used for guiding the 
alignment procedure to find a set of aligned residues along two 
sequences that have an optimal overall alignment score. Unlike 
in sequence-based alignment, POMONA aims to align residues 
of a query protein with known NMR chemical shifts to residues 
of a database protein with known structure. Structural informa-
tion encoded in the NMR chemical shifts of the query protein, 
specifically the φ/ψ backbone torsion angles and the secondary 
structure predicted by TALOS-N16, is much more definitive than 
the amino acid type alone in searches for structural similarity 
between query and database proteins. Therefore, these backbone 
torsion angles and the secondary structure derived from chemical  
shifts are used as the main terms when substitution scores are 
derived for the alignment procedure.

In POMONA, a substitution score S(i,j) between residue i in the 
query protein and residue j in the database protein is defined as 

S i j w w B A
Di n k j n Di n

Di n
n

( , ) (, ( )
( )

, ,
= ++ + − +

+

−
∑torsion residues

1 0 1

ii j

i n j n
n

A

w P

, )

( , )
, ,

+ + +

−
∑ss SS SS
1 0 1

S(i, j) contains three terms: (1) The φ/ψ fitness score, which has 
a weighting factor wtorsion, reflects how well the angles of query 
residue i match to the observed φ/ψ angles of database residue j.  
Here, Di,k (k = 1–324) is the TALOS-N–predicted density of voxel 
k in the 324-voxel φ/ψ density map of query residue i, and k(j) 
is the index number in the 324-voxel Ramachandran map that  
corresponds to the φ/ψ angles of residue j of the database  
protein. One calculates the φ/ψ fitness score from Di,k(j) by first 
subtracting the average of the predicted densities <Di> and then 
normalizing according to the s.d., σ(Di), of the predicted densi-
ties, which then represents the likelihood that the φ/ψ torsion 
angles of residues i match those of j. (2) The amino acid similarity 
score between residue i (of amino acid type Ai) and residue j (of 
type Aj), B(Ai,Aj), is taken from the BLOSUM62 matrix21. (3) The 
third term is the secondary-structure similarity score between 
the TALOS-N–predicted three-state secondary structure SSi (H, 
E and L, respectively) for residue i and the observed secondary 
structure SSj (as assigned by the program DSSP)22 for residue j. 

P
i
ii j

i j

i j
( , )

( )
( )SS SS

conf SS SS
conf SS SS=

=
− ≠







where conf(i) is the confidence of the TALOS-N–predicted  
secondary structure SSi.

Note that terms 2 and 3 are the principal terms used in  
conventional, sequence-based homology search procedures. 
In our search, term 2 has a very low weight factor, and term 
3 is derived from experimental chemical shifts, which have 
been shown to considerably increase the accuracy of predicted  
secondary structures16.

(1)(1)

(2)(2)
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the conformation from positions j to j′ is helical (or β-strand). 
HS(i,i′) is a similar measure but is based on the TALOS-N–predicted  
secondary structure for query residues i′ to i. D( j,j′) is the  
value derived from the distance of the two database residues  
spanning the gap. 

D j j d d( , ) max( , )′ = −0 0
g

where d is the distance between Cα atoms at positions j′ and j in 
the structure block and d0 is an empirical constant of 6.5 Å. For 
less than 6.5 Å, there is no increase in the gap-opening penalty. 
The exponent γ was optimized by trial and error, and best values 
for all parameters (u = 3.0, v = 0.3, WHS = 1.0, Wd = 2.0, d0 = 6.5 
and γ = 2.0) were obtained by means of a grid search.

Protein-alignment algorithm. The problem of finding the opti-
mal alignment of two amino acid sequences has been extensively 
studied and most commonly is solved by means of a dynamic pro-
gramming algorithm24,25. POMONA essentially uses the standard 
Smith-Waterman dynamic programming algorithm23 to find the 
best alignment between a query protein with φ/ψ angle information  
derived from chemical shifts and a database protein of known 
structure. Specifically, given a query protein and a database pro-
tein of sequence lengths M and N, a substitution scoring matrix  
S of dimensions M × N is constructed. Each element of this scoring  
matrix S(i,j) (equation (1)) is derived from the local structural 
similarity between residue i in the query protein and residue j in 
the database protein. The aim is to align residues with matching 
local structure in the two proteins while optimizing the overall 
alignment score, which is a sum of the substitution scores of all 
aligned residue pairs (also referred to as equivalent residues) and 
gap penalties for residues lacking an equivalent residue in either 
sequence. The recursive dynamic programming equation used 
here for the local alignment of the two proteins is 

H i j H i j G i j i j S i jM i i N j j( , ) [ ( , ) ( , , , )] ( , ),= ′ ′ + ′ ′ ++ ≥ ′> + ≥ ′>Max 1 1

with the initial conditions for the recursion defined by  
H(M + 1, j) = 0 and H(i, N + 1) = 0, where M and N again are the 
sequence lengths of the query and the database protein, G is the 
VGP function (equation (3)), and S(i, j) is the residue substitution 
score for residues i and j in the query and the database proteins, 
respectively (equation (1)). The dynamic programming maximum 
scoring matrix H is calculated for i = M + 1 to 1 and j = N + 1 to 1.  
For each position [i, j] in H, all previously iterated positions [i′, j′], 
with i′ = [i + 1:M] and j′ = [j + 1:N], are evaluated for a maximum 
value based on the previously calculated H(i′, j′) value for position 
[i′, j′], using a gap penalty G(i, j, i′, j′) for opening a gap between 
positions [i, j] and [i′, j′]. After its residue substitution score S(i, j)  
has been added, this maximum value is assigned to the current 
position as score H(i, j). After the calculation of all elements of the 
H matrix, the largest element, referred to as max(H), will corre-
spond to the optimal alignment score. One can obtain the residue 
equivalence assignments by backtracking in matrix H, starting 
from the element with the max(H) score and ending with the 
first element of zero value24. Equivalent residues in this optimal 
alignment are further evaluated in terms of fitness between the 

(7)(7)

(8)(8)

experimental secondary chemical shifts (of the query residues) 
and those predicted by SPARTA+26 (for the database residues) in 
terms of a χ2 value. 

c d d sCS
obs pred2 2 2= −∑∑ ( ) /, , ,

[ , ]
k i k j k j

i jk

where dk j,
pred is the backbone chemical shift predicted by SPARTA+

(k = 13Cα, 13Cβ, 13C′, 15N, 1Hα and 1HN) for a given database 
residue j, which is aligned to query residue i with experimental 
chemical shift dk i,

obs , and σk,j is the uncertainty of dk j,
pred reported

by SPARTA+. This cCS
2  value, after being scaled by a factor 

c = 1/30, is then added to the optimal alignment score as a penalty 
to derive a final alignment score for any given alignment of 

′ = − ×H H cmax( ) cCS
2

Structure alignment with additional NOE data. Some types of 
NOE data, in particular HN-HN NOEs, often can be obtained 
relatively easily and unambiguously once the backbone amide 
signals have been assigned, even for large perdeuterated proteins. 
Unfortunately, there is no straightforward method for directly 
integrating such sparse NOE distance information into the Smith-
Waterman algorithm. However, the typically very sparse NOE 
data can be useful to aid the above-described chemical shift–
guided POMONA protein-alignment scheme if one pre-filters 
possible solutions on the basis of these distance constraints and 
subsequently evaluates these possible matches using the above-
described algorithm to generate optimally aligned sequences. The 
NOE-guided part corresponds to the general problem of finding 
the optimal alignment of protein-structure distance matrices (or 
protein contact maps)18,27,28, as both the NOEs detected for the 
query protein and the actual distances measured for the database 
protein can be converted to contact maps.

Here we used the method of Wohlers et al.28 to find the optimal 
overlap between two contact maps derived from the query and the 
database protein. For the query protein with a NOE list (NOE), a 
contact map X of size M × M is constructed. 

X i i
i i

( , )
( , )

′ =
′ ⊂




1
0

if NOE
otherwise

where i and i′ = [1, . . ., M] and M is the size of the query protein. 
For the database protein, an analogous contact map Y of size N 
× N is constructed. 

Y j j
d j j

( , )
( , ) .

′ =
′ ≤






1 6 5
0

Å
otherwise

where j and j′ = [1, . . ., N], N is the size of the database protein, 
and d(j, j′) is the actual HN-HN distance between residues j and  
j′ in the database protein. Contacting residues i and i′ with  
X(i, i′) = 1 and j and j′ for Y(j, j′) = 1 are stored as lists x and y, 
respectively. Optimal alignment then corresponds to finding a 
maximum set of matching [ik, jk] pairs (k = 1 to L, ik  x and jk  y,  
where L is the lesser of the two numbers of contacting residues, 
usually the size of list x) between the pairs of contacting residues 

(9)(9)

(10)(10)

(11)(11)

(12)(12)
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in the query and database proteins. The largest set of common 
contacts is based on the objective function 

f X Y C i j i jr r s s
s L r sr L

( , ) max [ , ],[ , ]
,

= ( )










≤ ≤ ≠≤ ≤
∑∑

11  

C i j i j
X i i Y j j

r r s s
r s r s([ , ],[ , ])

( , ) ( , )
=

= =



1 1 1
0

and
otherwise

After the optimal match between the query and the database con-
tact maps has been found, the second step of the structure align-
ment, based on chemical shift data, is restricted to the regions 
identified by this optimal contact map. For the query and the 
database proteins with a set of optimally aligned contacting 
residues [ik, jk], where k = 1 to L, ik  x and jk  y, ik < ik+1 and  
jk < jk+1, the query and the database sequences are divided into 
L – 1 fragment pairs, each of which has a range from ik to ik+1 
and from jk to jk+1, respectively. The above-described POMONA 
protein-alignment scheme is then applied for each possible 
pair of query fragment (ik, ik+1) and database fragment (jk, jk+1)  
[k = 1 to L – 1], now using equation (1) as the scoring term. The 
final overall alignment is then obtained through combination of 
each of the ‘subalignments’, and the final alignment score is taken 
as the sum of the POMONA alignment scores from each of the 
subalignments, augmented by the penalizing, scaled chemical 
shift fitness score cCS

2  (equation (9)).

Training and testing of POMONA. We obtained values for the 
parameters used by POMONA iteratively by evaluating the out-
put results for a set of 16 test proteins of varying size and fold 
complexity (Table 1). POMONA was used to find optimal align-
ment between a test protein and each of approximately 252,000 
protein chains in the PDB. POMONA initially retained the 1,000 
PDB protein chains that exhibited the highest alignment scores. 
We performed parameter optimization of POMONA iteratively 
by monitoring the top 1,000 selected proteins in terms of (1) the 
ratio of the real structural homologs, as identified by the DALI 
structure alignment method18 with the actual structure of the 
target protein, and (2) the accuracy of the POMONA-identified 
alignment to the target protein, expressed in terms of a coordinate 
r.m.s. deviation value calculated between the Cα atoms of the 
equivalent residues in the target and database protein.

Evaluation of POMONA structure alignment. We evaluated 
the accuracy and coverage achieved by POMONA by using the 
MaxSub score17. We calculated the MaxSub score for two aligned 
structures (i.e., the query and database proteins) by first identifying  
the maximum substructure for which the distances between 
equivalent residues of two structures after superposition were 
below a threshold value of 3.5 Å and then computing a normal-
ized score of Σ[1/(1 + (di /3.5)2)]/N, where di are the distances 
between equivalent Cα pairs of two structures in the maximum  
substructure (after best-fit superposition of the Cα pairs in the 
maximum substructure) and N is the total length of the query 
sequence. The spatial information of the aligned structures out-
side the maximum substructure was not taken into account. 
MaxSub scores range from 1.0, for perfect alignment, to near zero 
for sequences lacking structural similarity. Two aligned structures 

(13)(13)

(14)(14)

with a 0-Å Cα r.m.s. deviation for half of the query sequence length 
and two aligned structures with a Cα r.m.s. deviation of ~3.5 Å for 
the full length of the query sequence will have the same MaxSub 
value of 0.5, and a score greater than ~0.3 is usually indicative 
of meaningful structural similarity (Fig. 2a and Supplementary 
Fig. 1). A detailed evaluation of the performance of POMONA 
structure alignment is included in the Supplementary Results.

Clustering and selection of POMONA alignments. Among the 
top 1,000 alignments identified by POMONA for any given query 
protein, there will be many that are very similar to one another. 
Therefore, before using these proteins as input for the time- 
consuming RosettaCM comparative modeling, it is useful to  
separate this set into a much smaller number of distinct clus-
ters (typically ten) and then use only the two best-scoring (see  
equation (10)) models in each cluster as RosettaCM input. 
Specifically, a hierarchical clustering procedure is used to group the 
top 1,000 database protein chains, using the normalized Cα r.m.s. 
deviation as a metric. The normalized Cα r.m.s. deviation between 
two database protein chains is calculated only over residues that 
are commonly aligned to a residue in the query protein (i.e., that 
do not correspond to inserts or gaps). Subsequently the Cα r.m.s. 
deviation is normalized to the r.m.s. deviation100 value29. A single-
linkage algorithm is used for generating the clusters with a cutoff 
of Cα r.m.s. deviation100 ≤ 4 Å, and results are sorted by the high-
est alignment score observed in each cluster. The ten clusters with 
highest alignment scores are retained, and the top two alignments 
(or one, if there is only a single member in the cluster) are selected 
as representatives from each of the first ten clusters. Therefore, 
up to 20 representative alignments are selected from the first ten  
clusters, and these are used to prepare a pool of structural  
templates for the subsequent RosettaCM modeling procedure.

Structure generation using CS-RosettaCM. The recent 
RosettaCM protocol12 offers a powerful comparative modeling 
module within the Rosetta software suite for generating accurate 
protein models. The inputs to RosettaCM comprise (1) sequence 
alignments between the query protein and database proteins that 
serve as structural templates and (2) standard Rosetta de novo 
modeling fragments, needed to model the unaligned regions and 
to explore deviations from the templates in the aligned regions. 
In our protocol, RosettaCM is used to build 3D protein models,  
starting from the up to 20 structural templates identified  
by POMONA.

The generation of complete, all-atom models involves three 
steps. First, RosettaCM assembles protein backbone topologies 
by recombining the aligned segments of the query protein and 
the database template in Cartesian space while building the una-
ligned regions de novo in torsion angle space. This process uses 
long fragments (corresponding to secondary-structure elements)  
derived from all template inputs and CS-Rosetta de novo  
fragments (with sizes of three and nine residues), respectively. In 
the standard RosettaCM implementation, these de novo fragments 
are selected on the basis of residue sequence, whereas in our work 
they were picked on the basis of the NMR chemical shifts, using 
the recently improved chemical shift–based Rosetta3 fragment 
picker15, again excluding all proteins with ≥20% sequence identity 
from the library. In the second stage, all broken backbone seg-
ments are closed by means of a standard loop-closure method that 
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combines fragment superposition and structure minimization. 
The probabilistic distance restraints derived from the alignments, 
used in standard RosettaCM30, are removed, but experimental 
NOE distance restraints, if available, are included during this 
stage. Third, the resulting backbone models are optimized using 
the final all-atom refinement step of standard CS-Rosetta7, but 
using the most recent parameter set (talaris2013.wts) for scoring 
the energy.

Selection of all-atom models using energies and chemical 
shifts. Using the above protocol, for each query protein, CS-
RosettaCM is parameterized to generate 500 all-atom models 
from each starting template, for a total of up to 10,000 models. 
Those models are further evaluated for fitness with respect to 
their experimental NMR chemical shifts using the same method 
developed for the standard CS-Rosetta protocol7. Specifically, for 
each all-atom model, a χ2 value is calculated between the experi-
mental chemical shifts and values predicted by SPARTA+26, and 
this value is added to the Rosetta all-atom energy. This chemical 
shift re-scored Rosetta all-atom energy is used to evaluate and 
select the final models.

Criteria for convergence and model acceptance. The ten models 
with the lowest chemical shift re-scored Rosetta all-atom energies 
are retained for inspection of their convergence relative to the 
lowest-energy model and are accepted as the predicted structure 
only if (1) these models cluster within less than 2.5 Å, in terms of 
Cα r.m.s. deviation100, from the model with the lowest energy, and 
(2) the average Rosetta energy of the ten lowest-energy models is 
at least two s.d. lower than that of the ten lowest-energy models 

obtained by standard CS-Rosetta (provided with the same inputs 
and the same all-atom energy scoring scheme).

Software availability. The POMONA software, including clus-
tering scripts, all required databases and a complete example 
for ubiquitin, together with the scripts used for the RosettaCM 
comparative modeling and structure-selection procedure, can be 
freely downloaded from http://spin.niddk.nih.gov/bax/software/
POMONA. A public Web server (http://spin.niddk.nih.gov/bax/
nmrserver/pomona) is also provided, but only for performing  
the less time-consuming POMONA alignment method for a  
protein with experimental chemical shift data. Such a search  
procedure typically takes approximately 0.5 h on a 10-CPU  
desktop work station. By default, this server also generates all 
inputs and scripts required for running the RosettaCM compara-
tive modeling structure generation. For this purpose, RosettaCM 
can be downloaded with the Rosetta Software Suite from http://
www.rosettacommons.org/software.
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