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Fourier transformation is the most commonly used
method for converting time-domain NMR signals into fre-
quency-domain data. It is well known that a delay in sam-
pling the first data point of the FID can result in distortion
of the baseline (offset and curvature) of the frequency-do-
main spectrum. Early analyses (/, 2) of this problem led to
the conclusion that spectral distortions are minimized if the
free-induction decay signal is sampled without delay, i.e.,
the first time-domain data point 1s acquired when all time-
domain signal components are in phase. However, this con-
clusion is based on the theory of continuous Fourier trans-
formation. As pointed out by Otting et a/. (3), when the
NMR signal is processed using a discrete Fourier transform
{DFT) and the FID is sampled without delay, the first time-
domain data point must be multiplied by 0.5 prior to DFT
in order to minimize baseline offset. Recently, it has been
shown experimentally and by calculated examples (4) that
baseline offset and curvature are minimized if sampling of
the FID is delayed by half a dwell time. Below we demon-
strate that this result follows directly from the mathematics
of the DFT. We further show that all sampling delays other
than zero, one-half, or one full dwell time lead to significant
baseline curvature.

The DFT is defined as

[ N~ )
F(—AE) = > S(kAt)exp(—i2nlk/N), 11

k=0

where S is the FID composed of N data points, Af is the
sampling interval or dwell time, and the variables / and &
refer to the /th and kth data point in the frequency and time
domains, respectively. The DFT yields data only at fre-
quencies v = {/ NAt. To simplify the discussion S(¢) is as-
sumed to consist of P exponentially damped sinusoids and,
as DFT is a linear operation, a single such frequency com-
ponent can be considered without loss of generality, and the
FID is given by

Sk = S(kA[) =da exp[(i21ruo - Rz)(kAl + Td) + ll,/],

k=0,1,2,....,N—1, [2]
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where At is the dwell time, ¥, @, R,, and », are the initial
phase, amplitude, transverse relaxation rate, and frequency
of the resonance considered, respectively, and T} is the sam-
pling delay time between the RF pulse and the first data
point of the FID. For complex data, the initial phase y can
be removed by multiplication of the FID by exp{—iy), and
this term may therefore be ignored. The frequency-domain
spectrum is obtained by substituting Eq. [2] into Eq. [1]} and
carrying out®the summation (5, 6)

N-t
S Aexp{k[(i2n(vy — v) — Ry)AL]}

k=0

F(v)

i

I —exp{[i27(vg — v) ~ Ry} Ty}
I —exp{[i2x(vy — v) — R,]/SW} "’

(3]

where the spectral width, SW, equals 1/ Az, the total acqui-
sition time, 7,, equals VA7, and 4 = a exp[({27vy —
R>)T4). The right-hand side of Eq. [3}] reduces to a Lor-
entzian in the limits Az = 0 (SW — o) and 7., = .

As 4 in Eq. [3] contains a hinear frequency-dependent
phase term, exp(i2nvy7y). a linear phase correction is gen-
erally used to make all signals absorptive. If the spectrum is
arranged such that the frequency v, is within the range
[-SW/2,SW /2], the linear phase correction involves mul-
tiplication of the nth data point by exp[i(¢y + ¢ \n/N)],
where ¢, and ¢, are the zeroth- and first-order phase cor-
rections and N 1s the total number of complex data points
of the FID (including zero filling). As no phase correction
is ever needed for a resonance at », = 0, it immediately
follows that ¢y = —¢,/2 and ¢, = 2x T4/ Ar. For example,
when Ty is half a dwell time, ¢ = —90° and ¢, = 180°.

In order to simplify the subsequent discussion, four sym-
bols are defined as follows: wg = 2w(vy — v), h = SW/R», b
=(R; — iwg)/SW, and x = 2T;SW. Applying a linear phase
correction by multiplying Eq. [3] with exp(—i2#7vT}) results
in
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F(v) = (1/2)a[l — exp(—Nb)]
Xexp[(1 — x)(b/2))esch(b/2). [4]

With the assumption that exp(—~Nb) — 0 (i.e., no trunca-
tion) and use of the series expansions

expl(1 —x)(b/2)] =1+ (b/2)(1 ~ x)
F (B8 — XY + (b3 /48)(1 — XD + - - -,

and
csch(b/2) = (2/b) — (b/12) + (7H%/2880) + « « -,

the real part of Eq. [4] yields a “phased” spectrum of the
form

Re[F(v)] = al L(wp) + fo(x) + filwm, x) + ] [5]
with
_ h
e = TRy
Jolx)
(U -x) /3 - —x)°) [l - )2~ )
2 8h 484
[7 ~ 30(1 — x)2+ 15(1 — x)*]
* 57604° A
and
W 2 x — ) - x
fi(w, ) = (wo/ SW)x(1 — x)(2 — x)]

48

(wo/SW)T = 30(1 — )2 + 151 — x)*] N
1920 T

Equation [5] expresses the relationship between x (=27,/
Atr) and the baseline. The first term, L(wq), gives rise to a
Lorentzian-type peak. The function f;( x) represents a con-
stant spectral baseline offset whereas f,(wy, x) represents
baseline curvature. When the spectral width i1s much larger
than the linewidth (A > 1), one obtains f/(x) = (1 — x)/2
and f; (wg, X) = (wo/SW)?x(1 — x)(2 — x)/48. The curvature
term, f,(wq, X}, equals O only when x equals 0, 1, or 2, i.e.,
when Ty is zero, one-half, or one full dwell time.

If the spectral width is much larger than the linewidth,
Eq. [5) shows that the constant baseline offset equals (0.5
— T4/ At). To a first approximation, this baseline offset is
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therefore equal to the first data point of the time-domain
signal, scaled by (0.5 — Ty4/At). Consequently, the baseline
offset can largely be removed by subtracting the scaled first
data point from every F(v). If the initial phase of the time-
domain signal (y in Eq. [2]) i1s not zero at time zero but has
been corrected to obtain a phased spectrum, the same phase
correction [ multiplication by exp(—~iy)] must be applied to
the first data point of the FID prior to scaling and subtraction
from the phased spectrum.

The subtraction procedure mentioned above is similar but
not identical to the scaling of the first time-domain data
point prior to DFT and phase correction (3). In the latter
procedure, the first time-domain data point is multiplied by
(0.5 + T4/ Ar), which is equivalent to subtracting a fraction
(0.5 — T4/At1). Although Fourier transformation of this
“subtracted fraction” of the first time-domain data point
yields the same baseline offset as the procedure described
above, the subsequent linearly frequency-dependent phase
correction is automatically applied to this baseline offset
term, adding to the baseline curvature and changing the av-
erage baseline offset.

Figure 1 illustrates the baseline curvature and offset of a
simulated spectrum for a T, value of 0.25A¢, for a time-
domain signal containing two exponentially decaying signals
of equal amplitude at frequencies of 0 and 0.4SW and line-
widths at half-height of 0.005SW. Empirical functions for
the baseline offset and curvature are defined by considering
only that fraction of the baseline which is distant by more
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—
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FIG. 1. Baseline region of a simulated spectrum, obtained from Fourier
transformation of a time-domain signal, containing two frequency com-
ponents, one at » = 0 and one at v = 0.4SW. The linewidth at half-height
for each of the components is set to SW/200. This time-domain signal is
described by S, = exp[— (& + 0.25)(xSW/200)] + exp[—(k + 0.25)(*SW/
200 + 0.4/)), with k = 0, ..., 1023, i.e.. with sampling of the first data
point delayed by one-quarter dwell time. The solid line corresponds to the
phase-corrected Fourier transform; short dashes correspond to the case where
the first data point has been scaled by 0.75 prior to Fourier transformation
and phase correction. Long dashes correspond to the spectrum obtained by
subtracting the Fourner transform of 0.25.5, from the phase-corrected Fourier
transform. The spectral amplitude has been scaled such that the resonance
at zero frequency has unit intensity.
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than 20 times the linewidth from the center of either reso-
nance. Thus, the baseline extends from —0.5SW to ~0.1SW
and from 0.1SW to 0.3SW. The offset function, O( Ty), is
simply defined as the average deviation from zero of all B
baseline points in the region defined above. The curvature,
C(Ty), is defined as the root-mean-square deviation (rmsd)
of the spectral baseline from O(7y):
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where the summation extends over all B data points in the
baseline region defined above. The short dashes in Fig. 2
show the baseline offset and curvature of the spectrum, after
application of the linearly frequency-dependent phase cor-
rection, as a function of the delay time 74, with and without
scaling of the first data point. Although muttiplication of the
first time-domain data point by (0.5 + 73/ At) reduces the
baseline offset (Fig. 2A), this scaling procedure increases
baseline curvature (Fig. 2B) for all values of 74/ A¢. In con-
trast, if (0.5 — T4/Ar1)S, is subtracted from the unscaled
spectrum of Eq. [ 5], the baseline offset is reduced more than
with simple scaling alone and additionally the curvature is
not increased (long dashes in Fig. 2). However, it is clear
that for neither of the two correction procedures are adequate
baselines obtained unless 7y = 0or 74 = At/2. For 74 = 1,
the curvature is at a minimum, but baseline offset is large.

The above discussion has focused on Fourier transfor-
mation of complex data. A real time-domain signal, S; = a
cos[(2mvy)(kAt + Ty) + Ylexp[—kRy(kAt + Ty)], can be
written as the sum of two complex signals with opposite
frequency and phase by substituting zeroes for the imaginary
component:

Si = (1/2){a exp[(i2mvy — Ry) (kAL + Ty) + i¥]

+ aexp{(—i2mvy — R))(kAt + Ty) — i1}, [7]

Although signals acquired using the Redfield (7) or TPPI
(8) protocol are acquired as real data, an additional com-
plication arises in this case from the fact that the carrier
frequency is located in the center of the real Fourier trans-
form and not at its left-hand side. At the time that the first
data point (Sp) is sampled, the phase of the signal therefore
equals 27(vy — SW/4) T4 + ¢, where SW refers to the spectral
width (1 / Ar) after the data have been converted to the com-
plex format. Equation [ 7] then must be rewritten as

Sy = (1/2){aexp[i2mpy — Ry)(kAl + Ty)
+ (¥ — 7Tq/2A1)]
+ aexp[(—2wvy — R (kAL + Ty)

— iy — 7Ta/2401}. (8]
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FIG. 2. The baseline offset, O(7y), and curvature, ('(Ty4), as defined
in the text for the regular phase-corrected Fourier transform (solid line),
for the phase-corrected Fourier transform after scaling of the first data point
by [0.5 + ( T4/ At)] (short dashes). and for unscaled phase-corrected Fourier
transform after subtracting [0.5 — ( T3/ At)]1S, (long dashes). For the cur-
vature function, the solid line coincides with long dashes, and therefore only
the latter are shown.

The requirement for minimal baseline curvature caused
by frequency-dependent phase correction remains that Ty is
zero, one-half, or one full dwell time. However, as the fre-
quency-independent phase error, ¢ — w74/ 2At, is of opposite
sign for the true signal component and its mirror image, an
additional baseline distortion results if the true resonance
and its mirror image cannot be phase-corrected simulta-
neously (9). Therefore, in the case of TPPI, an additional
requirement is given by

(9]

which means that if Ty = 0, Y should be nw /2 (9). If T, =
At/2, ¢ must be v/4 + nw/2, and if Ty = At, ¢ must be
equal to nw/2 (10). The baseline offset terms, f,(x) in Eq.
[51, associated with the true resonance and with its mirror
image are of opposite sign if nin Eq. [9] is I or 3, resulting

¥ —xTs/2A1 = nx/2 (n=0,1,2,3),
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in minimal baseline offset. Thus, if 74 = 0, Y should be
w/2 or 3w /2, corresponding to sinusoidal modulation (3);
if Ty = At/2, ¢ should be n/4 or 57 /4, and when T3 = At,
¥ should be 0 or m, corresponding to cosinusoidal modula-
tion (10).
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