Measurement of Long-Range 1H–13C Coupling Constants from Quantitative 2D Heteronuclear Multiple-Quantum Correlation Spectra

GUANG ZHU AND AD BAX

Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

Received January 29, 1993

Heteronuclear three-bond J values for 1H–13C, $^3J_{CH}$, are related to the intervening dihedral angle via well-parametrized Karplus-type relations ($1, 2$) and they therefore contain important information regarding molecular structure. However, measurement of these couplings from the 13C multiplet structure is frequently very difficult because the multitude of protons coupled to a given 13C frequently give rise to a very complex 13C multiplet. One solution to this problem, selective 1H-flip spectroscopy, ensures that the 13C resonance is split in the F_1 dimension of a 2D spectrum only by the coupling to a selected 1H of interest (3). Because in this experiment the low-1H nucleus detected, sensitivity is low. Moreover, couplings to only a single proton are obtained in any given 2D experiment. More recently, alternative approaches have been proposed that rely on E.COSY-based techniques (4–8) or on the measurement of the 1H 13C multiplet splittings in 1H-detected 1H–13C correlation experiments (9–12). This latter approach requires the 1H 13C multiplet to be resolved, at least partially, and the multiplet structure then is compared with the multiplet structure of the protons not coupled to 13C.

Here we present a different approach for measurement of the 1H–13C long-range coupling constants. The values of J for 1H–13C can be calculated from the resonance intensities in a 1H-detected 1H–13C multiple-quantum correlation by comparing them with the intensities in a 2D "reference spectrum." The method is functionally analogous to experiments described recently for the measurement of long-range J values for 13C–13C in 13C-enriched proteins (13) and for measurement of values of J for 1H–119Cd and 1H–199Hg in metalloproteins (14).

The pulse sequence used in the present experiment is

$$
\begin{align*}
^1\text{H:} & \quad 90^\circ - \Delta - t_1/2 - 180^\circ - t_1/2 - \Delta \\
^{13}\text{C:} & \quad 90^\circ \phi_1 \quad 90^\circ \phi_2 \\
& \quad - \text{Acquire (}\psi\text{)} \\
& \quad - \text{Decouple [1]}
\end{align*}
$$

with phase cycling $\phi_1 = x, y, -x, -y; \phi_2 = 4(x), 4(-x); \phi_3 = 8(x), 8(-x); \psi = x, -y, x, y, -x, y, x, -y, x, -y, x, y, -x, x, -y, x, y, x, -y, x, y, -x, x, -y, x, y, -x, y$. The spectrum is recorded in the phase-sensitive mode, and quadrature in the t_1 dimension is obtained in the States–TPPI manner by repeating the entire experiment with ϕ_2 incremented by 90° and by inverting ϕ_3 each time t_1 is incremented. This scheme for correlating long-range-coupled 1H and 13C nuclei is equivalent to the well-known HMBC one-bond correlation pulse scheme, with the dephasing and rephasing intervals Δ adjusted to a suitably long value (30–60 ms) ($15, 16$). The experiment is somewhat less sensitive than the HMBC experiment ($17, 18$), since in the present case no data acquisition takes place during the second interval, Δ, and no further 1H 13C rephasing occurs during data acquisition because of the applied 13C decoupling. The reference spectrum is obtained with the same 1H pulse scheme, but with the 90° 13C pulses replaced by short delays equal to the 90° 13C pulse width (12 μs), and with use of only the first four steps of the phase cycle. Also, the second spectrum for each t_1 value, needed to obtain quadrature in the t_1 dimension, is not recorded, and zeros are inserted for these data prior to the t_1 Fourier transformation. This results in a "reference spectrum" that is symmetric about the carrier in the F_1 dimension of the 2D spectrum after complex Fourier transformation. As will be discussed below, the peak shapes in the 1H–13C correlation spectrum are identical to those in the reference spectrum. Their relative intensities are related in a straightforward manner to the size of the long-range 1H–13C coupling.

1H chemical shifts during pulse scheme [1] may safely be neglected as the 180° (1H) pulse refocuses the effect of resonance offset. First we will consider the simple case where homonuclear 1H–1H J modulation is absent and only heteronuclear coupling is present. Note that because of the low isotopic abundance of 13C, the case where a proton is coupled to more than one 13C may safely be ignored. If the effective
flip angle of the 13C pulses is α ($\alpha \sim 90^\circ$), the signal $S_{\text{CH}}(t_1, t_2)$ of a ^1H–13C correlation is given by

$$S_{\text{CH}}(t_1, t_2) = C N \sin^2(\pi J_{\text{CH}} \Delta) \sin^2(\alpha) \cos(\Omega_1 t_1) \exp(i \Omega_1 t_2),$$ \hspace{1cm} [2a]$$

where Ω_c and Ω_1 are the angular 13C and 1H offset frequencies, respectively, C is a constant, N is the number of scans, and A is the isotopic abundance of 13C. In the reference spectrum, the signal is given by

$$S_{\text{ref}}(t_1, t_2) = C N_{\text{ref}} \exp(i \Omega_1 t_2),$$ \hspace{1cm} [2b]$$

where N_{ref} is the number of scans per increment for the reference spectrum. Both the reference and the correlation spectra are affected in exactly the same way by the presence of homonuclear ^1H–^1H couplings, and the shape of a multiplet in the reference spectrum (centered at $F_1 = 0$) is identical to that of the corresponding cross peak in the ^1H–13C correlation spectrum. As is clear from Eqs. [2a] and [2b], for any given proton, the ^1H–13C correlation/reference intensity ratio is given by

$$S_{\text{CH}}(t_1, t_2)/S_{\text{ref}}(t_1, t_2) = A (N/N_{\text{ref}}) \sin^2(\pi J_{\text{CH}} \Delta) \sin^2(\alpha).$$ \hspace{1cm} [3]$$

The natural abundance of 13C is known with good precision ($A \sim 1.108\%$). The factor $\sin^2(\alpha)$ is a constant determined by the RF inhomogeneity of the probehead, provided the average effective flip angle $\langle \alpha \rangle$ is carefully adjusted to 90° and the effect of 13C resonance offset is insignificant. Application of the experiment to β-acetonaphthalene, a compound for which long-range coupling constants were previously reported with high precision (19), indicated that $\sin^2(\alpha) = 0.88 \pm 0.01$ for our probehead. Provided that $\sin^2(\pi J_{\text{CH}} \Delta) \ll 1$, measurement of the intensity ratio then allows the accurate determination of J_{CH} from Eq. [3].

In the above discussion, the effect of relaxation has been ignored because 13C nuclei two or more bonds removed from a given ^1H do not significantly affect the T_1 or T_2 relaxation of this proton, and both the reference and the ^1H–13C correlation spectra are affected identically by other relaxation mechanisms. Relaxation of the 13C–^1H multiple-quantum coherence during the evolution period t_1 may differ slightly from the relaxation of ^1H coherence during t_2, but this difference can be ignored because the acquisition time in this dimension is typically much shorter than the applicable transverse relaxation times. Relative intensity differences between the correlation and the reference peaks can arise, however, during the dephasing and rephasing delays since $^1\text{H} \{-^{13}\text{C}\}$ antiphase coherence relaxes slightly faster than in-phase ^1H coherence (20). For the case where the proton I and carbon S have a negligible dipolar interaction, the relaxation rate of the antiphase magnetization, I, S_x, equals to a good approximation the sum of the ^1H transverse relaxation rate, $1/T_{21}$, and the 13C longitudinal relaxation rate, $1/T_{1S}$. For the present case, where T_{1S} is nearly an order of magnitude longer than the Δ delays, this difference in relaxation affects the intensity ratio by less than $\sim 10\%$, and the derived couplings are therefore no more than $\sim 5\%$ smaller than their true value (21).

The method is demonstrated for the cyclic decapptide gramicidin S, c(Pro–Val–Orn–Leu–Phe)$_2$, 18 m M, dissolved in DMSO-$_d_6$. Experiments were carried out on a Bruker AMX-600 spectrometer equipped with an inverse probehead. Using a dwell time in the t_1 dimension of 80 μs and 256 t_1 increments in both experiments, the 2D reference spectrum was recorded with 4 scans per t_1 increment and the ^1H–13C correlation spectrum with 64 scans for the x and 64 scans for the y component of each complex t_1 increment. Total measuring times were 19 min for the reference spectrum and 10 h for the ^1H–13C correlation spectrum. After zeros were inserted for the imaginary component in the t_1 domain of the reference spectrum, both spectra were processed identically, using cosine-bell apodization in both the t_1 and the t_2 dimensions and zero filling to yield a $1024\times4096\times(F_2)$ matrix for the absorbptive part of the final spectrum. The digital resolution was 12 Hz (F_1) and 1.75 Hz (F_2). To test the reproducibility of the J values measured with the new method, the experiment was performed twice, once with a Δ of 30 ms and once with a 60 ms Δ value.

Figure 1 compares a small region of the reference spectrum (Fig. 1A) with a corresponding region of the ^1H–13C correlation spectrum (Fig. 1B). In the reference spectrum, all peaks are centered around zero frequency in the F_1 dimension, as the F_1 frequency is determined only by the (unresolved) ^1H–^1H couplings. In the ^1H–13C correlation spectrum, the F_1 frequency is determined by the 13C chemical shift, with the unresolved ^1H–^1H couplings superimposed. The lineshape in the reference spectrum is therefore identical to that in the correlation spectrum, as can be seen by comparing the peak shapes observed in Figs. 1A and 1B. Their relative intensities can be calculated either by peak picking or, more sensitively, by calculating a scaling factor that gives the “best fit” between the scaled reference peak and the correlation of interest. The latter procedure was used in our study of gramicidin S for all protons with nonoverlapping resonances in the reference spectrum. For protons with partial overlap, a scaling factor was used which visually gave the best fit.

Figure 2 shows the ^1H region of a cross section taken through the reference spectrum at $F_1 = 0$, together with the corresponding cross sections for 13C nuclei coupled to these ^1H protons. In all cross sections, lineshapes are affected in
FIG. 1. Small sections of the amide region of (A) the reference spectrum and (B) the 1H- 13C correlation spectrum of gramicidin S. For the reference spectrum, only the region around $F_1 = 0$ is displayed. For the 1H- 13C correlation spectrum, the region that contains the correlations to the carbonyl resonances is shown. Both the reference and the 1H- 13C correlation spectra have been recorded with $\Delta = 60$ ms.

the same way by the homonuclear 1H-1H couplings, which are different for the different H$^\alpha$ protons and give rise to different phases for the various multiplet components. Hence, the multiplet shapes in the 1H-13C correlation spectrum are identical to those of the corresponding resonances in the reference spectrum. Only the correlation to Phe-C$_\gamma$ is of opposite sign compared to the reference spectrum, because this correlation is aliased once in the 13C dimension, and the experiment was set up to ensure a 180° linear phase correction in the F_1 dimension (22).

A precise J value can be derived only if the corresponding correlation is observable in the 1H-13C correlation spectrum. In practice, for our study of gramicidin S, this requires a J value of at least $\sim 1-2$ Hz, depending on the intensity of the 1H multiplet in the reference spectrum. However, if no cross peak is observed for a given 1H-13C correlation, this nevertheless provides information on the upper limit for this coupling; any coupling larger than this upper limit would have given an observable 1H-13C correlation. The absence of a J correlation therefore also provides useful information on the size of J.

Using the approach outlined above, 65 values for two- and three-bond J_{CH} values in gramicidin S were measured (Table 1). Also listed in Table 1 are the upper limits for 12 three-bond J_{CH} values for which no correlation could be observed. For correlations that were observable in both the spectra recorded with $\Delta = 30$ and 60 ms, the values listed in Table 1 are the average of these two measurements. The rms difference between the two sets of measurements was only 0.3 Hz, indicating that the measurements are highly reproducible. The measured J values provide an indication of the range of values in a conformationally constrained cyclic peptide and illustrate the large number of structural parameters that may be derived from such a simple correlation experiment.

The optimum choice for the duration of the delay Δ de-
TABLE 1
Multibond 1H-1C J Couplings in Gramicidin S

<table>
<thead>
<tr>
<th></th>
<th>COPe</th>
<th>CO</th>
<th>Cc</th>
<th>Cd</th>
<th>Ce</th>
<th>Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>1.6</td>
<td>4.3</td>
<td>4.8</td>
<td>8.4</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>3.7</td>
<td><2.6</td>
<td><2.6</td>
<td><2.6</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>H30</td>
<td><1.1</td>
<td><1.1</td>
<td>4.2</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36</td>
<td><1.8</td>
<td><1.8</td>
<td><1.8</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>CO0</th>
<th>CO</th>
<th>Cc</th>
<th>Cd</th>
<th>Ce</th>
<th>Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>4.5</td>
<td>1.6</td>
<td>2.2</td>
<td><0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>3.2</td>
<td>4.5</td>
<td>2.8</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>2.6</td>
<td>3.3</td>
<td>4.5</td>
<td>3.3*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H30</td>
<td>4.7</td>
<td>5.2</td>
<td>3.5*</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36</td>
<td>2.7</td>
<td>3.1</td>
<td>4.3</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phe</th>
<th>CO0</th>
<th>CO</th>
<th>Cc</th>
<th>Cd</th>
<th>Ce</th>
<th>Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>4.3</td>
<td><0.8</td>
<td>1.5</td>
<td><0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>3.0</td>
<td>4.1</td>
<td>3.7</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>3.4</td>
<td>4.4</td>
<td>4.3</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H30</td>
<td>3.0</td>
<td>5.5</td>
<td>5.3</td>
<td>4.6*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36</td>
<td>3.0</td>
<td>5.5</td>
<td>5.3</td>
<td>4.6*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>CO0</th>
<th>CO</th>
<th>Cc</th>
<th>Cd</th>
<th>Ce</th>
<th>Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>4.4</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>2.8</td>
<td>4.7</td>
<td>4.3</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>1.7</td>
<td>3.7</td>
<td>3.9</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H30</td>
<td>4.2</td>
<td>4.0</td>
<td>4.7</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Superscripts a and b refer to the downfield and upfield resonating nucleus, respectively.

* Because the 1C resonance represents the superposition of two 1C nuclei, the intensity of the 1H-1C correlation is halved before J_{CH} is calculated. For leucine, this approximation requires rapid rotameric averaging about the Ca-Cb bond.

FIG. 2. H$^+$ region of 1D 2F PC cross sections through the reference spectrum (bottom trace) and the 1H-1C correlation spectrum (other traces) taken at the marked 2Ft(1C) frequencies. The reference spectrum was recorded with 4 scans per t_1 increment and the 1H-1C correlation spectrum with 64 scans. The vertical scale of the cross sections shown is expanded by the factor shown in the right margin. This scaling is in addition to the factor 16, resulting from the difference in the number of scans. Spectra shown have been recorded with $\Delta = 60$ ms.

Note: Superscripts a and b refer to the downfield and upfield resonating nucleus, respectively.

* Because the 1C resonance represents the superposition of two 1C nuclei, the intensity of the 1H-1C correlation is halved before J_{CH} is calculated. For leucine, this approximation requires rapid rotameric averaging about the Ca-Cb bond.

ACKNOWLEDGMENT

We thank Stephan Gresiek, David Live, Geert van der Vusse, and Andy Wang for stimulating discussions. This work was supported by the AIDS Targeted Anti-Viral Program of the Office of the Director of the National Institutes of Health.
REFERENCES

1. V. F. Bystron, Prog. NMR Spectrosc. 10, 41 (1976).