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Dissociation of the trimeric gp41 ectodomain at the
lipid—water interface suggests an active role in
HIV-1 Env-mediated membrane fusion
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The envelope glycoprotein gp41 mediates the process of mem-
brane fusion that enables entry of the HIV-1 virus into the host
cell. The actual fusion process involves a switch from a homotri-
meric prehairpin intermediate conformation, consisting of parallel
coiled-coil helices, to a postfusion state where the ectodomains
are arranged as a trimer of helical hairpins, adopting a six-helix
bundle (6HB) state. Here, we show by solution NMR spectroscopy
that a water-soluble 6HB gp41 ectodomain binds to zwitterionic
detergents that contain phosphocholine or phosphatidylcholine
head groups and phospholipid vesicles that mimic T-cell mem-
brane composition. Binding results in the dissociation of the 6HB
and the formation of a monomeric state, where its two a-helices,
N-terminal heptad repeat (NHR) and C-terminal heptad repeat
(CHR), become embedded in the lipid-water interface of the virus
and host cell. The atomic structure of the gp41 ectodomain mono-
mer, based on NOE distance restraints and residual dipolar cou-
plings, shows that the NHR and CHR helices remain mostly intact,
but they completely lose interhelical contacts. The high affinity of
the ectodomain helices for phospholipid surfaces suggests that
unzippering of the prehairpin intermediate leads to a state where
the NHR and CHR helices become embedded in the host cell and viral
membranes, respectively, thereby providing a physical force for bring-
ing these membranes into close juxtaposition before actual fusion.
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he first step of HIV infection involves fusion of the viral and
target cell membranes, a process mediated by the viral en-
velope glycoprotein Env, consisting of subunits gp120 and gp41
(1). The envelope proteins form a noncovalent complex on the
viral surface with the trimerized gp41 transmembrane subunit
sequestered by three gpl120 surface subunits (2-5). Binding of
gp120 to the cell surface receptors CD4 and chemokine receptors
CXCR4 or CCRS triggers a cascade of conformational changes
that disrupt the interactions between gp41 and gp120 and result in
an extended gp41 conformation (1, 6). In this extended prefusion
state, the highly hydrophobic N-terminal fusion peptide (FP)
of gp41 anchors in the host cell membrane, while being spatially
remote from its transmembrane domain (TM), which traverses
the viral membrane (7, 8). After the host cell and viral mem-
branes have fused, the gp41 ectodomain, which links the FP
and TM domains, has transitioned into a C3-symmetric six-helix
bundle (6HB), with the FP in physical proximity to the TM do-
main (9). The refolding of gp41 trimers into the highly stable
6HB arrangement is believed to overcome the large free-energy
barrier of membrane fusion. Several atomic resolution struc-
tures of the 6HB postfusion state have been solved by X-ray
crystallography, confirming that the C-terminal heptad repeat
(CHR) helices pack in an antiparallel manner into the con-
served hydrophobic grooves formed at the surface of the cen-
tral trimer of N-terminal heptad repeat (NHR) helices (10-12).
Contrary to the postfusion state, structural features of the
prehairpin intermediates of HIV-1 gp41 remain the subject of
much debate. The functional requirement that gp41’s fusion
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peptide engages the membrane of spatially distant host cells
dictates an extended conformation for the time point where FP
engages the membrane of the host cell. Cartoon models com-
monly depict this prehairpin intermediate as an extended trimer
of linear NHR and CHR helices (13-17). Recent cryo-EM studies
provide more detailed insights into the relatively subtle rear-
rangement of the trimeric helical NHR core, which is associ-
ated with rearrangements of gp120 relative to gp41 on receptor
activation of Env, that leads to the release of FP from its hy-
drophobic burial site at the gp41-gp120 interface (5, 18, 19).
Subsequent dissociation of the gp120 subunits leaves the gp41l
core in a state somewhat similar to the common cartoon models,
lacking the trimer-stabilizing interactions supplied by gp120.
Although it seems clear that, initially, gp41 directly engages
the viral and host cell membranes only by means of its TM and
FP domains, there is evidence that, subsequently, the NHR re-
gion also interacts directly with the membranes and actively
participates in the fusion process. In particular, the NHR-derived
peptide, N36, binds to both zwitterionic and negatively charged
phospholipid vesicles (20), whereas the N70 peptide, which
encompasses the FP and NHR domains, is four times more
fusogenic than FP alone for negatively charged membranes (21).
The latter result suggests that the NHR segment takes an active
role in destabilizing membranes and works synergistically with
FP to increase the efficiency of lipid mixing. In another elegant
set of experiments, Wexler-Cohen and Shai (14) showed that
NHR-mimicking peptides, designed to interfere with formation
of gp41’s 6HB state by competing with gp41 NHR insertion into
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the 6HB, have strongly increased inhibitory activity when they
carry a membrane-anchoring alkyl chain. Increased inhibition is
seen regardless of whether the alkyl chain is attached at the N or
C terminus of the NHR peptide, suggesting that the gp41 NHR
domain is embedded in the membrane surface. 6HB oligomers
formed by NHR- and CHR-derived synthetic peptides dissociate
in the presence of either zwitterionic or negatively charged
phospholipid vesicles (20, 22). This lipid binding property has
been postulated to facilitate membrane fusion by introducing an
additional destabilization of the viral and target cell membranes,
thereby lowering the free-energy barrier for fusion (23).

In the present study, we show that the 6HB complex formed by
an ectodomain that contains large segments of the NHR and
CHR helices, connected by a six-residue linker (Core®), dis-
sociates and forms stable monomers on binding to either dodecyl
phosphocholine (DPC) micelles or phospholipid vesicles of
a lipid composition that mimics the T-cell membrane. The tran-
sition from trimers to monomers is associated with a significant
decrease in a- hel1c1ty and also observed for a longer ectodomain
construct (Core'") that encompasses the native 1mmun0dom1nant
loop (IL) connecting the NHR and CHR helices. The Core®
construct was chosen for detailed characterization of the struc-
ture and dynamics of the gp41 ectodomain monomer in the pres-
ence of DPC micelles. An atomic structure determination by NMR
spectroscopy of the gp41 ectodomain monomer, based on residual
dipolar coupling (RDC) and NOE restraints, reveals a monomeric,
flexibly linked two-helical structure lying on the surface of the DPC
micelle without any specific interaction between the stable and well-
defined NHR and CHR helices. We propose that formation of this
lipid-bound state, where CHR embeds in the viral membrane and
NHR in the membrane of the host cell, provides the force for
pulling the two membranes into close juxtaposition, thereby priming
the system for membrane fusion. After fusion, close spatial prox-
imity between the opposite ends of the ectodomain then permits
their tight interaction, which is seen in 6HB crystal structures of the
full-length gp41 ectodomain (9).

Results

Secondary Structure and Oligomeric State of gp41 Ectodomain. We
expressed and purified a recombinant protein, CoreS, containing
the NHR and CHR segments connected by a 6-residue linker
(L6) (Fig. 14), which is known to form a stable 6HB homotri-
meric complex in aqueous solution (11). CD spectra of Core®
recorded at pH 4.0 show the characteristic signature of an
a-helical protein with a deep minimum at 222 nm (Fig. 1B),
corresponding to ca. 83% helical content. The addition of 10
mM DPC results in a 23% loss in helicity (Fig. 1B), indicating
a substantial structural perturbation of Core® on binding to
the DPC micelle. The same change of the CD spectrum is
observed when CoreS is mixed with dihexanoyl phosphatidyl-
choline (DHPC) micelles (Fig. S14), which contrasts with
virtually no change of the CD spectrum on addition of the de-
tergents 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-pro-
panesulfonate (CHAPSO) (Fig. S1B) or lauryl maltose neopentyl
glycol (MNG-3) (Fig. SlC) suggesting that the presence of phos-
pholipid head groups is 1mportant for the binding of Core®.

CD spectra of Core® were also recorded at pH 6.0, showing
the same decrease in helicity on addition of DPC at pH 4.0 (Fig.
S1E). Importantly, a very similar perturbation is observed when
Core” is mixed with vesicles known as LM3, which mimic the
T-cell membrane lipid composition (24) (Fig. S1D).

Using size-exclusion chromatography coupled to multiangle
light scattering, refractive index, and UV measurements (SEC-
MALS), we find that the secondary structure perturbation de-
scr1bed above is correlated with a change in the oligomeric state of
Core®. For a 5 uM protein solution in the absence of detergent
a single elution peak corresponding to the Core® trimer
(molecular mass = 30.6 kDa) is observed, which was expected for
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Fig. 1. Sequence and properties of gp41. (A) Schematic representation of

the gp41 sequence, including the FP, FPPR, NHR, IL, CHR, MPER, TM, and
intraviral C-terminal domain (CT). The constructs used in the present study
contain the NHR and CHR segments connected by either IL or L6. The
numbering 512-704 refers to the Env precursor sequence, whereas the 1-68
numbering is used for Core®. In addition, the Core® sequence contains four
extra residues (GSHM) at its N terminus, which correspond to an uncleaved
fragment of the original tag (S/ Materials and Methods). (B) CD spectra of
Core®, reported here as the mean residue ellipticity 103 degrees centimeter?
decimoles™ residue™"), were recorded in the absence of detergent (black)
and the presence of 10 mM DPC (red) at 310 K. (C) Molecular mass analysis of
Core® (including its N-terminal His-tag) (S/ Materials and Methods) in the
absence and presence of DPC as determined by SEC-MALS. The elution
profiles monitored by the absorbance at 280 nm are shown for the Core®
trimer (blue, 30.6 + 0.3 kDa) and a Core® monomer bound to a DPC micelle
(red, 29.5 + 0.4 kDa), with the DPC micelle contribution in green (18.5 + 0.4
kDa) and the Core® monomer in black (11 + 0.1 kDa).

a stable 6HB trimer (Fig. 1C, blue trace). By contrast, in the
presence of 10 mM DPC, the SEC-MALS data show an elution
peak corresponding to monomeric Core’ (molecular mass = 11
kDa) bound to a DPC micelle (molecular mass = 18.5 kDa) (Fig.
1C, red trace). No elution peak corresponding to the trimeric form
is observed under such conditions, indicating that an excess of
DPC micelles completely shifts the equilibrium to the monomeric
state of Core SEC-MALS measurements were also performed
for Core® at pH 6.0, again showing a complete trimer-to-monomer
transition in the presence of DPC and molecular masses for the
trimer and the micelle-bound monomer very similar to the masses
seen at pH 4.0 (Fig. S1F).

To exclude that the trimer-to-monomer transition observed
for Core® in the presence of DPC is a consequence of substituting
the native immunodominant loop (IL) by L6, the same measure-
ments were repeated for a construct that included IL instead of L6
(Fig. 14). CD measurements on Core'" show a similar decrease
in helical content on addition of 10 mM DPC (Fig. S1 G and I),
whereas the SEC-MALS data again indicate that the trimeric
population of Core™ undergoes a complete shift to a monomeric
micelle-bound state in the presence of DPC (Fig. S1 H and J).
These results, therefore, confirm that the trimer-to-monomer
transition is a common property of both Core'™ and Core® and
not a simple consequence of the replacement of the IL region by
a short linker.

Structure and Dynamics of the Trimeric and Monomeric States of
Core®. The structure and backbone dynamics of the trimeric and
monomeric forms of CoreS were studied by solution NMR spec-
troscopy. In the absence of DPC, the 'H->N TROSY-HSQC
spectrum of Core’ at pH 4.0 presents all of the characteristics of
a stably folded protein, with 68 well-dispersed amide chemical
shifts and uniform resonance line widths, indicating that the trimer
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is C3-symmetric. The 'H-""N TROSY-HSQC spectrum recorded
for the Core® monomer in the presence of 100 mM DPC (Fig. 24)
also shows 68 well-dispersed amide resonances but with large
chemical shift differences relative to the trimer (Table S1). 'H-""N
TROSY-HSQC spectra, recorded at pH 6.0 in the absence and
presence of 100 mM DPC, show the same characteristic chemical
shift differences of the trimer-to-monomer transition (Fig. S2 4
and B). '"H-">N TROSY-HSQC spectra were also recorded in the
presence of LM3 vesicles at both pH 4.0 and 6.0 (Fig. S2 C and D),
showing the disappearance of Core® cross-peaks for all ordered
residues in the slowly tumbling lipid-bound state; this observation
confirmed that CoreS binds to these T cell-mimicking vesicles,
while exhibiting resonances for the observable, dynamically dis-
ordered residues that fall close to the positions seen in the mo-
nomeric DPC-solubilized construct.

The secondary chemical shifts of the B BB and ¥C’ nu-
clei, which refer to the difference between the observed chemical
shifts and the corresponding residue-specific random coil values,
are sensitive indicators of local secondary structure. With the
exception of the two N-terminal and the six C-terminal residues,
large positive '>C* secondary chemical shifts are observed for the
NHR and CHR regions in the absence of detergent, which is
indicative of a-helical structure. The six residues composing the
artificial linker between the NHR and CHR helices show
chemical shifts close to random coil chemical shift values, in-
dicating that this linker is dynamically disordered in solution
(Fig. 2B). The C* secondary chemical shifts measured for the
Core® monomer in the presence of 100 mM DPC also show large
positive values for most of the CHR region, but significant
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Fig. 2. NMR characterization of Core® at pH 4.0 and 310 K. (A) The most
crowded region of the "H-">N TROSY-HSQC spectrum in the presence of
100 mM DPC. Assignments are included in Table S1. (B) Comparison of the
secondary '*C* chemical shifts (A5C*) of Core® in the absence (black) and
presence (red) of 100 mM DPC (red). ASC* values represent the difference
between the measured '>C* chemical shifts and the temperature- and pH-
corrected random coil values (25). (C) Steady state heteronuclear "N-{"H}
NOE values of Core® (600 MHz 'H frequency) in the absence of detergent
(black) and the presence of 100 mM DPC (red).
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differences relative to the shifts of the Core® trimer are seen in
the NHR segment, particularly for residues I3-N9, which exhibit
decreased deviations from random coil values in the monomeric
state (Fig. 2B). In addition, the very small and even negative
values observed for A16 and Q17, respectively, point to the
presence of a break in the NHR helix of the Core monomer.
Measurement of the >N spin-lattice (R;) and spin-spin (R5)
relaxation rates together with the heteronuclear '’N-{'H} NOE,
which was carried out in both the absence and presence of 100
mM DPC, permits quantitative evaluation of the backbone dy-
namics of Core® in the two states. With the exception of the eight
N- and seven C-terminal residues, highly uniform NOE values
(between 0.81 and 0.85) that fall close to their theoretical rigid
limit are observed in the absence of DPC for both the NHR and
CHR helices of Core® (Fig. 2), indicating that they adopt a highly
ordered conformation in the trimer. Uniform R, and R; re-
laxation rates of ca. 15 and 1 s™', respectively (Fig. S3), corre-
spond to a rotational correlation time of 9.9 + 0.2 ns, close to the
value expected for a 24.9 kDa globular protein. Addition of DPC
resulted in a small but rather uniform decrease of the hetero-
nuclear NOE (Fig. 2). Together with decreased R, relaxation
rates and increased R, values (Fig. S3), these data indicate that
both the NHR and CHR helices tumble more rapidly in the
detergent-attached monomeric state. A model free analysis (26)
of the N relaxation data additionally reveals increased internal
motions for the NH vectors of the first nine N-terminal residues
of the Core® monomer, with S? order parameters ranging be-
tween 0.4 and 0.7 (Fig. S3C and Table S2). Comparison of the R,
relaxation rates measured at 600 and 800 MHz (Fig. S3D) shows
no evidence of slow (on the microsecond to millisecond time-
scale) conformational exchange. Therefore, any additional dy-
namics that may be present on a timescale slower than the overall
molecular tumbling, which escapes the Lipari-Szabo relaxation
analysis, must take place on a timescale faster than ca. 30 ps.

Comparison of the Core® Trimer with 6HB Crystal Structures. An
X-ray structure of CoreS, crystallized in the absence of de-
tergent (11), revealed the same 6HB structure seen for the
ectodomain of other class I viral fusion proteins. RDCs are
exquisitely sensitive probes for evaluating how close this
structure resembles the structure present in aqueous solution.
Therefore, we collected a nearly complete set of '"Dnm, 'Dners
Dyne, and 'Deger RDCs and fitted these couplings to the
X-ray structure (Protein Data Bank ID code 1SZT) (11),
yielding a Q factor of 0.274. Considering the limited crystall-
ographic resolution at which the coordinates had been determined
(2.4-A resolution), this Q factor indicates good agreement with the
crystal structure, with no obvious outliers or systematic differences
(Fig. S44). A higher-resolution crystal structure of Core®, crys-
tallized in the presence of n-octyl-p-glucopyranoside (Protein
Data Bank ID code 1DF4; 1.45-A resolution), had been
interpreted as an alternative, micelle-bound conformation of
the 6HB structure; however, the C* coordinate rmsd boetween
the 1SZT and 1DF4 structures is only modest (0.58 A) (27).
Interestingly, a fit of our experimental RDCs measured in the
absence of detergent to the 1DF4 structure actually shows
significantly better agreement, with a Q factor = 0.192 (Fig.
S4B), than to the detergent-free structure. This result indi-
cates that the fit of the experimental RDCs to 1SZT is prin-
cipally limited by the accuracy of the atomic coordinates derived
from a 2.4-A map and that 1DF4 actually represents a more
accurate coordinate representation of the detergent-free 6HB
conformation. Importantly, these results confirm that Core®
in solution adopts the same trimeric 6HB structure seen in the
crystalline state.

Structure of Monomeric Core®. The structure of Core® in the mi-
celle-bound monomeric state was derived by simulated annealing
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Fig. 3. Core® in the presence of DPC. (A) */yn.1« cOuplings and (B) secondary
A'Jco_na values reporting on secondary structure. A'Je,_q is the difference
between the measured 'Jc,_q coupling and the residue-specific random coil
value. Values measured for residues within the NHR and CHR segments are
connected by solid lines for visual purposes. (C) Structure of Core® in the mi-
celle-bound monomeric state, with the NHR helix in green, the CHR in blue,
and the flexible linker (residues 35-40) in gray. Although the fourfold de-
generacy in the average relative orientations of NHR and CHR, intrinsic to RDC
analysis (29), is broken by the requirement that both helices adhere with their
lipophilic surface to the same micelle, their instantaneous relative orientation
is subject to dynamic disorder. Without direct interhelical contacts, transla-
tionally, the relative position of the two helices also is ill-defined. For structural
statistics, see Table S3.

calculations based on 465 sequential and short-range NOE dis-
tance restraints, 114 backbone dihedral angle restraints, and 157
backbone RDCs. The prediction of the backbone dihedral angles
provided by the TalosN program (28) and based on the ex-
perimental >N, THN, 'H* 3C* 3CP, and '*C’ chemical shifts
was complemented by the measurements of 3 nota and Voo o
scalar couplings (Fig. 3). The two residues for which very small
and even negative secondary '*C* chemical shifts were mea-
sured, A16 and Q17 (Fig. 2B), also show nonhelical 3 N Ho
couplings (6.3 and 7.0 Hz, respectively) (Fig. 34) and reduced
secondary 'Je,.p couplings (0.75 and —0.84 Hz, respectively)
(Fig. 3B), confirming the nonhelical backbone torsion angles of
these two residues. The somewhat extended conformations of
A16 and Q17 result in a clear kink of the NHR helix (Fig. 3C),
with the N-terminal segment at an angle of ca. 60° relative to the
main axis of the helical segment, which is formed by residues 18—
34. The CHR helix is largely preserved in the monomeric state,
except for its eight most C-terminal residues. These C-terminal
residues all have polar side chains, and their inability to engage the
lipid surface in an a-helical conformation, therefore, is (not sur-
prising) resulting in dynamic disorder. Analogously, five sequential
polar residues near the N terminus, QQQNN, prevent lipid
binding of this section of the NHR, also resulting in dynamic
disorder and only transient helical character, which was judged by
13C* secondary shifts and *Jinpe and 'Jeama couplings (Fig. 3).

Absence of NHR and CHR Interaction in the Monomeric State. Al-
though no interhelical interactions were observed in the 2D and
3D NOESY spectra of Core® in the presence of DPC, weak
transient interactions cannot be excluded a priori, because the
corresponding NOEs would be notoriously difficult to detect.
However, chemical shifts are exquisitely sensitive to even transient,
weak interactions. To investigate the presence of potential weak

3428 | www.pnas.org/cgi/doi/10.1073/pnas.1401397111

interactions between NHR and CHR helices, we compared the
chemical shifts observed for the 68-residue Core® monomer with
chemical shifts recorded for separately purified recombinant
forms of the NHR and CHR peptides. CD spectra recorded in 50
mM sodium acetate (pH 4.0) at 310 K show that the NHR
peptide is intrinsically disordered in the absence of detergent but
adopts an a-helical conformation on addition of DPC (Fig. S54).
Comparison of the chemical shifts of Core® in the presence of
DPC with the shifts of the two separate peptide samples shows
them to be essentially indistinguishable for not only '*C* (Fig.
4A4) but also, the amides "H™ (Fig. S5C) and '°N (Fig. S5D). The
minor differences observed for the terminal regions of NHR and
CHR reflect the presence of additional residues that extend the
isolated NHR and CHR peptides, necessary for their isolation
(SI Materials and Methods). Other than these minor differences,
the very close correspondence between the chemical shifts
measured for the isolated peptides and the micelle-associated
Core® indicates that the NHR-CHR interactions are completely
disrupted in the monomeric state of Core®. In addition, the very
close correspondence between the '*C* secondary chemical
shifts measured for the two peptides and the shifts measured for
Core'™ (Fig. 4B) suggests that the interhelical interactions are
also disrupted in this longer construct. The absence of stabilizing
interactions between the two helices together with the high
flexibility of the interhelical linker suggest that the relative ori-
entation and position on the lipid surface are subject to large
dynamic disorder, with the structure depicted in Fig. 3C only
representing an average view. Indeed, when immersed in aniso-
tropically compressed acrylamide gel, the alignment strength
of the larger N-terminal helix is found to be greater than for
the shorter C-terminal helix, confirming their dynamic relative
arrangement.

Core® at the Phospholipid-Water Interface. Paramagnetic relaxation
enhancement has become a standard method to study the parti-
tioning of peptides and proteins at the water—phospholipid in-
terface. The solvent- and micelle-associated surfaces of Core® in
the monomeric state were identified by comparing the amide
signal attenuation induced by two paramagnetic agents: 16-doxyl-
stearic acid (16-DSA), which is confined to the hydrophobic in-
terior of the DPC micelle, and gadodiamide (Omniscan), which
remains free in solution. "H-">N TROSY-HSQC spectra of Core®
with 100 mM DPC were recorded in the presence of either 2 mM
16-DSA or 2 mM Omniscan, and the attenuation profile of each
amide group was calculated by comparing the cross-peak in-
tensities in the presence and absence of paramagnetic agent

-+ NHR peptide + DPC -= NHR peptide + DPC
& == CHR peptide + DPC -+ CHR peptide + DPC
-+ Core® + DPC -+ Core"+ DPC

481G, (Hz)
»

=

10 20 30 40 50 60 10 20 30' 40 50 60 70 80 90 100 110

Residue Residue

Fig. 4. Comparison of the secondary '>C* chemical shifts of the individual
NHR (green) and CHR (blue) peptides with shifts of (A) Core® (black) and (B)
Core'" [black; all in 50 mM sodium acetate (pH 4.0) in the presence of 100
mM DPC]. The individual NHR and CHR helix constructs contain additional
residues at their N and C termini (S/ Materials and Methods), respectively,
that are not present in Core® and presumed to be responsible for the small
chemical shift differences near the termini, which seem dynamically
disordered in the two peptides as well as in Core® and Core'".
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Fig. 5. Probing of the interaction between monomeric Core® and the
phospholipid interface. (A) Ratios of attenuation induced by the para-
magnetic agents, 16-DSA and Omniscan, as a function of residue number.
The attenuation of each amide signal in the "H-">N TROSY-HSQC spectra of
Core® with 100 mM DPC was independently determined on addition of ei-
ther 2 mM 16-DSA or 2 mM Omniscan (Table S2). (B) Surface representation
of the Core® monomer structure, with the residues showing the largest
16-DSA/Omniscan ratios colored in blue (solvent-exposed) and the smallest
ratios colored in orange (micelle-exposed). (C) Surface representation of the
Core®> monomer colored on the basis of residue type (blue, positively
charged; red, negatively charged; yellow, hydrophobic). The N and C termini
are marked N and C, respectively.

(Table S2). The ratio between the attenuations induced by
16-DSA and Omniscan (16-DSA/Omniscan) (Fig. 54) reveals
which amide groups are more affected by Omniscan than
16-DSA (ratio > 1; therefore, closer to solvent) or micelle-exposed
(ratio < 1). The largest and smallest 16-DSA/Omniscan ratios are
marked on the structure of the Core® monomer in blue and or-
ange, respectively, in Fig. 5B, and they show a clear partitioning of
the solvent- and micelle-exposed surfaces.

Discussion

Before reaching the postfusion 6HB state, the NHR and CHR
regions have the opportunity to interact with their adjacent
membranes, and a growing body of evidence suggests that these
heptad repeat regions may play an active role in destabilizing
membranes by directly binding to the lipid bilayers (20-23). Our
study shows that the 6HB trimeric structure of a recombinant
ectodomain, lacking the membrane-interacting domains FP, FP
proximal region (FPPR), membrane proximal external region
(MPER), and TM, dissociates into stable monomers on binding
to zwitterionic detergent micelles and behaves analogously in the
presence of vesicles that mimic the T-cell membrane composi-
tion. Although the ability of gp41 constructs lacking the MPER
and TM regions to induce lipid mixing and vesicle fusion has been
shown to depend strongly on pH (30), we find that dissociation
into monomers occurs both at pH 4.0 and 6.0. In the lipid-bound
state, both the NHR and CHR helices are embedded at the
water-lipid interface, thereby destabilizing their respective mem-
branes and lowering the barrier for membrane fusion (31). The
trimer-to-monomer transition introduces a significant kink in the
NHR helix at residue Q562 (Q17 in Core® numbering). The force

Fig. 6. Model of the intermediate steps in gp41- A B

driven fusion of the viral and target cell membranes
showing the NHR (light green) and CHR (light blue)

needed to maintain the lipid-bound NHR in its kinked confor-
mation can only be provided by its interaction with the lipids and
therefore, must be accompanied by additional destabilization of
the lipid interface, thereby also contributing to a lowering of the
energy barrier associated with membrane fusion. In this respect,
we note that, although the small degree of helical axis curvature
observed for the NHR and CHR Core® helices in our detergent-
solubilized model system is likely to differ from any curvature
present when these helices are embedded in the host cell and viral
membranes, the kink in the micelle-bound NHR helix seems to be
an essential attribute for its binding to a contiguous hydrophobic
bilayer surface. This kink is necessary to avoid the polar side chain
of residue Q562 from facing the bilayer interior, while allowing the
hydrophobic side chains of 1555, L556, and 1559, which precede
the kink, to engage the bilayer simultaneously with the side chains
of L565, L566, V570, and 1573.

Recently, we found that the CHR, MPER, and TM regions of
a much longer gp41 construct (residues 512-705; see Fig. 14) are
subject to extensive conformational exchange processes in the
presence of DPC (32). Although sedimentation equilibrium
centrifugation and SEC-MALS data unambiguously showed that
this gp41°'>77% remains trimeric under such conditions, the
chemical shifts of the NHR residues in gp41°'>7% correlate
much closer with the shifts of the Core® monomer (R* = 0.76
and 0.74 for the "HY and secondary '*C* chemical shifts, re-
spectively) than with the Core® trimer [R* = 0.24 (8'H") and
R* = 0.55 (A8"3C,)] (Fig. S6). This paradox is resolved by rec-
ognizing that the membrane-associated TM region is responsible
for retaining the trimeric state of gp415 127705 oven in the absence
of stable NHR-CHR interhelical interactions. The present
Core® data indicate that the affinity of the NHR and CHR
segments for phospholipid surfaces is strong enough to break the
thermodynamically very stable 6HB trimeric state and therefore,
more than sufficient to disrupt the much weaker intermolecular
NHR and potential CHR interactions in the initial extended
prehairpin intermediate state (Fig. 64), thereby rapidly
transitioning to a collapsed state (Fig. 6B). This transition
pulls the viral and host cell membranes closer to one another to
a distance that is limited by the length of the IL (Fig. 14).
Considering that a significant segment of IL (residues I580-D589
after NHR and S618-T627 preceding CHR) also is lipophilic and
a-helical (Fig. 4), the effective intermembrane distance likely is
even shorter and also dependent on the oxidation state of the two
Cys residues (C598 and C604) located in the nonlipophilic seg-
ment of IL.

Destabilization of the viral and target cell membranes in-
troduced by the heptad helices and the FP in the collapsed pre-
hairpin intermediate state (Fig. 6B) coupled with their spatial
proximity then creates a state conducive to the formation of
a hemifusion stalk, in which the outer leaflets of the viral and host
cell membranes are fused (31), and which can progress to forma-
tion of a small fusion pore (Fig. 6C). Taking advantage of the
temperature dependence of the fusion pore growth, Markosyan

segments and the membrane-anchoring elements
[FP (dark green) and TM (dark blue)] at four differ-
ent stages of the fusion process. (A) The short-lived

e

extended prehairpin intermediate (PHI) state, where
both TM and NHR are presumed responsible for
maintaining the trimeric nature. (B) The collapsed

PHI state, where NHR and CHR have become em- edenided EHI

membrane-bound fusogenic pre-bundle 6-helix bundle
PHI

bedded in the viral and host cell membranes, thereby pulling the membranes into juxtaposition. (C) Formation of fusogenic prebundles, which is possibly
initiated by contacts between the short polar segments at opposing ends of the NHR and CHR. (D) Formation of mature, postfusion 6HB trimers, which are

stabilized by FP-TM, FPPR-MPER, and 6HB NHR-CHR interactions.
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et al. (33) have shown that folding of the 6HB is not complete until
the very late stage of pore formation. Based on this kinetic argu-
ment, we propose that the initial formation of fusion pores is
driven by the association of gp41 trimers into prebundle complexes
(Fig. 6C). Formation of these complexes then depends on a com-
petition between intermolecular association of the NHR and CHR
helices, including their FPPR and MPER extensions, and mem-
brane binding of these lipophilic regions (32, 34). Bundling of
MPER with FPPR residues stabilizes the 6HB state (9) but only
becomes kinetically accessible after these regions have progressed
to a state of close spatial proximity (Fig. 6C). We speculate that
formation of this trimeric state may be initiated by interactions
between the polar segments of the NHR (S546-N554) and CHR
(E647-K655) regions, which lack high membrane affinity but make
tight and specific interhelical contacts in the 6HB. Specific inter-
actions between the FP and TM (35), which are only accessible
after formation of the fusogenic prebundle, may further stabilize
formation of the postfusion state. Competition between in-
termolecular and membrane association may also be impacted by
a shift in lipid composition after outer leaflet lipids of the viral and
host cells can mix with one another by translational diffusion
through the hemifusion stalk, which would be a slow and strongly
temperature-dependent process.

In our model, the fusogenic prebundle complexes, comprising
both membrane- and self-associated heptad regions, represent
the actual target for the peptides used for fusion inhibition (15,
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16, 36). Such long-lived prebundle conformations would also
represent an ideal target for the membrane-conjugated class of
inhibitory NHR- and CHR-mimicking peptides (37-39) as well
as neutralizing antibodies, which can tightly engage incomplete
states of the 6HB core (40, 41).

Materials and Methods

Core®, identical in sequence to the N34-L6-C28 construct described in ref. 11,
was expressed with an N-terminal His-tag to aid its purification. The N-ter-
minal nonnative residues were removed by thrombin cleavage, with the
exception of four residues (GSHM) remaining at the N terminus of the Core®
sequence, which was followed by size exclusion chromatography under
denaturing conditions and reverse-phase HPLC.

NMR measurements were carried out at 500, 600, 800, and 900 MHz on
uniformly 2H/">N/'3C-, >N/'3C-, and 2H/'°N-enriched samples at protein
concentrations of ca. 0.5 mM (monomer) in both the absence and presence
of 100 mM DPC. The NMR structure of the Core® monomer was calculated
using NOE distance restraints, RDCs, and TalosN dihedral restraints (28) using
X-PLOR-NIH v2.34 (42). Details are in SI Materials and Methods.
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S| Materials and Methods

Sample Purification. The six-helix bundle (6HB) complex formed
by an ectodomain (Core®) that contains large segments of the
N-terminal heptad repeat (NHR) and C-terminal heptad repeat
(CHR) helices connected by a six-residue linker (SGGRGG)
sequence was amplified by PCR and cloned into the pET15b
vector (Novagen; EMD Millipore Chemicals) between the Ndel
and BamH]1 sites. Expression in Escherichia coli BL21(DE3)
yields Core® containing the flanking residues GSSHHHHHHS
SGLVPRGSHM, derived from the vector, at the N terminus of
Core®. Because the expressed protein is insoluble, cell lysis and
initial purification of the 6H-Core® by Ni-NTA affinity chro-
matography were carried out in 6 M guanidine hydrochloride in
50 mM Tris-HCI, pH 8. The protein was then dialyzed against
25 mM Tris-HCl buffer, pH 7.5, containing 100 mM NaCl, 2 mM
CaCl,, and 20 mM imidazole, which is suitable for thrombin
cleavage to remove the majority of the N-terminal nonnative
residues, including the 6H-tag. The digest was reapplied on the
Ni-NTA agarose column under denaturing conditions to retain the
undigested 6H-Core® and the 6His-tag. The flow through con-
taining Core® was concentrated and subjected to size-exclusion
chromatography (SEC; Superdex-75; GE Healthcare) in 4 M
guanidine hydrochloride, 50 mM Tris-HCI, pH 8§, 5 mM EDTA,
and 1 mM DTT followed by reversed-phase HPLC. The longer
ectodomain construct (Core'™) was expressed without the 6H-
tag, isolated from the insoluble fraction (inclusion bodies), and
subjected to SEC followed by reversed-phase HPLC as de-
scribed above. Peak fractions of the protein eluting roughly in
35% (vol/vol) acetonitrile/water containing 0.05% trifluoroacetic
acid were pooled and stored frozen at —70 °C. Constructs were
verified both by DNA sequencing and electrospray ionization
MS. Isotope-enriched proteins were grown in minimal media
with the appropriate isotope source in either H,O or D,0.

Another plasmid construct bearing the Core® sequence flanked
by the residues GSSHHHHHHSSG at the N terminus and
SGLVPRGSGG residues instead of the L6 spacer was also ex-
pressed. Initial isolation was carried out as described above. After
thrombin cleavage of the SGLVPRGSGG linker, the protein was
denatured in 6 M guanidine hydrochloride and subjected to Ni-
NTA affinity chromatography to separate the 6H-NHR (retained)
from the CHR (flow through). Additional purification was carried
out as described above for the Core® by SEC and HPLC. The
purified 6H-NHR and CHR peptides are of the following
sequences, respectively: GSSHHHHHHS SG**°SGIVQQQN
NLLRAIEAQQ HLLOQLTVWGI KQLQAR’”’SGLV PR
and GSGG®’HTTWME WDREINNYTS LIHSLIEESQ
NQQEKNEQEL LE®**,

Core® and Core'™ were folded by dialysis in 50 mM sodium
formate, pH 3.0, dialyzed in 50 mM sodium acetate, pH 4,
concentrated, and stored. The same dialysis scheme was also
followed for the NHR and CHR peptides. The calculated mo-
lecular masses of purified Core3, Core™, NHR, and CHR cor-
respond to 8,284, 12,792, 4,975, and 5,791 Da, respectively.

Molecular Mass Analysis. Molecular masses were analyzed by an-
alytical SEC with in-line multiangle light scattering (Wyatt-925-
H2HC, DAWN Heleos; Wyatt Technology Inc.) with refractive
index (Wyatt-215-TRXH; Wyatt Technology Inc.) and UV (Waters
2487; Waters Corporation) detectors. Volumes of injection ranged
from 100 to 150 pL. Typically, 200 pg total protein were applied to
a preequilibrated Superdex-75 column (1.0 x 30 cm; GE Health-
care) at a flow rate of 0.5 mL/min at room temperature and eluted
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in either 50 mM acetate (pH 4.0) or 20 mM sodium phosphate
(pH 6.0). Guanidine hydrochloride (0.2 M) was included in the
column buffer to prevent nonspecific binding of the protein to the
column matrix. When studying the influence of dodecyl phos-
phocholine (DPC) on destabilization of Core® and Core™ trimers,
the sample containing 10 mM DPC was layered and fractionated in
the same column buffer with the inclusion of 2 mM DPC. Molec-
ular masses were calculated using the Astra software provided with
the instrument. Concentrations of proteins sampled for measure-
ments are ca. 5 pM. For mass analysis, both Core® and Core™
contained an N-terminal sequence GSSHHHHHHS SGLVPRGS
(6H), contributing to the total mass of the protein. Calculated
masses of 6H-CoreS and 6H-Core'" are 10,035 and 14,955 Da,
respectively.

CD. CD spectra were recorded at 310 K in either 25 mM sodium
acetate buffer at pH 4.0 or 20 mM sodium phosphate at pH 6.0 on
a JASCO J-810 spectropolarimeter using a 0.1-cm path-length
cell. The CD spectra of Core® and Core'™ were recorded at
a protein concentration of 15 pM, whereas 30 pM was used for
the NHR and CHR peptide samples. a-Helical content was de-
termined using the CDNN program (1).

NMR Spectroscopy. 'H-'°N transverse relaxation optimized spec-
troscopy-heteronuclear single quantum coherence (TROSY-
HSQC) spectra of Core® were recorded on a uniformly (>95%)
H/">N/**C-enriched sample at 0.3 mM (monomer concentra-
tion) in either 50 mM sodium acetate (pH 4.0) or 20 mM sodium
phosphate (pH 6.0) at 310 K in the absence and presence of 100
mM DPC using a 600 MHz Bruker Avance II spectrometer
equipped with a z axis TCI cryogenic probe.

The backbone assignment of Core® in the absence and
presence of DPC was based on 3D TROSY-HNCO and 3D
TROSY-HNCACB spectra recorded at 600 MHz on the
2H/">N/"*C-enriched sample at 0.3 mM in 50 mM sodium ac-
etate (pH 4.0) at 310 K and confirmed by 3D '"N-separated
NOESY-HSQC spectra. Similar experiments were performed
for the NHR and CHR peptides in the presence of DPC. The
side chain assignments of Core® in the presence of 100 mM
DPC are based on a constant time 3D H(CC)(CO)NH experiment
recorded at 600 MHz on uniformly N/*°C-labeled peptide at
0.85 mM in 50 mM sodium acetate (pH 4.0) at 310 K.

The N spin-lattice (R;) and spin-spin (R;,) and the steady
state heteronuclear '’N-{'H} NOE data were collected at a '"H
frequency of 600 MHz using TROSY-based 'H-'*N hetero-
nuclear experiments (2) on uniformly *H/'*N-labeled samples in
both the absence and presence of 100 mM DPC. The R, rates
were derived from R;, values measured with a radiofrequency
spin lock of 1.3 kHz by correcting them in the standard manner
(3) for "N radiofrequency offset. All relaxation experiments
were performed at a protein concentration of 0.75 mM in 50 mM
sodium acetate (pH 4.0) at 310 K.

The backbone residual dipolar couplings (RDCs), Dy, 'Dncs
Dyne and 'Dege, were measured using uniformly 2H/PN/SC-
enriched Core® in 50 mM sodium acetate (pH 4.0) at 310 K.
Alignment of Core® in the absence of detergent was obtained in
a 4.5% neutral stretched acrylamide gel, which was radially
compressed from a 6.0-mm diameter into a 4.1-mm inner di-
ameter NMR tube. A 5.5% acrylamide gel containing 30% of the
cationic DADMAC-acrylamide copolymer, radially compressed
from 6 to 4.1 mm, was used to obtain the alignment of Core’ in
the presence of 100 mM DPC. The 'Dn RDCs were derived
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from the difference in Jny + 'Dng splitting measured at 800
MHz using an ARTSY-HSQC (amide RDCs by TROSY Spec-
troscopy-HSQC) experiment (4) on an isotropic sample and an
aligned sample. The 'Dne and *Dyne: RDCs were derived from
the difference in Jno + 'Dne and Jpne + Dune splitting,
respectively, which were measured in the '°N and 'H dimensions
of a 2D TROSY-HSQC spectrum recorded at 800 MHz in the
absence of '>C’ decoupling (5). The 'D¢ycr RDCs were derived
from the difference in Jeoe + ‘Dewc splitting measured in the
3C’ dimension of 3D TROSY-HNCO spectra recorded at 500
MHz in the absence of *C* decoupling during *C’ evolution.

Structure Calculation. A structural ensemble of the Core® mono-
mer was obtained using the Xplor-NIH program package v. 2.34
(6) through a simulated annealing protocol, which included
10,000 steps, with the temperature linearly ramped down from
2,000 to 1 K, followed by 500 steps of Powell energy minimiza-
tion. Fitted experimental restraints included 465 sequential and
short-range NOE distance restraints, 114 backbone dihedral
angle restraints, and 157 backbone RDCs (1DNH, 1DC1N, Demns

1. Bohm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular
dichroism spectra by neural networks. Protein Eng 5(3):191-195.

2. Lakomek NA, Ying JF, Bax A (2012) Measurement of *N relaxation rates in perdeuterated
proteins by TROSY-based methods. J Biomol NMR 53(3):209-221.

3. Peng JW, Thanabal V, Wagner G (1991) 2D Heteronuclear NMR measurements of spin-
lattice relaxation—times in the rotating frame of X nuclei in heteronuclear HX spin
systems. J Magn Reson 94(1):82-100.

4. Fitzkee NC, Bax A (2010) Facile measurement of 'H-'5N residual dipolar couplings in
larger perdeuterated proteins. J Biomol NMR 48(2):65-70.
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and 1Dcfc,d) measured in the presence of 100 mM DPC. In
addition, backbone/backbone hydrogen bonding geometries
were restrained through a database-derived potential of mean
force (7), with force constant multipliers of 0.3 and 0.1 for the
directional and linearity terms, respectively.

The RDCs were fitted using two separate alignment tensors for
the NHR and CHR helices, which were defined relative to a single
floating axis system, with their magnitude and rhombicity left
floating during the structure calculation (8). Magnitude values
converged to 14.4 Hz (NHR) and 12.3 Hz (CHR), and rhom-
bicity values converged to 0.39 (NHR) and 0.26 (CHR); these
values fall close to the values obtained when best fitting RDCs
for residues Q22-A33 (NHR) and residues N49-E60 (CHR) to
the corresponding helical segments of the 6HB X-ray structure
(Protein Data Bank ID code 1DF4). The modest difference in
alignment tensor parameters for the NHR and CHR indicates
that they undergo differential motions relative to the micelle
protein body, which was expected for two helices that are
flexibly tethered.

5. Wang YX, et al. (1998) Simultaneous measurement of H-1-N-15, H-1-C-13’, and N-15-C-
13’ dipolar couplings in a perdeuterated 30 kDa protein dissolved in a dilute liquid
crystalline phase. J Am Chem Soc 120(29):7385-7386.

. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular
structure determination package. J Magn Reson 160(1):65-73.

. Grishaev A, Bax A (2004) An empirical backbone-backbone hydrogen-bonding potential
in proteins and its applications to NMR structure refinement and validation. J Am Chem
Soc 126(23):7281-7292.

. Sass HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2001) An easy way to include weak
alignment constraints into NMR structure calculations. J Biomol NMR 21(3):275-280.
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Fig. S1. CD spectra, reported here as the mean residue ellipticity (10> degrees centimeter? decimoles™" residue™"), of Core® recorded at pH 4.0 (A-D) in the
absence of detergent (black traces) and with (A) 10 mM DHPC (red trace), (B) 25 mM CHAPSO (green trace), and (C) 1 mM MNG3 (green trace). (C and E) CD
spectra of Core® recorded at pH 6.0 in the absence of detergent or vesicles (black traces), with (D) 5 mM LM3 vesicles (red trace) and (E) 10 mM DPC (red trace).
(F) SEC with in-line multiangle light scattering (SEC-MALS) data of Core® recorded at pH 6.0. The elution profiles monitored by the absorbance at 280 nm and
masses (circles) are shown for the Core® trimer (blue, 29.5 + 0.3 kDa) and the complex formed by a Core®> monomer bound to a DPC micelle (red, 28.2 + 0.2 kDa).
The composition of this complex is shown in black (Core® monomer, 10 + 0.1 kDa) and green (DPC micelle, 18.2 + 0.3 kDa) circles, respectively. (G) CD spectra of
Core'" recorded at pH 4.0 in the absence of detergent (black) and with 10 mM DPC (blue). (H) SEC-MALS data of Core'" recorded at pH 4.0. The elution profiles
monitored by the absorbance at 280 nm and masses (circle) are shown for the Core'" trimer (blue, 47.5 + 0.6 kDa) and the micelle-associated Core'* monomer
(red, 32.2 + 0.5 kDa). The composition of this complex is shown in black (Core'* monomer, 15.3 + 0.2 kDa) and green (DPC micelle, 17 + 0.4 kDa) circles, re-
spectively. (/) CD spectra of Core'" recorded at pH 6.0, in the presence of 10 mM DPC. (J) SEC-MALS data of Core'- recorded at pH 6.0 in the presence of DPC,
yielding a mass of 31.4 + 0.2 kDa contributed by Core'- (15 + 0.1 kDa) and the DPC micelle (16.4 + 0.3 kDa). In the absence of DPC, Core'" is insoluble at pH 6.
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Fig. S2. 'H-">N TROSY-HSQC spectra of Core® recorded at 310 K in 20 mM sodium phosphate (pH 6.0) in (A) the absence of detergent and (B) the presence of
100 mM DPC. Assignments of the amide resonances are listed in Table S1. "H-">N TROSY-HSQC spectra of Core® recorded at 310 K in the presence of 10 mM LM3
vesicles (POPC:POPE:POPS:shingomyelin:cholesterol at 10:5:2:2:10 molar ratio) at (C) pH 4.0 and (D) pH 6.0. Assignments of the amide resonances shown in C
and D were derived by titrating the Core®:LM3 solution with increasing concentrations of DPC. Residues labeled with tag refer to the nonnative residues at the
N terminus of Core® (SI Materials and Methods, S/ Sample Purification), whereas loop refers to the six-residue linker connecting the NHR and CHR regions.
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Fig. S3. Comparison of the Core® "N relaxation properties in the absence (black) and presence (red) of 100 mM DPC detergent. (A) R;. (B) R,. All data were
recorded at a 'H frequency of 600 MHz on uniformly 2H/'>N-enriched Core® samples in 50 mM sodium acetate (pH 4.0) at 310 K. (C) Order parameters S
extracted from a model free analysis (1) of the experimentally determined 5N relaxation parameters Ry, Ry, and heteronuclear NOE. (D) Ratios of the R, rates
measured at 'H frequencies of 600 and 800 MHz for Core® in the presence of 100 mM DPC.

1. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. theory and range of validity. / Am Chem Soc

104(17):4546-4559.
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Fig. S4. Comparison of the experimental and predicted normalized RDC values extracted from a singular value decomposition fit to the 6HB crystal structures
of Core®: (A) 1SZT and (B) 1DF4. The backbone RDCs, "Dy, 'Dncs 2Drnc: and 'Degc, Were measured from the difference in splitting between an isotropic
sample and a sample aligned in 4.5% neutral stretched acrylamide gel radially compressed from a 6.0-mm diameter into a 4.1-mm inner diameter NMR tube.
RDCs are normalized relative to '>N-"H values by scaling them by factors of 8.33 ('Dc/), 3.33 (®Dync), and 5.05 ('Dcqc) (1). RDCs were collected in the absence of
detergent using uniformly 2H/'>N/'*C-enriched Core® samples in 50 mM sodium acetate (pH 4.0) at 310 K.

1. Ottiger M, Bax A (1998) Determination of relative N-H, N-C’, Ca-C’, and Ca-Ha effective bond lengths in a protein by NMR in a dilute liquid crystalline phase. J Am Chem Soc 120(47):

12334-12341.
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Fig. S5. CD spectra, reported as the mean residue ellipticity (10% degrees centimeter? decimoles™ residue™), of the individual (A) NHR and (B) CHR peptides
recorded at 30 pM peptide concentration in 50 mM sodium acetate (pH 4.0) at 310 K in (A) the absence of detergent (black trace) and with (A and B) 10 mM
DPC (green and blue traces, respectively). In the absence of DPC, CHR is insoluble in the buffer used. (C and D) Comparison of the (C) "HN chemical shifts and (D)
>N chemical shifts measured for Core® (black) and the individual NHR (green) and CHR (blue) peptides in the presence of 100 mM DPC. The small differences
observed at the N- and C-terminal regions of the NHR and CHR regions, respectively, presumably reflect the presence of additional residues that are necessary
for the purification of the NHR and CHR peptides (S/ Materials and Methods).
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Fig. 6. Comparison of the "HN chemical shifts reported for the gp41°'>7% in the presence of DPC (1) and measured in the present study for the Core® (A)
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1. Lakomek N-A, et al. (2013) Internal dynamics of the homotrimeric HIV-1 viral coat protein gp41 on multiple time scales. Angew Chem Int Ed Engl 52(14):3911-3915.
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Table S2. Backbone dynamics and partitioning of the Core® monomer at the water-micelle interface

Rq (s™") 600 R, (s") 600 NOE 600 R, (s™") 800 R, (s™") 800 Omniscan 16-DSA
MHz MHz MHz MHz MHz §? Te (pS) (2 mM) (2 mM)

S546 1.27 (+0.03) 4.80 (+0.04) 0.03 (+0.01) 1.11 (+0.04) 6.03 (+0.01) 0.43 0.62
G547 1.33 (+0.04) 4.75 (+0.27) 0.17 (+0.02) 1.17 (+0.07) 5.96 (+0.01)  0.32 (+0.01] 272 (+9) 0.38 0.75
1548 1.35 (+0.02) 6.76 (+0.01) 0.27 (+0.01) 1.14 (+0.03) 8.63 (x0.01)  0.52 (+0.02) 695 (+2) 0.64 0.67
V549 6.16 (+0.07) 0.27 (+0.01) 1.01 (+0.09) 8.19 (+0.05)  0.43 (+0.02) 986 (+10) 0.58 0.69
Q550 1.39 (+0.05) 8.05 (+0.02) 0.29 (+0.01) 1.17 (+0.07)  10.90 (+0.03)  0.59 (+0.03) 697 (+7) 0.60 0.64
Q551 1.40 (+0.06) 7.42 (+0.02) 0.33 (+0.01) 1.15 (+0.10) 9.54 (+0.03)  0.58 (+0.04) 724 (+8) 0.56 0.75
Q552 1.34 (+0.06) 6.85 (0.03) 0.41 (+0.01) 1.10 (+0.10) 9.30 (+0.03)  0.52 (+0.03) 707 (+7) 0.51 0.56
N553 1.34 (+0.06) 8.48 (+0.03) 0.46 (+0.01) 1.09 (+0.08)  10.75 (+0.02)  0.60 (+0.05) 657 (+10) 0.50 0.70
N554 1.33 (+0.07) 9.36 (0.04) 0.56 (+0.02) 1.05 (+0.09)  11.67 (+0.04)  0.69 (+0.04) 631 (+14) 0.52 0.76
L555 1.29 (+0.06)  10.84 (+0.05) 0.64 (+0.01) 1.01 (+0.08)  13.70 (+0.05)  0.82 (+0.03) 76 (+4) 0.65 0.50
L556 1.26 (+0.02)  11.33 (+0.01) 0.67 (+0.02) 0.95 (+0.02)  13.36 (+0.02)  0.83 (0.03) 55 (+1)
R557 1.24 (+0.03)  11.46 (+0.01) 0.67 (+0.01) 0.95 (+0.04)  13.79 (+0.03)  0.84 (+0.05) 49 (+2) 0.67 0.82
A558 1.29 (+0.05)  11.27 (+0.04) 0.68 (+0.01) 1.00 (+0.06)  14.08 (+0.04)  0.85 (+0.04) 64 (+3) 0.72 0.75
1559 1.23 (+0.05)  11.59 (+0.03) 0.68 (+0.01) 0.92 (+0.06)  14.30 (+0.05)  0.85 (+0.04) 46 (+3) 0.73 0.66
E560 1.24 (+0.06)  12.21 (+0.03) 0.70 (+0.01) 0.95 (+0.06)  14.97 (+0.05)  0.89 (+0.03) 36 (+5) 0.74 0.58
A561 1.28 (+0.08)  11.73 (+0.08) 0.66 (+0.02) 0.98 (+0.11)  14.85 (+0.07)  0.86 (+0.03) 67 (+6) 0.70 0.50
Q562 1.22 (+0.07)  11.21 (+0.05) 0.64 (+0.01) 0.92 (+0.08)  13.97 (+0.06)  0.82 (+0.08) 52 (+4) 0.68 0.49
Q563 1.19 (+0.09)  11.81 (+0.10) 0.70 (+0.01) 0.86 (+0.07)  15.20 (+0.07)  0.84 (+0.04) 30 (+5) 0.46 0.52
H564 1.25 (+0.09)  12.22 (+0.07) 0.68 (+0.02) 0.93 (+0.08)  14.96 (+0.08)  0.88 (+0.03) 42 (+8) 0.32 0.39
L565 1.12 (£0.05)  12.88 (+0.07) 0.70 (+0.02) 0.83 (+0.05)  16.06 (+0.07)  0.84 (+0.04) 0 (4) 0.62 0.44
L566 1.14 (+ 0.04)  13.33 (+0.06) 0.72 (+0.01) 0.84 (+0.04)  16.82 (+0.06)  0.86 (+0.05) 0 (+3) 0.68 0.37
Q567 1.14 (+0.06) 0.72 (+0.01) 0.78 (+0.06)  16.62 (+0.09)  0.84 (+0.05) 12 (+4) 0.67 0.67
L568 1.17 (+0.07)  12.40 (+0.08) 0.72 (+0.02) 0.85 (+0.06)  15.94 (+0.07)  0.85 (+0.04) 13 (5) 0.66 0.54
T569 1.10 (£0.05)  13.39 (+0.04) 0.74 (+0.01) 0.78 (+0.04)  16.06 (+0.06)  0.90 (+0.04) 0 (+13) 0.75 0.29
V570 1.13 (+0.05)  13.35 (+0.06) 0.74 (+0.01) 0.83 (+0.04)  16.99 (+0.05)  0.86 (+0.03) 0 (+4) 0.74 0.43
W571 1.14 (+0.04)  13.15 (+0.07) 0.71 (+0.01) 0.85 (+0.05)  15.85 (+0.05)  0.85 (+0.03) 8 (+3) 0.70 0.71
G572 1.16 (+ 0.10)  14.21 (+0.29) 0.75 (+0.02) 0.85 (+0.10)  16.47 (+0.09)  0.83 (+0.08) 12 (+6) 0.77 0.44
1573 1.16 (£0.06)  13.99 (+0.08) 0.75 (+0.01) 0.87 (+0.06)  17.27 (+0.06)  0.89 (+0.04) 0 (+6) 0.76 0.43
K574 1.17 (+0.05)  13.67 (+0.06) 0.76 (+0.01) 0.84 (+0.04)  16.87 (+0.06)  0.88 (+0.03) 0 (+4) 0.76 0.77
Q575 1.14 (+0.07)  13.62 (+0.08) 0.73 (+0.01) 0.84 (+0.06)  16.94 (+0.07)  0.88 (+0.04) 0 (+6) 0.76 0.81
L576 1.14 (+0.08)  13.86 (+0.11) 0.74 (+0.02) 0.83 (+0.08)  16.64 (+0.09)  0.88 (+0.05) 0 (+7) 0.77 0.66
Q577 1.13 (£0.10)  12.20 (+0.08) 0.69 (+0.01) 0.87 (+0.07)  15.47 (+0.07)  0.84 (+0.05) 25 (+4) 0.76 0.64
A578 1.18 (+0.07)  12.42 (+0.08) 0.67 (+0.02) 0.90 (+0.08)  15.59 (+0.07)  0.85 (+0.04) 28 (+5) 0.70 0.78
R579 1.16 (£0.05)  10.95 (+0.02) 0.58 (+0.01) 0.90 (+0.05)  13.51 (+0.07)  0.80 (+0.01) 52 (+2) 0.67 0.71
loopS1  1.28 (+0.04) 8.56 (+0.06) 0.51 (+0.01) 1.01 (+0.05)  10.32 (+0.04)  0.63 (+0.01) 96 (+2) 0.57 0.65
loopG2  1.39 («0.05) 6.61 (+0.31) 0.45 (+0.01) 1.14 (+0.07) 7.96 (0.03)  0.55 (+0.02) 385 (+23) 0.45 0.52
loopG3  1.41 (+0.03) 5.29 (+0.42) 0.36 (+0.01) 1.22 (+0.06) 6.51 (+0.02)  0.49 (+0.05) 469 (+14) 0.32 0.66
loopR4  1.40 (0.03) 5.52 (+0.10) 0.37 (+0.01) 1.19 (+0.05) 6.34 (0.01)  0.39 (+0.02) 817 (+3) 0.37 0.67
loopG5  1.40 (+0.03) 5.43 (+0.38) 0.35 (+0.01) 1.21 (+0.04) 6.83 (+0.01)  0.48 (+0.03) 433 (+11) 0.31 0.64
loopG6  1.42 (0.06) 6.07 (+0.40) 0.46 (+0.02) 1.24 (+0.13) 7.26 (+0.03)  0.57 (+0.01) 578 (+26) 0.36 0.49
W628 10.27 (+0.12) 0.53 (+0.02) 1.10 (+0.21)  11.51 (+0.06)  0.69 (+0.13) 1,290 (+99)
M629 1.33 (+0.07)  10.76 (+0.04) 0.64 (+0.02) 1.01 (£0.07)  13.75 (+0.05)  0.81 (+0.03) 77 (4) 0.57 0.55
E630 1.31 (+0.04)  10.88 (+0.04) 0.64 (+0.01) 0.98 (+0.04)  13.59 (+0.03)  0.83 (+0.02) 81 (+3) 0.62 0.65
W631 1.29 (+0.09)  11.14 (+0.07) 0.65 (+0.01) 0.84 (0.04) 75 (+6) 0.69 0.59
D632 1.26 (+0.09)  12.00 (+0.08) 0.67 (+0.01) 0.98 (+0.11)  15.30 (+0.08)  0.87 (+0.05) 53 (+8) 0.70 0.48
R633 11.48 (+0.09) 0.64 (+0.01) 0.97 (+0.07)  13.36 (+0.07)  0.82 (+0.06) 49 (x3) 0.63 0.77
E634 1.25 (+0.06)  11.27 (+0.04) 0.64 (+0.01) 0.95 (+0.06)  13.93 (+0.05)  0.83 (+0.02) 63 (+3) 0.68 0.70
1635 1.30 (+0.11)  11.99 (+0.07) 0.70 (+0.02) 0.96 (+0.08)  14.39 (+0.06)  0.88 (+0.05) 59 (+7) 0.73 0.65
N636 1.25 (+0.06)  11.27 (+0.06) 0.69 (+0.01) 0.93 (+0.05)  15.57 (+0.06)  0.84 (+0.03) 50 (+4) 0.65 0.60
N637 1.26 (+0.09)  11.45 (+0.07) 0.67 (+0.01) 1.00 (+0.09)  13.88 (+0.06)  0.84 (+0.04) 55 (+6)
Y638 1.28 (+0.18)  11.52 (+0.06) 0.67 (+0.02) 0.91 (+0.08)  14.21 (+0.07)  0.85 (+0.04) 52 (+5) 0.75 0.50
T639 1.21 (£0.05)  12.11 (+0.04) 0.70 (+0.01) 0.90 (+0.06)  14.70 (+0.06)  0.87 (+0.03) 21 (z4) 0.70 0.41
$640 1.28 (+0.08)  12.29 (+0.06) 0.72 (+0.01) 0.96 (+0.07)  14.50 (+0.06)  0.90 (+0.03) 46 (+7) 0.64 0.62
L641 1.26 (+0.06)  12.13 (+0.04) 0.71 (+0.01) 0.94 (+0.04)  15.67 (+0.06)  0.88 (+0.02) 36 (+6) 0.65 0.65
1642 1.27 (+0.08) 0.67 (+0.01) 0.98 (+0.05)  13.05 (+0.05)  0.79 (+0.04) 37 (1) 0.73 0.69
H643 1.28 (+0.04)  11.67 (+0.02) 0.70 (+0.01) 0.98 (+0.05)  14.08 (+0.04)  0.86 (+0.01) 52 (+3) 0.72 0.66
S644 1.25 (+0.06)  11.35 (+0.02) 0.69 (+0.02) 0.94 (+0.07)  13.53 (+0.05)  0.83 (+0.01) 49 (+4) 0.67 0.74
L645 1.30 (+0.07)  11.62 (+0.06) 0.68 (+0.01) 0.98 (+0.07)  14.68 (+0.06)  0.86 (+0.04) 66 (6) 0.70 0.70
1646 1.30 (+0.04)  11.04 (+0.01) 0.68 (+0.01) 0.98 (+0.04)  13.57 (+0.04)  0.81 (+0.02) 66 (+2) 0.76 0.71
E647 1.31 (x0.05)  10.71 (+0.04) 0.65 (+0.01) 1.00 (+0.05)  13.18 (+0.04)  0.82 (+0.04) 77 (£3) 0.69 0.73
E648 1.36 (+0.05) 8.42 (+0.04) 0.38 (+0.02) 1.09 (+0.05)  10.78 (+0.06)  0.62 (+0.05) 701 (+8) 0.64 0.77
$649 1.39 (+0.05) 7.59 (+0.06) 0.45 (+0.0.02)  1.12 («0.07) 9.23 (+0.02)  0.63 (+0.06) 694 (+10) 0.65 0.68
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Table S2. Cont.

R, (s7") 600 R, (s7") 600 NOE 600 R, (s7') 800 R, (s7') 800 Omniscan 16-DSA

MHz MHz MHz MHz MHz s? e (pS) (2 mMm) (2 mMm)
Q650 1.39 (+0.05) 6.45 (+0.02) 0.33 (+0.01) 1.17 (+0.07)  8.16 (+0.02)  0.47 (+0.02) 749 (+6) 0.61 0.73
N651 1.38 (+0.05) 4.43 (+0.01) 0.32 (+0.01) 1.16 (+0.06) 5.83 (+0.01)  0.28 (+0.05) 873 (+4) 0.56 0.74
Q652 1.30 (+0.03) 2.69 (+0.01)  —0.14 (+0.01) 1.20 (+0.04)  3.61(+0.01)  0.08 (+0.03) 687 (+2) 0.46 0.73
Q653 1.24 (+0.03) 2.14 (+0.02)  —0.37 (+0.01) 1.16 (+0.04)  3.14 (+0.02)  0.07 (+0.04) 623 (+1) 0.48 0.75
E654 1.08 (+0.02) 1.63 (+0.02) —0.71 (x£0.01) 1.06 (+0.03)  2.33 (+0.01)  0.02 (+0.04) 482 (+1) 0.48 0.75
K655 0.83 (+0.02) 1.11 (£0.08)  —1.24 (+0.02) 0.83 (+0.02) 1.92 (+0.01)  0.02 (+0.04) 112 (1) 0.52 0.78

The "N relaxation rates R; and R,, measured at 600 and 800 MHz, are reported as well as the heteronuclear NOE (measured at 600 MHz), the order
parameter §%, and the internal motion correlation times (t.) derived from a Modelfree analysis (1) of the "N spin relaxation data recorded for the Core®
monomer. The attenuation ratios induced by the paramagnetic agents gadodiamide (Omniscan) and 16-doxyl-stearic acid (16-DSA) on the amide cross-peak
intensities of Core® are also reported. All data were recorded in 50 mM sodium acetate (pH 4.0) at 310 K with 100 mM DPC.

1. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. / Am Chem Soc
104(17):4546-4559.

Table S3. Structural statistics for the 20 lowest energy models
of the Core® monomer

rmsd from experimental restraints

(no. of restraints) Value
NOE (465) 0.076 (0.01)
Dihedral (114) 5.7° (0.1)
RDC tensor parameters (no. of RDCs)
Da(NH)/R, NHR 14.4 Hz/0.39
Da(NH)/R, CHR 12.3 Hz/0.26
Fitted "D Q factor (22) NHR 9.6%
Fitted 'D“H* Q factor (22) NHR 8.7%
Fitted 'DN Q factor (20) NHR 10.3%
Fitted 2DMN Q factor (20) NHR 9.9%
Fitted 'DV" Q factor (21) CHR 9.1%
Fitted 'D“*H* Q factor (20) CHR 8.3%
Fitted 'DN Q factor (17) CHR 11.4%
Fitted 2DHN Q factor (17) CHR 10.8%
Average database H bond directional energy -3.9 kT
Average database H bond linearity energy 0.49 kT
Ramachandran statistics
&/ in most favored regions 98.5%
¢/y in additionally allowed regions 1.5%
Atomic rmsd
Backbone heavy atoms (residues 4-64) 0.251 A
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