
Journal of Biomolecular NMR, 6 (1995) 277 293 277
ESCOM

J-Bio NMR 305

NMRPipe: A multidimensional spectral processing system
based on UNIX pipes*

F r a n k D e l a g l i o ~'**, S t e p h a n G r z e s i e k ~, G e e r t e n W. Vuis te r b, G u a n g Z h u r J o h n Pfe i fer d a n d A d Ba x a

"Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, MD 20892, U.S.A.

~Bijvoet Center for Biomolecular Research, Utrecht Universit); Padualaan 8, 3584 CH Utrecht, The Netherlands'
'Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

aDivision of Computer Research and Technology, National Institutes of Health, Bethesda, MD 20892, U.S.A.

Received 24 May 1995
Accepted 31 July 1995

Keywords." Multidimensional NMR; Data processing; Fourier transformation; Linear prediction; Maximum entropy; UNIX

Summary

The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools
designed to meet current routine and research-oriented multidimensional processing requirements, and
to anticipate and accommodate future demands and developments. The system is based on UNIX pipes,
which allow programs running simultaneously to exchange streams of data under user control. In an
NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs,
each of which performs one component of the overall scheme, such as Fourier transformation or linear
prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts.
The processing modules themselves maintain and exploit accurate records of data sizes, detection modes,
and calibration information in all dimensions, so that schemes can be constructed without the need to
explicitly define or anticipate data sizes or storage details of real and imaginary channels during process-
ing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility,
favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation
to different data formats, simpler software development and maintenance, and the ability to distribute
processing tasks on multi-CPU computers and computer networks.

Introduction

As use of multidimensional N M R has become wide-
spread, demands on multidimensional spectral processing
software have increased. Software must keep pace both
with N M R applications research, and with the routine use
o f N M R for biomolecular structure determination. Rou-
tine use requires software to accommodate increasing
numbers of experiments, larger data sizes, more compli-
cated processing schemes, and common use of 4D N M R
(Pelczer and Szalma, 1991; Bax and Grzesiek, 1993).
Various vendor-specific modes o f quadrature detection

and data storage must also be addressed. At the same
time, N M R technique developrfient research requires soft-
ware to serve as a platform for testing and evaluation of
new experiments and acquisition methods, as well as new
spectral analysis and enhancement approaches.

The user community for multidimensional processing
software is also changing, and many practitioners o f bio-
logical N M R are not necessarily familiar with N M R
computer applications or signal processing. In addition,
there are generally increasing expectations for software
that is graphically oriented, error-free, and works har-
moniously with other applications on a variety o f net-

*Availability: The NMRPipe system is available via a secured-access anonymous ftp site. For details on retrieving the software, send a request
by electronic mail addressed to 'delaglio@helix.nih.gov'.
**To whom correspondence should be addressed at: National Institutes of Health, Laboratory of Chemical Physics, NIDDK, Building 5 B2-31,
5 Center Drive MSC 0505, Bethesda, MD 20892-0505, U.S.A.
Abbreviations: 1D, 2D, 3D, one-, two-, three-dimensional; nD, multidimensional; CPU, central processing unit; FID, free induction decay; I/O,
input/output; LP, linear prediction; MEM, maximum entropy method; Mb, megabyte; NOE, nuclear Overhauser effect.

0925-2738/$ 6.00 + 1.00 �9 1995 ESCOM Science Publishers B.V.

278

worked computers. Correspondingly, current software
development approaches often favor creation of several
small, well-targeted applications, coordinated by standard
graphics and command tools.

We present here the NMRPipe system, a comprehen-
sive new multidimensional NMR data processing system
that addresses the growing needs for ease of use, ef-
ficiency, and flexibility of multidimensional spectral pro-
cessing in the laboratory network. The NMRPipe system
is a UNIX pipeline-based software environment for multi-
dimensional processing, coordinated with spectral graphics
and analysis tools. The system was implemented in the C
programming language (Kernighan and Ritchie, 1988),
using the program development tools of UNIX (Kerni-
ghan and Pike, 1984).

Several other multidimensional NMR data processing
packages have been developed over the past decade, in-
cluding the popular FELIX (Biosym Technologies Inc.,
San Diego, CA), as well as AZARA (W. Boucher, unpub-
lished results), Dreamwalker (Meadows et al., 1994),
GIFA (Delsuc, 1989), NMR Toolkit (Hoch, 1985),
NMRZ (New Methods Research Inc., Syracuse, NY),
Pronto (Kjaer et al., 1994), PROSA (Giintert et al.,
1992), and TRIAD (Tripos Inc., St. Louis, MO). The
NMRPipe system incorporates a novel approach to spec-
tral processing that is complementary to other methods,
and provides many advantages. Spectral processing is
performed using modules connected by UNIX pipes,
which allow programs running simultaneously to ex-
change streams of data under user control. In this ap-
proach, a stream of spectral data flows through a pipeline
of processing programs, each of which performs one
component of the overall scheme, such as Fourier trans-
formation or mirror-image linear prediction.

The processing programs of the NMRPipe system
work in the same way as ordinary UNIX commands; this
means that complete multidimensional processing schemes
can be constructed as standard UNIX command scripts,
which are easy to learn and manipulate. The pipeline
approach provides favorable processing speeds, while at
the same time allowing the choice of both all-in-memory
and disk-bound processing, easy adaptation of new al-
gorithms and differing data formats, and simpler software
development and maintenance. Since processing is a-
chieved via a series of programs running simultaneously,
the NMRPipe pipeline approach also provides a way to
exploit the capabilities of multiprocessor computers or to
distribute processing tasks across a network.

In addition to the general advantages of the pipeline
approach, there are other advantages that arise from
specific details of NMRPipe's implementation. For ex-
ample, the components of NMRPipe are engineered to
maintain and exploit accurate records of data size, detec-
tion mode, calibration information, and processing para-
meters in all dimensions. This means that schemes can be

created and reused easily, since parameters can be spec-
ified in terms of spectral units, and there is no need to
explicitly define or anticipate data sizes during processing.
The parameter record atso allows NMRPipe modules to
assemble the correct combination of real and imaginary
data for a given dimension automatically; this permits
dimensions to be processed and reprocessed in any order
with schemes that are generally the same, regardless of
acquisition mode and vendor-specific storage details.

Methods

The NMRPipe approach relies on the UNIX operating
system concepts of data streams, filters, and pipes, so
these are discussed in some detail here. By necessity, these
concepts are becoming increasingly familiar to the bio-
molecular NMR community, since modern spectrometers
are commonly controlled by UNIX computers, and mol-
ecular structures are usually generated and visualized on
UNIX workstations.

UNIX commands and filters
UNIX has no strong distinction between commands

built into the operating system and programs that are
part of 'external' applications such as spectral processing.
This means that application programs can potentially be
used like ordinary UNIX commands, and the standard
UNIX facilities for combining and manipulating them can
be exploited. For example, one or more UNIX commands
can be placed into an ordinary text file, called a shell
script. Such a shell script can then be executed by its
name, just as if it were also a UNIX command.

A UNIX filter is a general term for a command or
program that reads input, processes it in some way, and
produces an output. One example of a filter is the UNIX
command sort, which reads lines of text and writes them
out again sorted in alphabetical order. Another example
is the UNIX command tr, which translates characters
(e.g. from upper-case to lower-case) in its input before
writing them. Depending on the nature of the task in-
volved, UNIX filters may read and process their input
data in small parts, such as tr (which can process one
character at a time), or in its entirety, such as sort (which
must read the entire input first in order to sort it).

In UNIX terminology, a filter's source of input data is
called standard input and its destination for output data
is called standard output. By default, standard input is
data entered from the keyboard, and standard output is
data displayed on the computer screen. UNIX allows
filters to take their input from an existing file instead of
the keyboard; this is called input redirection, and it is
performed using the < character. Correspondingly, filters
can send their output to a file instead of to the screen;
this is called output redirection, and it is performed using
the > character. The following two UNIX commands

show examples of redirection. The first command sorts
the lines in file 'old.text', and writes the sorted results to
file 'newl.text'; the second command converts the text in
file 'newl.text' from lower-case to upper-case, and stores
the result in file 'new2.text':

sort < old.text > newl.text
tr 'a-z' 'A-Z' < newl.text > new2.text

Commands like these illustrate the concept of a data
stream, where data 'flows' from an input source, travels
through a filter, and collects at an output destination.

UNIX command-line arguments
The use and behavior of a UNIX command can be ad-

justed by command-line arguments, which are additional
parameters specified after the command. The parameters
are usually identified by words or letters prefixed by the
- character. For instance, while the UNIX command sort
will sort text in alphabetical order, adding the argument
-r will cause text to be sorted in reverse alphabetical
order:

sort -r < old.text > newl.text

Each UNIX command has its own list of possible com-
mand-line arguments, which are described in the com-
mand's manual page, a brief document (but often more
than one page) that is available on-line. UNIX manual
pages have a standard format, and new manual pages can
be added easily, so that application programs can make
use of the same on-line help system used by other UNIX
commands.

UNIX pipes
UNIX pipes allow commands to be connected together

in a series, where the output of one command is used
directly as the input to the next command. A series of
programs connected in this way is often called a pipeline.
A pipe is specified in a UNIX command line by the I
character inserted between commands. For example, we
can combine the sorting and character translation com-
mands into a single pipeline:

sort < old.text I tr 'a-z' 'A-Z' > new2.text

In this pipeline, data travels from the input file through
the sort filter, and the sorted result travels via a pipe
through the tr filter and then to the output file. As
shown, pipes allow simple commands to be combined to
perform complex tasks, while avoiding the need for inter-
mediate results to be saved in files. Pipeline communica-
tion is also relatively fast, since UNIX pipes are generally
implemented via physical memory buffers in the operating
system (Stevens, 1992).

279

Pipelines, like UNIX command lines in general, can be
split over several lines of text. This is especially useful
when the pipeline contains many components. In the
UNIX idiom, the \ character is used at the end of a line
to continue a command onto the next line. For example,
a functionally equivalent version of the sort pipeline de-
scribed above could be entered as follows:

sort < old.text \
] tr 'a-z' 'A-Z' > new2.text

Spectral processing function as a UNIX filter
The concept of a UNIX filter command can be exten-

ded directly to spectral processing. By analogy, a spectral
processing function can be implemented as a UNIX filter,
which reads an input stream of unprocessed spectral data
vectors, applies a spectral processing function to each vec-
tor, and writes the result as a stream of processed vectors.
We have implemented this concept as a program called
nmrPipe, the central module of the NMRPipe system.

The nmrPipe program applies a given processing func-
tion to a stream of spectral data. The processing function
is selected via a 'function name' argument -fn, and corre-
sponding processing modes and parameters are specified
by other optional command-line arguments. For example,
the following three commands are filters that apply a
forward Fourier transform (FT), an inverse Fourier trans-
form, and a 90-degree zero-order phase correction (PS),
respectively:

Forward transform filter:
Inverse transform filter:
Phase correction filter:

nmrPipe -fn FT
nmrPipe -fn FT -inv
nmrPipe -fn PS -p0 90

The required input stream for nmrPipe consists of a
header describing the data, followed by the binary data
vectors themselves, usually in a sequential order. The
output stream consists of the header, which is updated to
reflect processing, followed by the processed data vectors.
The stream format is meant to resemble the contents of
an ordinary 2D file plane, so that such a file can be used
directly with nmrPipe.

As with other UNIX flters, nmrPipe reads and writes
streams via standard input and standard output, but for
convenience explicit input and output file names can be
specified by the command-line arguments -in and -out.
For example, the following two commands perform the
same task; they both apply a Fourier transform to all the
data vectors in file 'spec.fid', and save the result in file
'spec.ft':

nmrPipe -fn FT < spec.fid > spec.ft
nmrPipe -fn FT -in spec.fid -out spec.fl

The nmrPipe program includes implementations of many

280

c o m m o n 1D p r o c e s s i n g func t ions , as well as severa l o t h e r

useful e l ement s ; these a re l is ted in Table 1, a n d severa l

are d i scussed in m o r e de ta i l below.

TABLE 1
PROCESSING FUNCTIONS OF THE nmrPipe PROGRAM a

Spectral processing scheme as a U N I X pipeline
T h e c o n c e p t o f a spec t r a l p r o c e s s i n g f u n c t i o n per-

f o r m e d as a U N I X fil ter leads d i rec t ly to the idea o f a

Name Function Comments

NULL Null function
MAC Macro interpreter

FT Fourier transform
HT Hilbert transform
LP Linear prediction b
MEM Maximum entropy method r

EM Exponential window
GM Lorentzian/Gaussian window
TM Trapezoid window
SP Sine to a power window

ZF Zero-fill
EXT Extract a region
PS Phase correction
MC Modulus calculation

SOL Solvent filter
POLY Polynomial solvent filter
POLY Polynomial base-line correction
MED Model-free base-line correction
BASE Linear base-line correction
CBF Constant FID correction
QART Quad artefact reduction ~
SMO Smoothing filter

TP 2D X/Y transpose
YTP 2D X/Y transpose
ZTP 3D X/Z transpose
ATP 4D X/A transpose

REV Reverse data
LS Left shift
RS Right shift
CS Circular shift
FSH Shift via Fourier transform
SHUF Various shuffling functions
SIGN Various sign manipulations
DX Derivative
INTEG Integral
COAD Co-addition of data
ZD Zero diagonal region
SET Set data to constant
ADD Add a constant
MULT Multiply by a constant

No change to data
User-written functions in a subset of C

Complex, real, inverse, sign adjust, auto mode, etc.
Ordinary, mirror image, auto mode
Forward-backward c, mirror image d, etc.
Prototype, 1D to 4D, two channel ~, deconvolution g

First point scaling, inverse mode
First point scaling, inverse mode
First point scaling, inverse mode
First point scaling, inverse mode

Inverse mode
By points, Hz, ppm, %, or left, right, etc.
Frequency shift, inverse mode
Modulus or power spectrum

Time-domain convolution"
Time-domain polynomial subtractioff
Manual or automatid, all or selected region
Automatic median method k
Manually selected series of regions
DC correction of FID
Manual or automatic
Adjustable filter length and coefficients

In-memory; identical to YTP
In-memory, all combinations of real and complex data
In-memory, all combinations of real and complex data
In-memory, all combinations of real and complex data

Updates calibration
Updates calibration
Updates calibration
Updates calibration, can invert signs of shifted data
Provides non-integer shifts
Complex interleave, byte swap, etc.
Negate all, negate half, sign alternate, etc.

Linear combination of points, vectors, or planes
Adjustable diagonal slope, width, and offset
All data or specified region
All data or specified region
All data or specified region

a Several functions are described in more detail in the Appendix.
b Kumaresan and Tufts, 1982; Barkhuijsen et al., 1985,1987; Stephenson, 1988; Hoch, 1989; Olejniczak and Eaton, 1990; Zhu and Bax, 1992a.
c Delsuc et al., 1987; Zhu and Bax, 1992b.
d Zhu and Bax, 1990.

Maximum Entropy Reconstruction (Sibisi, 1983; Skilling and Bryan, 1984; Hore, 1985; Laue et al., 1985a; Stephenson, 1988; Kauppinen and
Saario, 1993; Schmieder et al., 1994) is implemented according to the method of Gull and Daniell (Gull and Daniell, 1978; Wu, 1984).

f Laue et al., 1985b; Hoch et al., 1990.
g Ni and Scheraga, 1986; Ni et al., 1986; Mazzeo et al., 1989.
h Marion et al., 1989a.

Callaghan et al., 1984.
Details of automated base-line detection are given in the Appendix entry for function POLY.

k Friedrichs, 1995.
t Parks and Johannesen, 1976; the automated mode uses a grid search to minimize the integral of an interactively selected artefact.

281

bruk2pipe -in ser \ Spectrometer-Format Input

-xN 1024 -yN 104 -zN 64 \ Total Points in File

-xT 512 -yT 52 -zT 32 \ Complex Points Acquired
-xMODE Complex -yMODE Complex -zMODE Complex \ Acquisition Mode
-xSW 7575.76 -ySW 8445.95 -zSW 1515.15 \ Spectral Width, Hz
-xOBS 500.130 -yOBS 125.76 -zOBS 50.6800 \ Observe Frequency, MHz
-xCAR 4.683 -yCAR 46.0 -zCAR 117.00 \ Carrier Position, PPM
-xLAB HN -yLAB CACB -zLAB N \ Axis Labels

-ndim 3 -aq2D States \ Dimension Count, 2D Mode
-out fid/cbcaconh%03d.fid -verb -ov Output File Series

Fig. 1. Annotated format conversion script used for a 3D CBCA(CO)NH FID acquired on a Bruker AMX spectrometer. The general form of
the conversion script is the same for other spectrometers. Parameters for each dimension are specified via arguments prefixed by -x, -y, -z, and
-a for the X-axis, Y-axis, Z-axis, and A-axis of the data. In order to accommodate padding that may have been performed by the spectrometer,
there are separate parameters for the number of points stored in the input file and the number of points actually acquired. The acquisition modes
are specified by keywords such as 'Sequential' (Redfield and Kunz, 1975), 'Complex' or 'States' (States et al., 1982), 'TPPI' (Marion and Wiithrich,
1983), 'States-TPPI' (Marion et al., 1989b), etc., which define the Fourier transform mode and sign manipulation required; chemical shift
calibration parameters are also recorded. The NMRPipe format output series is specified by the argument -out. Complete argument details are
given in the Appendix.

spectral processing scheme implemented as a UNIX pipe-
line; this is the central concept of the NMRPipe system.
In this method, spectral data flows through a pipeline of
processing filters, each performing one aspect of the pro-
cessing scheme. In practice, this is achieved by using
multiple instances of the nmrPipe program, each with
different command-line arguments to select a processing
function and optional parameters. For example, the fol-
lowing scheme applies a sinusoid-to-a-power window
function (SP), zero-fill (ZF), Fourier transform (FT), and
deletes the imaginary part of the result (-di). In the ab-
sence of additional arguments, the processing functions in
this scheme use default parameters, so that the SP func-
tion applies a sine bell, the ZF function doubles the data
size, and the FT function applies a complex forward
transform:

nmrPipe -fn SP -in spec.fid \
] nmrPipe -fn ZF \
] nmrPipe -fn FT -di -out spec.ft

Considered in more detail, this scheme consists of three
instances of nmrPipe, connected by pipes, and running
'simultaneously'. This means that the UNIX operating
system will alternate CPU time and other resources be-
tween the instances of nmrPipe while the scheme is ex-
ecuting. During execution, the first instance of nmrPipe
reads a data vector from the input file 'spec.fid', applies
the window function SR and writes the result vector to
the pipeline. The second instance of nmrPipe reads the
apodized vector from the pipeline when it becomes avail-
able, applies zero-filling, and writes the result to the next
stage of the pipeline. The third instance of nmrPipe reads
the apodized, zero-filled vector from the pipeline when it
becomes available, applies a Fourier transform, and

writes the result to file 'spec.ft'; meanwhile, the earlier
instances of nmrPipe may have already begun to read and
process the next vector. This procedure continues until all
vectors have passed through the pipeline.

Spectrometer format conversion
Many of the advantages of the NMRPipe system stem

from the fact that relevant acquisition parameters for all
dimensions are established during conversion of data
from the spectrometer format to the NMRPipe format. A
typical 3D conversion script is given in Fig. 1. As shown,
the conversion establishes the acquisition modes, data
sizes and chemical shift calibration information for each
dimension. The parameters are usually entered manually,
but most of these could be extracted automatically from
spectrometer parameter files (D. Benjamin, private com-
munication).

The conversion programs themselves have been engin-
eered to compensate for vendor-specific differences in the
way that real and imaginary data are interleaved for each
dimension, so that the converted result always provides
the real and imaginary data for all dimensions in a pre-
dictable order. This allows subsequent processing schemes
to be independent of spectrometer vendor. Currently, the
NMRPipe system includes conversion facilities for GE
Omega export format, JEOL GX and Alpha formats,
Chemagnetics format, Varian Unity format, and Bruker
AM, AMX, and DMX formats.

Like nmrPipe, the conversion programs are also imple-
mented as UNIX filters. This means that the output
stream of a conversion command can be sent directly into
a processing pipeline, without the need to save an inter-
mediate converted result on disk. It also means that a
conversion program can read data produced by another
pipeline command as an alternative to reading data di-

282

rectly from a file. One useful example of this is the ability
to convert data directly from a tape drive by using a tape
reading command (such as the UNIX command dd) as
the data source. Another example is the ability to convert
versions of spectrometer data that were compressed to
save space, by using a decompression command (such as
the UNIX command zeat) as the data source.

Multidimensional processing via pipelines
The NMRPipe system includes two approaches to

extend the pipeline method to multiple dimensions. One
approach is to insert an appropriate matrix transpose
command into the interior of a processing pipeline.
Another approach is to use commands at the beginning
or end of the pipeline that are capable of reading or
writing vectors from an arbitrary dimension of a multidi-
mensional spectrum. The two approaches can be used
separately or in combination.

In a pipeline, a transpose function acts like a reservoir,
which accumulates an intermediate result in memory
before sending the transposed version down the remainder
of the pipeline. Therefore, functions before a transpose
receive and process a stream of vectors from a given
dimension, and functions after the transpose receive and
process a stream of vectors from the exchanged dimen-
sion. Depending on which dimensions are being ex-
changed, a transpose function may require only enough
memory for a 2D plane from the data, or it may require

enough memory for an entire 3D or 4D matrix, so it is
not generally applicable.

As noted above, the pipeline approach can be extended
to multidimensional processing simply by adding two
kinds of modules, as an alternative to in-memory trans-
pose. The first module is a program at the head of the
pipeline, which creates a data stream by reading vectors
from a given dimension of a multidimensional input. The
second module is a program at the tail of the pipeline,
which gathers processed vectors and writes them to a
given dimension of a multidimensional output. We have
implemented two such programs, xyz2pipe and pipe2xyz,
which are suitable for reading and writing multidimen-
sional data in the multifile 2D plane format suggested by
Kay et al. (1989). The programs take their names from
the nomenclature X-axis, Y-axis, Z-axis, A-axis, etc.,
which we use to describe the dimensions of the spectral
data. Correspondingly, the dimension to be read or writ-
ten is specified simply as a command-line argument -x, -y,
-z, or -a. When reading or writing from a given dimen-
sion, the programs alter the sequential order of the other
dimensions in the data stream in a regular, predictable
way, by a multidimensional rotation. This means that
schemes can be created to conserve the original data
order, or change it to accommodate a particular process-
ing or analysis strategy. The programs require at most
enough physical memory to contain only four or so 2D
planes from the data. In addition, the programs have

xyz2pipe -in fid/hnco%03d.fid -x
nmrPipe -fn SOL

nmrPipe -fn
nmrPipe -fn

nmrPipe -fn

nmrPipe -fn
nmrPipe -fn

nmrPipe -fn

nmrPipe -fn
nmrPipe -fn
nmrPipe -fn

-verb

SP -off 0.4 -end 0.98 -pow 2

ZF
FT

PS -p0 43 -pl 0.0 -di
EXT -xl llppm -xn 5.5ppm -sw

TP
SP -off 0..4 -end 0.95 -pow 1
ZF

FT

nmrPipe -fn PS -p0 -90 -pl 180 -di
pipe2xyz -out ft/hnco%03d.ft2 -y

-c 0.5

xyz2pipe -in ft/hnco%03d.ft2 -z -verb \
I nmrPipe -fn SP -off 0.4 -end 0.95 -pow 1 -c 0.5 \
I nmrPipe -fn ZF \
I nmrPipe -fn FT \
I nmrPipe -fn PS -p0 0.0 -pl 0.0 -di \
I pipe2xyz -out ft/hnco%03d.ft3 -z

\ Read Vectors from X-Axis
\ Solvent Filter

\ Window, ist Point Scale

\ Zero Fill
\ Fourier Transform

\ Phase, Delete Imaginaries
\ Extract Amide Region
\ 2D Transpose X/Y

\ Window
\ Zero Fill

\ Fourier Transform

\ Phase, Delete Imaginaries

Write Vectors to Y-Axis

Read Vectors from Z-Axis
Window, Ist Point Scale
Zero Fill
Fourier Transform
Phase, Delete Imaginaries
write Vectors to Z-Axis

Fig. 2. Annotated processing script for 3D amide proton-detected data, illustrating the use of 2D transpose. In this scheme, the X-axis and Y-axis
are read, processed, and written in the first pass, and the Z-axis is read, processed and written in the second pass. Each pass consists of a pipeline
beginning with the xyz2pi~ program and ending with the pipe2xyz program; these programs use the arguments -x, -y, -z, and -a to specify which
dimension is being read or written. The input and output file series are specified by the template arguments -in and -out. Complete argument details
are given in the Appendix.

283

bruk2pipe -in

nmrPipe -fn

nmrPipe -fn
nmrPipe -fn

nmrPipe -fn

nmrPipe -fn

nmrPipe -fn

nmrPipe -fn

pipe2xyz -out

ser $ARGS \

SP -off 0.35 -end 0.95 -pow 2 -c 0.5 \

ZF -size 512 \

FT -di \

TP \

SP -off 0.35 -end 1.0 -pow 1 -c 0.5 \

ZF -size 128 \

FT -di \

ft/noe%02d%03d. DAT -y

xyz2pipe -in ft/noe%02d%03d. DAT -z -verb \

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \

I nmrPipe -fn ZF -size 64 \

I nmrPipe -fn FT -di \

I pipe2xyz -out ft/noe%02d%03d. DAT -z -inPlace

xyz2pipe -in ft/noe%02d%03d. DAT -a -verb \

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \

I nmrPipe -fn ZF -size 64 \

I nmrPipe -fn FT -di \

I pipe2xyz -out ft/noe%02d%03d. DAT -a -inPlace

Convert Bruker Format

Window, Scale Ist Point

Zero Fill

Fourier Transform

2D Transpose X/Y

Window, Scale ist Point

Zero Fill

Fourier Transform

Write Vectors to Y-Axis

Read Vectors from Z-AXis

Window

Zero Fill

Fourier Transform

Write Vectors to Z-AXis

Read Vectors from A-Axis

Window

Zero Fill

Fourier Transform

Write Vectors to A-Axis

Fig. 3. Annotated 4D format conversion and processing script for a 256* x 64* x 16" x 16" point 4D ~3C-J3C correlated IH-IH NOE FID, illustrating
the use of 2D transpose (the asterisks denote complex data). Acquisition parameters have been abbreviated by $ARGS and phase correction steps
have been omitted to save space. In this scheme, the results of the format conversion program brnk2pipe are sent directly to the processing pipeline
without the need to save an intermediate converted FID on disk. The size of the final result is 512 x 128 x 64 x 64 points. Processing time: 8 h and
20 min on a Sun Sparc 10 workstation.

been engineered to allow in-place processing (i.e., same
input and output files), and to provide the correct combi-
nations of real and imaginary data so that dimensions can
be processed in any order.

In the simplest multidimensional scheme, each dimen-
sion of the data is processed in a separate pass, which
requires reading the entire input from disk, and writing
the entire result. Such a scheme can be simplified and
made more efficient by adding one or more in-memory
transpose steps, which eliminates the need to save an
intermediate result on disk. A typical 3D processing script
employing a 2D transpose approach is shown in Fig. 2.
In this script, the X-axis and Y-axis are processed to-
gether in the first pass, after which the Z-axis is processed
in a second pass. Such a script represents an effective
compromise between disk access and physical memory
use, since in practice only a small number of 2D planes
are being manipulated in memory at any given time by
the various programs in the pipeline. If large amounts of
physical memory are available, schemes with 3D or 4D
in-memory transpose steps can also be constructed, again
reducing the need to save intermediate results. The overall
approach provides basic multidimensional schemes, which
require only modest amounts of memory for 3D or 4D
processing, but which can be altered easily to take advan-
tage of large memory systems. Complementary examples
in the case of 4D processing are given in Figs. 3 and 4.

The script shown in Fig. 3 converts and processes a 4D
spectrum in three passes, using only 2D in-memory trans-
pose. In this case, the spectrometer format conversion, X-
axis processing, and Y-axis processing are all performed
in the first pass, the Z-axis is processed in the second
pass, and the A-axis is processed in the third pass. The
corresponding script in Fig. 4 performs the same process-
ing, but it has been rearranged so that the spectrum is
processed in only two passes by the addition of a 3D in-
memory transpose function. The first pass performs the
spectrometer format conversion and the processing for the
X-, Y- and Z-axes. The A-axis is processed in the second
pass. As these examples show, in-memory processing is
achieved at the discretion of the user, simply by use of
appropriate transpose functions. Only minor alteration of
a given processing scheme is needed, and no reconfigur-
ation or recompilation of the software is required. In-
stead, the transpose functions, like all other functions of
the NMRPipe system, allocate suitable amounts of mem-
ory automatically.

Processing functions and options
The NMRPipe system utilizes a relatively small num-

ber of processing functions, but these are augmented by
a variety of modes and options; the processing functions
listed in Table 1 and in the Appendix include over 300
options and parameters. For example, the functions

284

bruk2pipe -in ser SARGS \ Convert Bruker Format

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 2 -c 0.5 \ Window, Scale ist Point
I nmrPipe -fn ZF -size 512 \ Zero Fill

I nmrPipe -fn FT -di \ Fourier Transform

] nmrPipe -fn YTP \ 2D Transpose X/Y

I nmrPipe -fn SP -off 0.35 -end 1.0 -pow 1 -c 0.~ \ Window, Scale Ist Point
I nmrPipe -fn ZF -size 128 \ Zero Fill

I nmrPipe -fn FT -di \ Fourier Transform

I nmrPipe -fn ZTP \ 3D Transpose X/Z

I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \ Window
I nmrPipe -fn ZF -size 64 \ Zero Fill

I nmrPipe -fn FT -di \ Fourier Transform

I pipe2xyz -out ft/noe%02d%03d.DAT -z Write Vectors to Z-Axis

xyz2pipe -in ft/noe%02d%03d. DAT -a -verb \ Read Vectors from A-Axis
I nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1 -c 1.0 \ Window
I nmrPipe -fn ZF -size 64 \ Zero Fill

I nmrPipe -fn FT -di \ Fourier Transform

I pipe2xyz -out ft/noe%02d%03d. DAT -a -inPlace Write Vectors to A-Axis

Fig. 4. Annotated 4D format conversion and processing script for a 256* x 64* x 16" x 16" point 4D 13C-13C correlated fHSH NOE FID, illustrating
the use of both 2D and 3D transpose. Acquisition parameters have been abbreviated by $ARGS and phase correction steps have been omitted
to save space. This scheme performs the same processing as the script shown in Fig. 3, but in this version, a 3D in-memory transpose is used to
avoid saving one of the intermediate results. The size of the final result is 512 x 128 x 64 x 64 points. Processing time: 7 h and 55 min on a Sun Sparc
10 workstation.

POLY (polynomial fitting) and LP (linear prediction)
each have a wide collection of parameters, which allows
them to perform many tasks. The POLY function can be
used as a solvent filter in the time domain, as well as for
manual or automated correction according to a reliable
in-house algorithm, and the corrections can be limited to
selected spectral regions if desired. The linear prediction
function LP can be used to predict points in either the
start, end, or interior of existing data, in backward, for-
ward or mixed forward-backward mode, with or without
mirror-image methods and root reflection. In addition to
this flexibility, the LP function has also been implemented
using a matrix inversion procedure instead of the iterative
(and often unstable) root-searching approach, making it
especially robust (G. Zhu and A. Bax, unpublished re-
sults).

The NMRPipe processing functions make extensive use
of default parameter settings. This helps to make argu-
ment lists more concise, since individual parameters can
be adjusted while leaving default settings intact. For
example, when used with no other arguments, LP will
apply linear prediction and root reflection with eight
complex coefficients to extend the original data to twice
its size. The number of coefficients (the LP order) can be
changed via the -ord option, and the number of predicted
points can be changed independently via the -pred para-
meter. Mirror-image LP can be selected simply by adding
either flag -ps0-0 or -ps90-180 to any LP command line,

depending on whether data have no acquisition delay, or
a half-dwell delay.

Many of the functions exploit or update the spectral
header parameters during processing. For example, apod-
ization, zero-filling, and phase correction details are re-
corded, and chemical shift calibrations can be updated
automatically by any function that extracts or shifts the
data. The functions also keep track of the valid time-
domain size of the data, as influenced by time-domain
shifts or frequency-domain extractions. Where appropri-
ate, parameters can be specified in ppm or Hz as well as
in points.

Inverse processing
Multidimensional enhancement schemes commonly call

for inverse processing, so several functions have been
implemented with an inverse mode for convenience. For
instance, window functions support an inverse mode that
divides by the window function, and zero-filling supports
an inverse mode that strips away previous zero padding.
These conveniences make it possible to construct compli-
cated inverse processing protocols concisely, and if para-
meters are selected appropriately, the original data can
commonly be recovered to a precision of better than one
part in 105. Examples are given in Figs. 5 and 6, which
show forward/inverse processing scripts for applying lin-
ear prediction and Maximum Entropy reconstruction in
the two indirectly detected dimensions of a 3D spectrum.

285

In the case of the LP scheme in Fig. 5, forward and in-

verse processing is used to minimize the number of signals

that must be predicted in any given vector in order to

increase the predict ion's stabili ty and incidentally decrease

the time required (Kay et al., 1991). In the case of the
M E M scheme in Fig. 6, forward and inverse processing

is used to allow a more stable au tomated base-line correc-
tion by using da ta processed with window functions,

before da ta is reprocessed without window functions for

Maximum Entropy reconstruction.

New capabilities and data formats
One o f the special advantages of the pipeline approach

is the ease and flexibility with which new capabili t ies and

data formats can be implemented. The p r imary da ta
format of the N M R P i p e system consists o f one or more

2D file planes, each with a 2048-byte header, followed by

four-byte f loat ing-point spectral da ta values in a sequen-
tial order. Other mult idimensional da ta formats can be

adapted simply by use o f alternative programs to read or

write da ta at the head or tail o f a pipeline; the submatr ix

xyz2pipe -in fid/cbcanh%03d.fid -x -verb

nmrPipe -fn POLY -time

nmrPipe -fn SP -off 0.4 -end 0.98 -pow 2

nmrPipe -fn ZF -auto

nmrPipe -fn FT

nmrPipe -fn PS -p0 125 -pl 0 -di

nmrPipe -fn EXT -xl 10.3ppm -xn 5.9ppm -sw

pipe2xyz -out ft/cbcanh%03d.ft3 -x

xyz2pipe -in ft/cbcanh%03d, ft3 -z -verb

I nmrPipe -fn SP -off 0.4 -end 0.95 -pow 1

I nmrPipe -fn ZF -auto

I nmrPipe -fn FT

I nmrPipe -fn PS -p0 -90 -pl 180 -di

I pipe2xyz -out ft/cbcanh%03d.ft3 -z -inPlace

xyz2pipe -in ft/cbcanh%03d.ft3 -y -verb

nmrPipe -fn LP -ps90-180 -ord 16

nmrPipe -fn SP -off 0.4 -end 0.98 -pow 1

nmrPipe -fn ZF -auto

nmrPipe -fn FT

nmrPipe -fn PS -p0 -90 -pl 180 -di

pipe2xyz -out ft/cbcanh%03d.ft3 -y -inPlace

xyz2pipe -in ft/cbcanh%03d.ft3 -z -verb

nmrPipe -fn HT -auto

nmrPipe -fn PS -inv -hdr

nmrPipe -fn FT -inv

nmrPipe -fn ZF -inv

nmrPipe -fn SP -inv -hdr

nmrPipe -fn LP -ps90-180 -ord 8

nmrPipe -fn SP -off 0.4 -end 0.98 -pow 1

nmrPipe -fn ZF -auto

nmrPipe -fn FT

nmrPipe -fn PS -hdr -di

pipe2xyz -out ft/cbcanh%03d.ft3 -z -inPlace

\
\

- c 0 . 5 \
\
\
\
\

Read Vectors from X-Axis

Solvent Filter

Window, Scale ist Point

Zero Fill

Fourier Transform

Phase, Delete Imaginaries

Extract Amide Region

Write Vectors to X-Axis

Read Vectors from Z-Axis \
Window \
Zero Fill \
Fourier Transform \
Phase Correct \
Write Vectors to Z-Axis

Read Vectors from Y-Axis

Mirror-Image LP

Window

Zero Fill

Fourier Transform

Phase, Delete Imaginaries

Write Vectors to Y-Axis

Read Vectors from Z-Axis

Hilbert Transform

Undo Previous Phase

Inverse Fourier Transform

Undo Previous Zero Fill

Undo Previous Window

Mirror-Image LP

Window

Zero Fill

Fourier Transform

Rephase

Write Vectors to Z-Axis

Fig. 5. Annotated 3D processing script for amide-detected data, illustrating the use of inverse processing features in a linear prediction scheme.
The scheme took 4 h and 55 min to perform on a Sun Sparc 10 workstation with a 3D CBCA(CO)NH FID of 512" • 52* • 32* points. The result
is based on an intermediate amide proton dimension size of 1024 points, yielding a 3D spectrum of 299 x 256 • 128 points after extraction of the
amide proton region and deletion of imaginary data. In the scheme, LP is used on the indirectly detected Y-axis and Z-axis of the data. This
scheme is arranged so that when LP is applied to double the size of a given dimension, the other dimensions have been completely processed with
a window function, zero-filling, and phasing. This localizes the signals as much as possible in the other dimensions and thus simplifies the signal
content of the dimension to be predicted (Kay et al., 1991). In the scheme, the X-axis is processed in the first pass, the Z-axis is processed in the
second pass, the Y-axis is extended via LP and processed in the third pass, and the Z-axis is inverse-processed, extended via LP, and reprocessed
in the fourth pass.

286

xyz2pipe -in fid/noe%03d, fid -x -verb

nmrPipe -fn SOL

nmrPipe -fn SP -off 0.35 -end 0.99 -pow 2

nmrPipe -fn ZF -auto

nmrPipe -fn FT

nmrPipe -fn PS -p0 0.0 -pl 0.0 -di

nmrPipe -fn EXT -xl 5ppm -xn 10.5ppm -sw

runrPipe -fn TP

nmrPipe -fn ZF -zf 2 -auto

nmrPipe -fn RS -rs 1 -sw

nmrPipe -fn SP -off 0.45 -end 0.95 -pow 1

nmrPipe -fn FT -di

nmrPipe -fn POLY -auto -ord 0

pipe2xyz -out ft/noe%03d.ft3 -x

-c 0.5

xyz2pipe -in ft/noe%03d, ft3 -z -verb

nmrPipe -fn ZF -zf 2 -auto

nmrPipe -fn RS -rs 1 -sw

nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1
nmrPipe -fn FT -di

nmrPipe -fn POLY -auto -ord 0

nmrPipe -fn HT

nmrPipe -fn FT -inv

nmrPipe -fn SP -inv -hdr

nmrPipe -fn FT -di

nmrPipe -fn TP

nmrPipe -fn HT

nmrPipe -fn FT -inv

nmrPipe -fn SP -inv -hdr

nmrPipe -fn FT -di

nmrPipe -fn TP

nmrPipe -fn MEM -ndim 2 -neg -zero -alpha 0.001

-xconv EM -xcQl 20 -yconv EM -ycQl 15

-sigma 200 -freq

pipe2xyz -out ft/noe%03d.ft3 -z -inPlace

\ Read Vectors from X-Axis
\ Solvent Filter

\ Window, Adjust Ist Point
\ Zero Fill

\ Fourier Transform

\ Phase, Delete Imaginaries

\ Extract Amide Region
\ 2D Transpose X/Y

\ Zero Fill Twice

\ Right-Shift (1-dwell Delay)
\ Window

\ Fourier Transform

\ Auto Baseline Correct
Write Vectors to X-Axis

\ Read Vectors from Z-Axis
\ Zero Fill Twice

\ Right-Shift (1-dwell Delay)
\ Window
\ Fourier Transform

\ Auto Baseline Correct
\ Hilbert Transform
\ Inverse Fourier Transform

\ Undo Previous Window
\ Fourier Transform

\ 2D Transpose X/Y
\ Hilbert Transform

\ Inverse Fourier Transform
\ Undo Previous Window
\ Fourier Transform

\ 2D Transpose X/Y

\ 2D MEM, +/- Mode with

\ Deconvolution In Both
\ Dimensi ons

Write Vectors to Z-Axis

Fig. 6. Annotated 3D processing script for amide-detected data, illustrating the use of inverse processing features in a 2D Maximum Entropy
Reconstruction scheme. The scheme took 16 h and 45 min to perform on a Sun Sparc 10 workstation for a 3D 1SN-NOE FID of 512" x 128" • 64*
points. The result is based on an intermediate amide proton dimension size of 1024 points, yielding a 3D spectrum of 420 • 512 x 128 points after
extraction of the amide proton region and deletion of imaginary data. In the scheme, 2D MEM is applied to planes in the indirectly detected Y-axis
(tH) and Z-axis (15N) of the data, which were each acquired with a one-dwell delay. The scheme is arranged to temporarily reorder the data so
that the MEM function is provided with a stream of data planes from the indirect dimensions (the original Y- and Z-axes). The indirect dimensions
are first processed by right-shifting, Fourier processing, and automated zero-order base-line correction to compensate for the one-dwell-time
acquisition delay; the Fourier processing includes use of window functions to increase the effectiveness of the automated base-line correction. The
planes are then reprocessed so that they are presented for Maximum Entropy reconstruction already phased, base-line corrected, and extensively
zero-filled, but transformed without any window functions. Additional argument details are given in the Appendix.

formats o f the powerful spectral analysis programs N M R -

View (Johnson and Blevins, 1994) and A N S I G (Kraulis,
1989; Kraul is et al., 1994) have been accommoda ted by
their au thors in this way. To facilitate work of this kind,
the s tandard N M R P i p e instal lat ion includes C source
code for the spectrometer format conversion programs,
file header interpreta t ion and general I /O utilities, as well
as the mul t id imensional I / 0 programs xyz2pipe and pipe2-
xyz.

New processing functions can be implemented as
simple U N I X filter programs, which can be inserted di-

rectly in the pipeline da ta s tream without the need to
alter the nmrPipe program itself. As an alternative to
writ ing a complete program, nmrPipe includes the M A C

function, a macro interpreter that implements a subset o f
the C programming language, augmented with a variety
of vector processing commands. The interpreter was im-
plemented pr imari ly for development purposes, using the

UNIX compiler generator Yacc (Johnson, 1986). The
macro language allows direct manipulation of the data
points, and the possibility to control the details of file I/O
during processing. In its default mode, the MAC function
will apply the contents of a user-written macro to every
1D vector in the given dimension, so that new functions
can be implemented simply by placing a list of vector
functions or other processing steps in a text file. This
provides a convenient way to prototype new processing
applications. For example, special processing steps for
drift correction, gradient-enhanced data (Cavanagh et al.,
1991; Palmer et al., 1991; Kay et al., 1992) and Bruker
DMX digitally oversampled data have been developed
this way.

Parallel processing
Many possible approaches can be envisioned for per-

forming a multidimensional processing task in parallel
over a network of computers or on a multi-CPU ma-
chine. By modifying only the multidimensional I/O pro-
grams (xyz2pipe and pipe2xyz), we have implemented one
simple but broadly applicable approach, which relies only
on standard U N I X network file sharing, and avoids the
need for special machine-specific parallel compiling or
configuration of software. This particular implementation
uses static load balancing, which means that the amount
of data to be processed by each computer is fixed at the
outset of a task, and therefore there is no compensation
for possible changes in CPU performance during the
course of a calculation. In practice, the user performs
parallel processing by creating a single script that pro-
cesses a complementary subset of a complete spectrum,
depending on which computer is used to execute it; the
same script is then executed simultaneously on all CPUs
involved. The division of data is performed automatically
according to a user-supplied list of computers and their
approximate relative speeds, so that only minor modifica-
tion of an ordinary scheme is needed to convert it to a
parallel scheme.

Graphical interface
As noted by Gtintert et al. (1992), it is a difficult task

to create and maintain a single, integrated spectral
graphics and processing program. Nevertheless, in our
experience we have found it essential to be able to graphi-
cally inspect the FID data, to interactively choose pro-
cessing parameters, and to examine intermediate process-
ing results on the workstation screen or in hard copy. In
an attempt to meet these needs, we have developed a
supplemental graphics interface called NMRDraw, using
the X11 network graphics library and the XView graphi-
cal interface toolkit (Heller and Van Raalte, 1993). The
program, shown in Fig. 7, currently runs on Sun, SGI,
and IBM RS6000 UNIX workstations.

The NMRDraw program provides facilities for inspect-

287

TABLE 2
3D PROCESSING TIMES ON VARIOUS WORKSTATIONS
FOR A 512"x64"• POINT HNCO FID PROCESSED BY
THE SCRIPT GIVEN IN FIG. 2"

Computer type Time (s)

SGI Challenge, 4 R4400 C P U s b 154
SGI Challenge, 4 R4400 CPUg t87
HP 9000/755 239
SGI Indigo 408
DEC Alpha 3000 d 487
SGI Challenge, 1 R4400 CPU e 525
Sun Sparc 10 644
IBM RS6000/530 1128
Sun Sparc 2 1208
Sun Sparc 1 1864
Convex C3830 f 2146

" Times reported are actual times elapsed. No special attempt was
made to vectorize or parallelize the code; only ordinary optimizing
compilers were used. During processing, each axis size was doubled
by zero-filling, yielding a spectrum of 417 x 128 x64 points after
extraction of the amide proton region and deletion of imaginary
data.

b This time is based on a distributed version of the processing script,
which divides each processing task into four equal parts, one for
each CPU.
This time is based on an ordinary version of the processing script,
whose components are distributed automatically between CPUs by
the operating system because they are separate programs.

d This version of the software was compiled with a four-byte floating-
point compatibility mode, which is roughly half as fast as the best
speed of the CPU.
This time is based on execution of the script on a single CPU.

r This time was measured under heavy loading (44 users).

ing raw and processed data via 1D and 2D slices or pro-
jections from all dimensions, as well as a macro editor for
creating and executing complete multidimensional pro-
cessing scripts. NMRDraw also allows real-time display
and interactive phasing of an arbitrary number of 1D
slices selected from any dimension of the spectrum and
displayed simultaneously. Interactive 1D processing is
performed via program-controlled pipelines to nmrPipe,
providing the functionality of both graphics and process-
ing without the need to incorporate the two in a single
program. In keeping with the philosophy of well-separ-
ated applications, the data extraction and display facilities
of NMRDraw can also be operated remotely by two-way
pipelines to other programs, in order to construct graphi-
cal spectral analysis schemes. A prototype example of this
approach, modeled after the NMRView spectral analysis
package (Johnson and Blevins, 1994), is shown in Fig. 8.

Independently of our graphics interface development,
spectroscopists at a test site for the NMRPipe system
have used the TCL graphics command language to create
interactive nmrPipe schemes (N. Tjandra, private com-
munication). TCL provides a method to build graphics
applications using shell scripts alone, without the need to
write, compile, and link a complete program (Ousterhout,
1994). Since TCL provides an easy method for building

288

Fig. 7. The NMRDraw graphical processing and analysis interface, illustrating interactive processing of a 1D vector extracted from the Z-axis of
a 3D interferogram. The topmost border of the program window describes the current functions of the mouse buttons. The command panel along
the top contains graphical tools for executing commands, selecting the region of data to view, setting contour parameters, and adjusting phase
values. The 2D contour display shows the fourth transformed Hr*/~3CO plane from a partially transformed HNCO spectrum (Z-axis (~SN) data
is still in the time domain), with positive data drawn in a continuous range of blue colors, and negative data in a range of red colors. The small
window over the contour display at the top left is a pop-up command area for entering nmrPipe processing commands. The cross-hair superim-
posed over the contour display shows the user-selected location for extraction of the Z-axis 1D vector. The time-domain vector itself, drawn along
the bottom of the display, is shown after interactive extension via linear prediction. The Fourier-processed version of the vector, also prepared
interactively, is drawn above the 1D time-domain data.

graphical applications at the U N I X shell script level, it is
ideal for use with N MRPi pe schemes, which also operate
at the shell script level. Using this approach, it was poss-
ible to create a graphical interface that provides routine
format conversion and processing without the require-
ment for users to edit shell scripts directly.

Companion software
In addition to the processing and display facilities

described above, the NMRPi pe system includes several
other applications, such as algebraic combination of spec-
tra, simulation of t ime-domain or frequency-domain data
from peak tables, multidimensional nonlinear least-
squares modeling of spectral line shapes, general-purpose
functional fitting with Monte Carlo error estimation, and
Principal Component Analysis. Stand-alone functions for
examining and adjusting spectral header parameters are

also included. Processed data from the NMRPipe system
can be used directly with the P IPP/CAPP system for
computer-assisted spectral analysis (Garrett et al., 1991);
together, these software systems have been used to help
generate roughly 10% of the N M R structures deposited
in the Brookhaven Protein Databank since the beginning
of 1994.

Results and Discussion

The NMRPipe system has been tested in over 50 lab-
oratories, and has proven to be easy to use, robust, and
thorough in its capabilities. In our direct experience, it is
also more efficient than previous approaches we have
tried, and it has successfully been adapted to new data
formats and acquisition modes. Because of its design
principles, it has been easy to port and maintain this

289

Fig. 8. The NMRDraw graphical processing and analysis interface, illustrating operation of the program's facilities by pipeline communication
with a remote application, allowing separation of assignment and analysis programs and the graphics system. The remote application can be a
program or a TCL script. Shown is a prototype application for browsing through strips from related amide-detected 3D experiments. In the
application, the remote program decides what spectral regions and other graphics should be displayed, and transmits appropriate instructions to
NMRDraw. In turn, NMRDraw transmits information about user input such as mouse clicks, so the remote program can respond to the user.
The strips from a given spectrum are displayed in pairs showing orthogonal views at the given ~HN/15N coordinate, and strips from related spectra
can be overlaid to highlight corresponding signals if desired. In this illustration, the four pairs of strips displayed show data from a CBCANH
spectrum, a CBCA(CO)NH spectrum, an overlay of CBCANH and CBCA(CO)NH spectra, and an HNCO spectrum. The square inset at the upper
right displays the corresponding location from a 2D ~H/ZSN correlated spectrum, and the list at the lower right tabulates peak locations selected
by the user via the mouse.

system on several different computer platforms, and to co-
ordinate it with a variety of graphics and analysis systems.

Processing times on various computers for a typical 3D
application are given in Table 2, and times for some other
applications are given in the legends o f Figs. 3-6. The
main source of performance overhead in these examples
is due to the multiplane data format and to pipeline com-
munication. We decided to use the multiplane format in
order to accommodate preexisting software that also used
this format. While the format has the advantage of sim-
plicity, it is not necessarily the best choice in all respects,
especially for 4D data, since the number of file planes can
become very large and relatively inefficient to manipulate.
But, since the source and destination formats are indepen-
dent o f the processing pipeline itself, other formats could
easily be implemented, for instance by substituting the

programs that read and write multiplane format data by
programs that read and write submatrix format data. In
this respect, the processing pipeline can be thought o f as
a format-independent processing engine.

The overhead due to data format, while measurable, is
not important in many cases. For example, consider the
processing times for two versions of 4D processing given in
Figs. 3 and 4. The version in Fig. 4 is 25 min faster than
that in Fig. 3, because it avoids one intermediate read/write
o f the 4D data. However, this improvement amounts to
only a 5% decrease in the overall processing time. This
also suggests that an all-in-memory approach such as the
one employed by PROSA (Gtintert et al., 1992) is not
always an advantage, since the performance gain will
often be small, but the physical memory requirements
(> 1024 Mb in this case) may constitute a serious obstacle.

290

As noted by Levy et al. (1986), use of virtual memory
does not provide an effective solution to this problem,
although in years to come, computers with multi-Gb
physical memory capacity may become commonplace.

Overhead due to pipeline communication and manage-
ment is an intrinsic aspect of the NMRPipe system. This
overhead is examined in Fig. 9. As shown, the overhead
time increases roughly linearly with the number of pro-
grams in the pipeline. For the Sun Sparc 10 workstation,
this overhead contributes about 2 min to a typical 3D
processing scheme. This amounts to about 15% of the
time used for ordinary Fourier processing, and an insub-
stantial percentage for linear prediction applications.

A distinct performance advantage of the NMRPipe
system is the ease with which processing tasks can be
distributed over more than one CPU or workstation. The
processing scripts themselves are naturally parallel, since
they consist of several programs running simultaneously.
Thus, as shown in Table 2, an ordinary NMRPipe
scheme can show speed improvements on a multi-CPU
computer without the need for special machine-specific
compiling or vectorization, since the various programs in
the script will be distributed at the discretion of the oper-
ating system. In the case shown for the four-CPU SGI
Challenge, this simple approach yielded a 70% parallel
efficiency compared to the same scheme executed on one
CPU. In addition, the facilities of the NMRPipe system
allow a processing task to be explicitly distributed by the
user, an approach that yields even better performance,
and still avoids the need for machine-specific optimi-
zation. An example is given in Table 3, which shows the
results of a network-distributed processing application,
with an efficiency of over 90% on five SGI workstations.

90 �9

80

6o

20

10

Stages in Pipeline

Fig. 9. Overhead processing time due to pipeline communication and
management for a 32 Mb data set measured on a Sun Spare 10
workstation. As shown, the overhead time increases roughly linearly
with increasing numbers of functions in the pipeline. In this case, the
best fit least-squares line, also shown, represents an overhead of 0.19
s/Mb for each additional stage in the pipeline.

5o

.c 40

o
30

TABLE 3
N E T W O R K - D I S T R I B U T E D PARALLEL PROCESSING
TIMES FOR A Z-AXIS LINEAR PREDICTION APPLI-
CATION ON A NETWORK OF SGI INDIGO COMPUTERS"

No. of processors Time (min) Parallel efficiency b (%)

1 119 100

2 59 99
3 40 99
4 30 99
5 26 91

a An interferogram of 512x 128x32' points was extended to 512•
128 x 64* points by forward-backward LP with eight complex coef-

ficients, and the result was doubled by zero-filling and Fourier pro-
cessed. The processing task was divided equally on each computer
involved.

b The parallel efficiency is computed assuming that the ideal increase
in processing speed is proportional to the number of computers
used.

Conclusions

The NMRPipe implementation of multidimensional
spectral processing via UNIX pipes provides an approach
that is comprehensive, easy to use, flexible, extensible,
and efficient. It naturally accommodates parallel process-
ing approaches, and encourages and supports use of well-
separated applications for graphics and analysis. Since the
NMRPipe approach is complementary to existing meth-
ods that rely on monolithic programs, its unique combi-
nation of advantages is likely to prove increasingly useful
as biomolecular NMR continues to advance.

Acknowledgements

In the course of the past two years, many people have
assisted in the development, evaluation, and refinement of
the software system presented; for this invaluable assist-
ance, the authors wish to thank M. Akutsu, S. Archer, D.
Benjamin, R.A. Byrd, R.M. Clore, M. Donlan, N. Far-
row, J. Forman-Kay, S. Gagne, D. Garrett, H. Grahn,
A.M. Gronenborn, T. Harvey, H. Hatanaka, E. Henry,
M. Ikura, Y. Ito, L.E. Kay, W. Klaus, J. Kordel, R. Mar-
tino, L. Nicholson, I. Pelczer, R. Powers, M. Shirakawa,
S. Tate, N. Tjandra, H. Tsuda, T. Yamazaki, and T. Ya-
mazaki. Thanks is also extended to A. Wang for critical
reading of the manuscript. This work was supported in
part by the AIDS Targeted Anti-Viral Program of the Of-
rice of the Director of the National Institutes of Health.

References

Barkhuijsen, H., De Beer, R., Boyle, W.M.M.J. and Van Ormondt,
D. (1985) ,l Magn. Reson., 61,465-481.

Barkhuijsen, H., De Beer, R. and Van Ormondt, D. (1987) J. Magn.
Reson., 73, 553-557.

Bax, A. and Grzesiek, S. (1993) Ace. Chem. Res., 26, 131-138.
Callaghan, ET., MacKay, A.L., Pauls, K.P., Soderman, O. and

291

Bloom, M. (1984) J Magn. Reson., 56, 101-109.
Cavanagh, J., Palmer, A.G., Wright, P.E. and Rance, M. (1991) J.

Magn. Reson., 91,429-436.
Delsuc, M.A., Ni, E and Levy, G.C. (1987) J Magn. Reson., 73,

548-552.
Delsuc, M.A. (1989) Maximum Entropy' and Bayesian Methods',

Kluwer, Amsterdam.
Friedrichs, M.S. (1995) J. Biomol. NMR, 5, 147-153.
Garrett, D.S., Powers, R., Gronenborn, A.M. and Clore, G.M. (1991)

Magn. Reson., 94, 214-220.
Gull, S.E and Daniell, G.J. (1978) Nature, 272, 686 690.
G/intert, P., Doetsch, V., Wider, G. and Wfithrich, K. (1992) J

Biomol. NMR, 2, 619 629.
Heller, D. and Van Raalte, T. (1993) XView Programming Manual,

O'Reilly and Associates, Inc., Sebastopol, CA.
Hoch, J.C. (1985) Rowland Institute]br Science Technical Memoran-

dum RIS-18t, Rowland Institute, Cambridge, MA.
Hoch, J.C. (1989) Methods Enzymol., 176, 216 241.
Hoch, J.C., Stern, A.S., Donoho, D.L. and Johnstone, I.M. (1990) a~

Magn. Reson., 86, 236-246.
Hore, RJ. (1985) J. Magn. Reson., 62, 561-567.
Johnson, B. and Blevins, R.A. (1994) J Biomol. NMR, 4, 603 614.
Johnson, S. (1986) In UNIX Programmer's Manual. Supplementary

Documents 1, University of California, Berkeley, CA.
Kauppinen, J. and Saario, E.K. (1993) Appl. Spectrosc., 47,

1123-1127.
Kay, L.E., Marion, D. and Bax, A. (1989) J Magn. Reson., 84,

72 84.
Kay, L.E., Ikura, M., Zhu, G. and Bax, A. (1991) J Magn. Reson.,

91, 42~428.
Kay, L.E., Keifer, R and Saarinen, T. (I992) J Am. Chem. Sot:, 114,

10663-10666.
Kernighan, B.W and Pike, R. (1984) The UNIX Programming Envi-

ronment, Prentice-Hall, Englewood Cliffs, NJ.
Kernighan, B.W. and Ritchie, D.M. (1988) The C Programming Lan-

guage, Prentice-Hall, Englewood Cliffs, NJ.
Kjaer, M., Andersen, K.V. and Poulsen, EM. (1994) Methods +

Enzymol., 239, 288 307.
Kraulis, EJ. (1989) a~ Magn. Reson., 84, 627-633.
Kraulis, P.J., Domaille, RJ., Campbell-Burk, S.L., Van Aken, T. and

Laue, E.D. (1994) Biochemistry, 33, 3515-3531.
Kumaresan, R. and Tufts, D.W. (1982) IEEE Trans. Acoust. Speech

Signal Process:, 30, 833-840.

Laue, E.D., Skilling, J. and Staunton, J. (1985a) J. Magn. Reson., 63,
418-424.

Laue, E.D., Skilling, J., Staunton, J., Sibisi, S. and Brereton, R.
(1985b) a~ Magn+ Reson., 62, 437 452.

Laue, E.D., Mayger, M.R., Skilling, J. and Staunton, J. (1986) J
Magn. Reson., 68, 14-29.

Levy, G.C., Delaglio, E, Macur, A. and Begemann, J+ (t986) Comput.
EnhancedSpectrose., 3, 1 12.

Marion, D. and W/ithrich, K. (1983) Biochem Biophys. Res.
Commun., 113, 967-974.

Marion, D., Ikura, M. and Bax, A. (1989a) J Magn+ Reson., 84,
425 430.

Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989b) a~ Magn.
Resort., 85, 393 399.

Mazzeo, A.R., Delsuc, M.A., Kumar, A. and Levy, G.C. (1989) a~
Magn. Reson., 81, 512-519.

Meadows, R.P., Olejniczak, E.T. and Fesik, S.W (1994) J Biomol.
NMR, 4, 79 96.

Ni, E and Scheraga, H.A. (1986) J Magn. Reson., 70, 506-511.
Ni, F., Levy, G.C. and Scheraga, H.A. (1986) J Magn. Reson., 66,

385-390.
Olejniczak, E.T. and Eaton, H.L. (1990) J Magn. Reson., 87, 628-632.
Ousterhout, J.K. (1994) TCL and the Tk Toolkit, Addison-Wesley,

Reading, MA.
Palmer, A.G., Cavanagh, J., Wright, P.E. and Rance, M. (1991) J.

Magn. Reson., 93, 151-170.
Parks, S.l. and Johannesen, R.B. (1976) a~ Magn. Reson., 22,265 267.
Pelczer, I. and Szalma, S. (1991) Chem. Rev., 9l, 1507-1524.
Redfield, A.G. and Kunz, S.D (1975) J. Magn. Reson., 19, 250-254.
Schmieder, R, Stern, A.S., Wagner, G. and Hoch, J.C. (1994) J

Biomol. NMR, 4, 483 490.
Sibisi, S. (1983) Nature, 301, 134-136.
Skilling, J. and Bryan, R.K. (1984) Mon. Not~ R+ Ast~ Soc, 211,

111 t24.
States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J Magn.

Reson., 48, 286 292.
Stephenson, M. (1988) Prog. NMR Spectrosc., 20, 515-626.
Stevens, W.R. (1992) Advanced Programming in the UNIX Environ-

ment, Addison-Wesley, Reading, MA, pp. 428-434.
Wu, N.L. (1984) Astron. Astrophys., 139, 555-557.
Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405-410.
Zhu, G. and Bax, A. (1992a) J. Magn. Reson., 98, 192 199.
Zhu, G. and Bax, A. (1992b) J Magn. Reson., 100, 202-207.

Appendix
Description of selected processing modules and arguments

Generic arguments

The following is a list of arguments used by more than
one program or function in the examples and figures.

-di deletes imaginary data from the current dimension
after the given processing function is performed.

-hdr extracts parameters recorded during previous
processing from the spectral header rather than the com-
mand line.

-in specifies the input file or file template (see 'Input
and output templates' below).

-inPlace permits in-place processing, which is replace-
ment of the input data by the output result.

-inv activates the inverse mode of a given function;
function PS will apply inverse (negative) phase correction;
function FT will perform an inverse Fourier transform;
function ZF will undo any previous zero-filling; function
SP will apply the inverse window function and first point
scaling.

-out specifies the output file or file template (see 'Input
and Output Templates' below).

292

-or permits overwriting of any preexisting files.
-sw updates the sweep width and other ppm calibration

information to accommodate an extraction or shift func-
tion.

-verb performs processing in verbose mode, with status
messages.

Processing functions
The following is an alphabetical list of the nmrPipe

processing functions used in the examples and figures.
The functions and arguments described are not complete
lists, but rather only those used in the examples.

EXT extracts a region from the current dimension with
limits specified by the arguments -xl and -xn; the limits
can be labeled in points, percent, Hz, or ppm. Alterna-
tively, the left or right half of the data can be extracted
with the arguments -left and -right.

FT applies a real or complex forward or inverse
Fourier transform, with sign alternation or complex con-
jugation, as indicated by spectral parameters or com-
mand-line arguments.

HT performs a Hilbert transform to reconstruct im-
aginary data, choosing between ordinary and mirror-
image mode if the argument -auto is used.

LP extends the data to twice its original size by
default, using a complex prediction polynomial whose
order is specified by argument -ord. Mixed forward-
backward LP is performed if the -fb argument is used.
Mirror-image LP for data with no acquisition delay is
performed if the argument -ps0-0 is used; mirror-image
LP for data with a half-dwell acquisition delay is per-
formed if the argument -psg0-1fl0 is used.

MEM applies Maximum Entropy reconstruction ac-
cording to the method of Gull and Daniell (1978): argu-
ment -ndim specifies the number of dimensions to recon-
struct, argument -neg activates the two-channel mode, for
reconstruction of data with both positive and negative
signals, argument -zero corrects the zero-order offset
introduced during reconstruction, argument -alpha spec-
ifies the fraction of a given iterate that will be added to
the current MEM spectrum, argument -sigma specifies the
estimated standard deviation of the noise in the time
domain, argument -freq produces the final MEM result in
the frequency domain, arguments -xconv and -yconv spec-
ify the line-sharpening function, which in Fig. 6 is EM
(Exponential Multiplication) for both dimensions, and
arguments -xcQ1 and -ycQ1 specify the corresponding
line-sharpening parameters, which in Fig. 6 are 20 Hz and
15 Hz for the 15N and IH dimensions, respectively. Other
arguments can be used to optimize convergence speed, or
to increase stability for reconstruction of data with high
dynamic range.

POLY (frequency domain) applies a polynomial base-
line correction of the order specified by argument -ord,
via an automated base-line detection method when used

with argument -auto. The default is a fourth-order poly-
nomial. The automated base-line mode works as follows:
a copy of a given vector is divided into a series of adjac-
ent sections, typically eight points wide. The average
value of each section is subtracted from all points in that
section, to generate a 'centered' vector. The intensities of
the entire centered vector are sorted, and the standard
deviation of the noise is estimated under the assumption
that a given fraction (typically about 30%) of the smallest
intensities belong to the base-line, and that the noise is
normally distributed. This noise estimate is multiplied by
a constant, typically about 1.5, to yield a classification
threshold. Then, each section in the centered vector is
classified as base line only if its standard deviation does
not exceed the threshold. These classifications are used to
correct the original vector.

POLY (time domain), when used with the argument
-time, fits all data points to a polynomial, which is then
subtracted from the original data. It is intended to fit and
subtract low-frequency solvent signal in the FID, a pro-
cedure that often causes less distortion than time-domain
convolution methods. By default, a fourth-order poly-
nomial is used. For speed, successive averages of regions
are usually fit, rather than fitting all of the data points.

PS applies the zero- and first-order phase corrections
as specified in degrees by the arguments -p0 and -pl. The
PS function applies no processing if these values are both
zero; for this reason, a zero,zero phase correction step is
commonly kept in a processing scheme for completeness,
so that the scheme can be copied and reused more eas-
ily.

RS, when used in the time domain, applies a right-shift
by the number of points specified by argument -rs, and
updates the recorded time-domain size if the argument
-sw is used.

SOL uses time-domain convolution and polynomial
extrapolation to suppress solvent signal with a default
moving average window of +/- 16 points.

SP applies a sine-bell window extending from sift(an)
to sinr(bn) with offset a, end point b, and exponent r
specified by arguments -off, -end, and -pow, and first-
point scaling specified by argument -e. The default length
is taken from the recorded time-domain size of the cur-
rent dimension. By default, a=0.0, b= 1.0, r= 1.0 (sine
bell), and the first point scale factor is 1.0 (no scaling).

TP exchanges vectors from the X-axis and Y-axis of
the data stream, so that the resultant data stream consists
of vectors from the Y-axis of the original data. It is ident-
ical to YTP.

YTP is another name for the TP transpose function,
which exchanges vectors from the X-axis and the Y-axis
of the data stream. The alternative name is provided for
contrast with the other transpose functions ZTP (X-axis/
Z-axis transpose) and ATP (X-axis/A-axis transpose).

ZF pads the data with zeros; the amount of padding

can be specified by argument -zf, which defines the num-
ber of times to double the data size, or by the argument
-size, which specifies the desired complex size after zero-
filling. By default, the data size is doubled by zero-filling.
Use of the argument -auto will cause the zero-fill size to
be rounded up to the nearest power of two.

ZTP exchanges vectors from the X-axis and Z-axis of
the data stream, so that the resultant data stream consists
of vectors from the Z-axis of the original data.

Input and output templates
The following describes the method used to specify

input and output data in the multifile 2D plane format.
3D File Name Templates: 3D data in the multifile 2D

plane format is specified as a template, a single name that
stands for a series of 2D file planes. The template in-
cludes a format specification, usually '%03d', which is
substituted by the Z-axis plane number in the actual file
names. The format specification is interpreted by rules of
the C programming language; the '03d' in the template
means that the plane number will be included as a zero-
padded three-digit number, to give a series of names such
as rid/hoe001 ~fid, fid/noe002.fid, fid/noe003.fid, etc.

4D File Name Templates: 4D data in the multifile 2D
plane format is specified as a template, a single name that
stands for a series of 2D file planes. The template in-
cludes a format specification, usually '%02d%03d', which
is substituted by the A-axis and Z-axis plane numbers in
the actual file names. The format specification is inter-
preted by rules of the C programming language; the '02d'
and '03d' in the template mean that the A-axis plane
number will be included as a zero-padded two-digit num-
ber, followed by the Z-axis plane number as a zero-pad-
ded three-digit number.

Data input and output programs
In the following, programs are described that are used

along with nmrPipe in the examples and figures. The
arguments described are not complete lists, but rather
only those used in the examples.

bruk2pipe converts binary data from various types of
Bruker spectrometers to the nmrPipe data format. The
related programs var2pipe and bin2pipe perform Varian
Unity conversions and general-purpose binary conver-

293

sions, respectively. The programs take as input a file or
data stream in the binary spectrometer format, and pro-
duce a file, file series, or data stream in the NMRPipe
format. The programs require a collection of arguments
defining the acquisition parameters for each dimension,
prefixed by -x, -y, -z, and -a. Following are the common-
ly required arguments: arguments -xN etc. define the total
number of points saved in the input file for a given di-
mension; arguments -xT etc. define the number of valid
complex points actually acquired, in case this differs from
the number of points saved in the input file; arguments
-xMODE etc. define the quadrature detection mode of
the given dimension; arguments -xSW etc. define the full
spectral width in Hz for the given dimension; arguments
-xOBS etc. define the observe frequency in MHz for a
given dimension, while arguments -xCAR etc. define the
carrier position in ppm; arguments -xLAB etc. define
unique axis labels; argument -ndim defines the number of
dimensions in the input; argument -aq2D defines the type
of 2D output file planes produced as either magnitude
mode, States/States-TPPI, or TPP1.

pipe2xyz writes vectors from a data stream to the selec-
ted axis of nD data in the multiplane format. The argu-
ments -x, -y, -z, and -a select the axis, and the argument
-out is used to specify the output file series as a template
(see 'Input and output templates' above). In order to
write to a given axis, the program pipe2xyz performs
rotations of the data complementary to those performed
by xyz2pipe. This means that a pipeline that begins with
xyz2pipe reading from a given dimension and ends with
pipe2xyz writing to the same dimension will conserve the
original data order if no transpose steps are included in-
between.

xyz2pipe creates a data stream for multidimensional
processing via pipeline by reading vectors from the selec-
ted axis of nD data in the multiplane format. The argu-
ments -x, -y, -z, and -a select the axis, and the argument
-in is used to specify the input file series as a template
(see 'Input and output templates' above). Depending on
the dimension selected, the other dimensions are re-
ordered by a multidimensional rotation, which is similar,
but not always identical, to a transpose. If the original
order of dimensions is described as XYZA the relative
reordering of data can be summarized as follows:

nmrPipe -fn TP
nmrPipe -fn ZTP
nmrPipe -fn ATP

xyz2pipe -x
xyz2pipe -y
xyz2pipe -z
xyz2pipe -a

Exchange of the first two dimensions:
Exchange of the first and third dimensions:
Exchange of the first and fourth dimensions:

No change in data order:
Rotation of the first two dimensions (same as TP):
Rotation of the first three dimensions:
Rotation of the first four dimensions:

XYZA... to YXZA...
XYZA... to ZYXA...
XYZA... to AYZX...

XYZA... to XYZA...
XYZA... to YXZA...
XYZA... to ZXYA...
XYZA... to AXYZ...

