Supporting Information Accurate measurement of ¹⁵N-¹³C residual dipolar couplings in nucleic acids Christopher P. Jaroniec, Jérôme Boisbouvier, Izabela Tworowska, Edward P. Nikonowicz and Ad Bax **Table S1.** One-bond ¹⁵N-¹³C isotropic J couplings in helix-35ψ. | Nucleotide | 1 J _{N1/9-C1'} (Hz) | $^{1}J_{N1/9-C6/8}$ (Hz) | $^{1}\mathbf{J}_{\text{N1/9-C2/4}}\left(\mathbf{Hz}\right)$ | |--------------|--|-----------------------------|---| | G37 | -10.33 ± 0.19 | $-12.43 \pm 0.23^{\dagger}$ | -18.35 ± 0.38 | | G38 | -9.36 ± 0.04 | -11.76 ± 0.05 | -18.64 ± 0.07 | | G39 | -9.10 ± 0.03 | -11.93 ± 0.03 | -18.43 ± 0.05 | | C40 | -9.72 ± 0.01 | $-13.37 \pm 0.02^{\dagger}$ | -12.79 ± 0.03 | | U41 | -10.00 ± 0.02 | -13.22 ± 0.02 | -17.91 ± 0.03 | | A42 | -9.22 ± 0.02 | $-12.15 \pm 0.03^{\dagger}$ | -18.24 ± 0.05 | | A43 | -9.08 ± 0.02 | -11.75 ± 0.04 | -18.18 ± 0.05 | | U44 | -10.24 ± 0.04 | -13.07 ± 0.03 | -17.82 ± 0.07 | | G45 | -9.85 ± 0.13 | -11.48 ± 0.13 | -18.56 ± 0.21 | | U47 | -11.55 ± 0.06 | -13.22 ± 0.03 | -18.65 ± 0.04 | | G48 | -10.40 ± 0.23 | -11.61 ± 0.03 | -18.93 ± 0.05 | | A49 | -10.70 ± 0.06 | -12.04 ± 0.02 | -18.60 ± 0.04 | | A50 | -10.71 ± 0.19 | -11.84 ± 0.03 | -18.53 ± 0.05 | | A51 | -10.32 ± 0.17 | $-12.47 \pm 0.20^{\dagger}$ | -18.40 ± 0.35 | | A53 | $-9.19 \pm 0.05^*$ | -11.99 ± 0.06 | -18.28 ± 0.10 | | U54 | -9.81 ± 0.02 | -13.11 ± 0.03 | -17.70 ± 0.05 | | U55 | -10.04 ± 0.02 | -13.10 ± 0.03 | -17.70 ± 0.04 | | A56 | -9.43 ± 0.04 | $-12.09 \pm 0.04^{\dagger}$ | -18.34 ± 0.07 | | G57 | -9.19 ± 0.02 | -11.83 ± 0.03 | -18.49 ± 0.05 | | C58 | -9.74 ± 0.01 | $-13.32 \pm 0.02^{\dagger}$ | -12.76 ± 0.03 | | C59 | -9.87 ± 0.01 | -13.57 ± 0.02 | -12.95 ± 0.04 | | C60 | -10.87 ± 0.01 | -13.62 ± 0.02 | -13.31 ± 0.03 | | Adenine (7) | -9.81 ± 0.74 | -12.05 ± 0.23 | -18.37 ± 0.15 | | Guanine (6) | -9.71 ± 0.57 | -11.84 ± 0.33 | -18.57 ± 0.21 | | Cytidine (4) | -10.05 ± 0.55 | -13.47 ± 0.15 | -12.95 ± 0.25 | | Uridine (5) | -10.33 ± 0.70 | -13.14 ± 0.07 | -17.95 ± 0.40 | All ¹J_{N1/9-C6/8} values are obtained from 3D MQ-HCN-QJ (¹J_{N1/9-C1}) and 3D TROSY-HCN-QJ (¹J_{N1/9-C6/8}) experiments, respectively, which are compensated for natural ¹³C abundance effects (see text), unless specified otherwise (see below). The ¹J_{N1/9-C2/4} values are obtained from 3D MQ-HCN-QJ (¹J_{N1/9-C2/4}) and 3D TROSY-HCN-QJ (¹J_{N1/9-C2/4}) experiments and the values reported in the table are *not* corrected for natural ¹³C abundance effects. Based on the ¹J_{N1/9-C1} and ¹J_{N1/9-C6/8} results (see below), the true ¹J_{N1/9-C2/4} couplings are expected to differ from the values in given in the table by approximately -1 Hz, i.e., we expect the average ¹J_{N9-C4} for adenine bases to be ca. -19.4 Hz. For ¹J_{N1/9-C2/4}, average values of 3D MQ-HCN-QJ (¹J_{N1/9-C2/4}) and 3D TROSY-HCN-QJ (¹J_{N1/9-C2/4}) experiments were used where available (pairwise rmsd for a set of 11 couplings measured using both experiments was 0.08 Hz), except for the loop nucleotides U47-A50 where values obtained from the 3D TROSY-HCN-QJ (¹J_{N1/9-C2/4}) experiment are given, due to low S/N of these correlations in 3D MQ-HCN-QJ spectra (see text). Uncertainties were calculated based on the S/N ratios in reference spectra as described in Table 1. Also given are the average J couplings according to nucleotide type, with the number of nucleotides used to calculate the average J value given in parentheses. ^{*} $^{1}J_{NI/9-CI'}$ is obtained by correcting the value obtained from 3D TROSY-HCN-QJ ($^{1}J_{NI/9-CI'}$) experiment by -0.89 Hz. The average difference due to natural ^{13}C abundance effects between the apparent J value obtained using 3D MQ-HCN-QJ ($^{1}J_{NI/9-CI'}$) and TROSY-HCN-QJ ($^{1}J_{NI/9-CI'}$) was J(MQ) - J(TROSY) = -0.89±0.15 Hz for 15 nucleotides, where couplings could be obtained using both methods. $^{^{\}dagger}$ 1 J_{N1/9-C6/8} is obtained by correcting the value obtained from 3D MQ-HCN-QJ (1 J_{N1/9-C6/8}) experiment by -1.44 Hz. The average difference due to natural 13 C abundance effects between the apparent J value obtained using 3D MQ-HCN-QJ (1 J_{N1/9-C6/8}) and TROSY-HCN-QJ (1 J_{N1/9-C6/8}) was J(TROSY) - J(MQ) = -1.44±0.20 Hz for 15 nucleotides, where couplings could be obtained using both methods. **Figure S1.** Simulations of the effect of incomplete 13 C enrichment on measurement of $^{1}J_{NC}$ using MQ-HCN-QJ and TROSY-HCN-QJ methods (see text). Plots of difference, δJ , between the apparent J coupling extracted using Equation 1 of the main text and the actual J coupling are shown for 13 C labeling efficiencies of 99% (solid line), 95% (dashed line) and 90% (dotted line) for target $^{15}N_{-}^{13}$ C J-couplings of 12 Hz (A) and 20 Hz (B). Note that, even though the underestimate of $^{1}J_{NC}$ is relatively large, the error in the measured $^{1}D_{NC}$ results from the difference in $^{1}J_{NC}$, where these errors largely cancel.