Measurement of Three-Bond 13C-13C J Couplings between Carboxyl and Carbonyl/Carboxyl Carbons in Isotopically Enriched Proteins

Jin-Shan Hu and Ad Bax*

Laboratory of Chemical Physics
National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health
Bethesda, Maryland 20892-0520

Received May 15, 1996

Three-bond 13C-13C J couplings have long been recognized as a valuable source of structural information in the study of organic, organometallic, and biological compounds. For 13C-enriched proteins, two different approaches have been proposed for measurement of these couplings: ECOSY and quantitative J coupling. Both approaches benefit from the exceptionally narrow line widths of methyl 13C resonances, and in proteins these measurements therefore have largely been restricted to 3J13C couplings involving 13CH$_3$. Here we demonstrate that the quantitative J correlation approach can also be used for measurement of 3J13C coupling between carboxyl (C') and carbonyl/carboxyl carbons. 3J13C provides direct information on the ϕ backbone angle, and 3J13CC in Asn and Asp residues relates to γ.

Previously, a Karplus curve appropriate for peptides has been proposed on the basis of FPT-INDO calculations. Here we present the first empirical Karplus relation for this coupling based on 3J13CC couplings measured in ubiquitin (76 residues) and ϕ angles from its X-ray structure. Application to apocalmodulin (apo-CAm, 148 residues) confirms the backbone geometry of the first Ca$^{2+}$-binding site and adds new information on the orientations of its three Asp side chains which ligate Ca$^{2+}$ in the bound state.

The experiment (Figure 1) for measuring 1J13CC starts with transfer of magnetization from the amide proton (H$^\beta$) through the 15N to the preceding 13C and is followed by a 13C-13C2 dephasing period prior to magnetization transfer to its long-range coupled 13C2 which subsequently evolves during t_2 and is finally transferred back along the reverse pathway for H$^\gamma$ detection. The pulse scheme is very similar to that of the long-range carbon-carbon correlation experiment and details regarding the magnetization transfer in this class of experiments have been discussed elsewhere. In the present case, after magnetization has been transferred from 15N to its adjacent 13C2 (referred to as source-C, or sC2), it dephases during the time 2τ with respect to carbonyls J coupled to sC2. Exactly analogous to the homonuclear HAB experiment, a fraction

\[
\sin(2\pi J_{13CC}z) \Pi_{k} \cos(2\pi J_{13CC}2k) \text{ of the source-C' magnetization is transferred to the destination C', dC', where the product}
\]

$\Pi_{k} \cos(2\pi J_{13CC}2k)$ remains in-phase with sC' and results from the reverse transfer of C' magnetization between the end of t_1 and the end of the second 2τ period, and the diagonal-cross peak ratio therefore equals $\tan^2(2\pi J_{13CC}2k)$. As ζ is known, J_{13CC} follows directly from the intensity ratio. Strictly speaking, this ratio applies to the volume integrals of the sC' and dC' resonances, as well as the line widths of the two resonances in the 3D spectrum are identical in the 15N (t_1) and $^1H^\beta$ (t_2) dimensions, and the same to within the digital resolution in the C' (t_2) dimension, peak heights are used instead for deriving J_{13CC}.

Experiments were carried out for samples containing 3.5 mg of 13C15N-enriched ubiquitin (pH 4.7; 30 °C) in a 220 µl Shigemi microcell (1.8 mM) at 600 MHz and 10 mg of apoCAm (pH 6.3; 23 °C) in 450 µL (1.3 mM) at 500 MHz. Experiments on ubiquitin were carried out twice, once with 4 scans (Figure 2A) and once with 16 scans per FID (12 h and 2 ms measuring time, respectively). Each strip shows the negative 1H$^\gamma$ “diagonal” peak, corresponding to the 13C of the preceding residue, and positive cross peaks to its long-range coupled 13C2. For most backbone carbonyls, the value of J_{13CC} was measured twice, once with sC' = C2-d and dC' = C', and once vice versa. The pairwise root-mean-square (rms) difference between these measurements was smaller than 0.1 Hz, and the rms pairwise difference between measured J values in the 4-scan and 16-scan experiments was also less than 0.1 Hz (supporting information). Figure 3 shows the averages of these two measurements as a function of the intervening ϕ angles, taken from the ubiquitin X-ray structure. The data were fit to a Karplus curve, yielding

\[
J_{13CC} = 1.33 \cos^2 \phi - 0.88 \cos \phi + 0.62 \text{ Hz (1)}
\]

and a rms difference of 0.18 Hz between measured J_{13CC} values and those predicted by eq 1 when using crystallographic ϕ angles.

Figure 1. Pulse scheme for the 3D HN(CO)CO experiment. Narrow and wide pulses denote 90° and 180° flip angles (except for low power 90°-1H pulses), respectively, and unless indicated the phase is x. Phase cycling: $\phi_1 = x; \phi_2 = 4(\pi_1, 4(\pi), 4(-\pi), 4(-\pi)); \phi_3 = 2(\pi_2, 2(-\pi_2)); \phi_4 = x; \phi_5 = x, -x; \phi_6 = 2(\pi_2, 2(-\pi_2), 2(\pi_2), 2(-\pi_2)).$ Quadrature detection in the t_1 dimension is obtained by altering ϕ_1 in the States-TPPI manner, quadrature in t_2 by States-TPPI phase incrementation of ϕ_4, ϕ_5, and ϕ_6. RF power: $^1H, \gamma B_1 = 27$ kHz (high-power pulses), 220 Hz (low-power pulses), 3.1 kHz (Waltz-16); $^{13}N, \gamma B_2 = 5.3$ kHz, or 1.0 kHz (Waltz-16); $^{13}C, \gamma B_3 = 4.5$ and 4.0 kHz at 151 and 126 MHz; ^{13}CO, G1 180° pulses5 of 400 ms (126 MHz) or 333 µs (151 MHz). Carrier position: $^1H, H_2O (4.79 ppm); ^13C, 177 ppm; ^15N, 117 ppm. Delay durations: $\tau_1 = 2.5$ ms; $\Delta = 5.3$ ms; $\tau_2 = 14.5$ ms; $\tau_3 = 12.5$ ms; $\delta = 32$ ms; $\zeta = 45–55$ ms. Gradients (sine bell shaped): 25 G/cm at center: G1,2,3,4,5,6 = 1.75, 0.8, 0.35, 0.165, 1.35, and 0.5 ms.

Asp 58 in ubiquitin. On the basis of the measurement of 3 mM ubiquitin (600 MHz, $\bar{\omega}$ \sim 33$^\circ$ angles. This difference decreases to 0.16 Hz when using Figure 3. Relation between measured 3$^\circ$ vs 4.1 ns), i.e., 2-fold shorter transverse relaxation times.

angles. Positions of expected 3$^\circ$ cross peaks, but which are below the noise threshold, are marked by (F 2 ,F 3) strips from the 3D HN(CO)CO spectra of (A) 1.8 mM ubiquitin (500 MHz, $\bar{\omega}$ = 45 ms, 12 scans, 48 h), taken at the 1H N /15 N frequencies of Lys 21 , Gly 23 , Gly 25 , Thr 26 , Ile 27 , and Thr 28 . The diagonal C^{\prime} resonance is negative (dashed contours) and corresponds to the C° preceding the amide in the polypeptide. Positions of expected 3$^\circ$ values and crystallographic ϕ-sheet.

This is confirmed by 3$^\circ$CC values of 2.0 (between residues 25 and 26), 1.8 (26 and 27), and <1.2 Hz (27 and 28).

The present report provides the first extensive study of 3$^\circ$CC couplings between carbonyls. Results indicate that 3$^\circ$CC is useful for determining backbone geometry, particularly in combination with 3$^\circ$HNHa values, as it removes the ambiguity around ϕ = -120° in the 3$^\circ$HNHa Karplus curve. Other types of J couplings could also be used for this, 12,14 but as 3$^\circ$CC has its steepest ϕ dependence near ϕ = -120° it is particularly well suited for this purpose. Therefore, the HN(CO)CO experiment is a useful addition to the host of recent experiments for determining backbone ϕ angles. 12,14

Asp and Asn residues frequently play critical roles in intermolecular interactions, and the χ_1 angle information derived from 3$^\circ$CC can be invaluable.

The HN(CO)CO experiment is reasonably sensitive and can be carried out in a few days or less. For proteins with relatively long rotational correlation times, such as apo-CaM (t \sim 8 ns), 15 the experiments are best carried out at frequencies of 500 MHz or below, as at higher field strengths the 13C$^{\circ}$ T2, which is dominated by chemical shift anisotropy, 16 decreases rapidly, adversely affecting sensitivity.

Acknowledgment. We thank F. Delaglio and D. Garrett for software, S. Grzesiek, A. C. Wang, J. Marquardt, N. Tjandra, and H. Kuboniwa for help and sharing data on ubiquitin and apo-CaM, and M. Barfield for useful suggestions. This work was supported by the AIDS Targeted Anti-Viral Program of the Office of the Director of the National Institutes of Health. J.-S.H. is supported by a postdoctoral fellowship from the Cancer Research Institute, New York, NY.

Supporting Information Available: One table, containing the 3$^\circ$CC couplings measured in human ubiquitin, and one figure showing the correlation between 3$^\circ$CC couplings measured from a 4-scan and a 16-scan HN(CO)CO spectrum (4 pages). See any current masthead page for ordering and Internet access instructions.

JA9616239

