Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-Enriched Proteins by Isotropic Mixing of 13C Magnetization

STEPHAN GRZESIEK, JACOB ANGLISTER, and AD BAX

Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

Received October 26, 1992

A recently proposed experiment, known as CBCA(CO)NH, provides a sensitive and straightforward means for correlating the backbone amide ^{1}H/13N resonances in a protein with the 13C$_a$ and 13C$_p$ resonances of the preceding residue (1). This experiment, which relies on COSY-type magnetization transfer via the $^{1}J_{CC}$ and $^{2}J_{NC}$ couplings, followed by magnetization relay from 13C$_a$ via the carbonyl to the 15N of the next residue, is applicable to uniformly 15N/13C-enriched proteins with a size of up to 30 kDa. A slight modification of the experiment, known as HBHA(CBCACO)NH, permits correlation of the amide with the 1H$_a$ and 1H$_b$ resonances of the preceding residue, and a detailed product-operator description of both experiments has been presented previously (2). Alternatively, using the CBCANH experiment (3), which uses magnetization transfer via the smaller $^{1}J_{NC}$ and $^{2}J_{NC}$ couplings, the backbone amide resonances can be correlated simultaneously with the intraresidue C$_a$/C$_p$ resonances and with the C$_a$/C$_p$ of the preceding residue. The sequential assignments for the backbone and C$_a$ and H$_a$ resonances then can be extended to the side-chain resonances using the HCC–COSY (4, 5) and HCC–TOCSY (6, 7) experiments, recorded on samples dissolved in D$_2$O.

Here we describe two 3D experiments, named H(CCO)NH and H(CCO)NH, that can correlate all the aliphatic 1H or 13C resonances of a given amino acid directly with the amide of the next residue. The new methods are far more convenient for obtaining assignments than the previous combinations of H$_2$O and D$_2$O experiments as they provide a direct linkage between the backbone and entire side chains. This makes it possible to obtain nearly complete 1H and 13C assignments from only a few 3D spectra, recorded on a single sample, dissolved in H$_2$O.

Pulse schemes for the C(CO)NH and H(CCO)NH experiments are shown in Fig. 1. Conceptually, these experiments are quite similar to the CBCA(CO)NH and HBHA(CBCACO)NH experiments. The main difference is that the C(CO)NH and H(CCO)NH experiments use isotropic 13C mixing instead of a 90° COSY-type pulse to transfer magnetization from the aliphatic side chain to C$_a$. Because the isotropic mixing period is followed by a relatively long dephasing delay, 2^t, needed for the relay of C$_a$ magnetization to the carbonyl (C$_y$), analysis of the magnetization transfer is slightly more complex than that in the CBCA(CO)NH experiment, and below the magnetization-transfer steps in the C(CO)NH experiment will briefly be analyzed, with emphasis on the new features. The operators for the H$_a$, C$_a$, C$_y$, C$_r$, N, and H$_N$ spins are denoted H^a, C^a, C^y, C^r, N, and H^N, and for simplicity, the effects of relaxation are not taken into account. For the C$_a$ methylene protons, they are denoted H^{a2} and H^{a3}.

In the C(CO)NH experiment, depicted in Fig. 1A, the first step involves an INEPT transfer to enhance the nuclear spin magnetization of the aliphatic carbons. This INEPT transfer includes a spin-lock pulse which serves to scramble the water magnetization (8). After the INEPT transfer, at time point c in the sequence, 13C magnetization is antiphase with respect to its directly attached proton. The subsequent 13C refocusing and evolution period is improved relative to that in the HCC–TOCSY experiment (7), where the t_i evolution period follows a fixed delay needed for rephasing of the antiphase 13C magnetization. In the present experiment, the rephasing delay is gradually incorporated into the t_i frequency-labeling period as the t_i interval increases (2, 9). This significantly enhances the resolution obtainable in the t_i dimension.

Consider, for example, methylene C$_y$ magnetization at time point c for an amino acid which, for simplicity, is assumed not to contain an aliphatic C$_r$. At time point c, the spin operator describing this magnetization is $2(C^y H^{a2} + C^y H^{a3})$. For symmetry reasons, the fate of only one of the two products needs to be analyzed.
FIG. 1. Pulse scheme of (A) the C(CO)NH experiment and (B) the H(CCO)NH experiment. Narrow and wide pulses correspond to 90° and 180° flip angles, respectively. Pulses for which the phase is not indicated are applied along the x axis. The 1H carrier is set to the H2O frequency for the first part of the pulse sequence, up to time \(t_1 \), and is switched to the center of the amide region (8.4 ppm) thereafter. Thus, the frequency of the 1H broadband decoupling (with a 5 kHz RF field) is switched at this point, and the two modes of decoupling, using a coherent DIPS-2 scheme (13), are marked DIPS-2,1 and DIPS-2,2. 13C decoupling is accomplished using WALTZ-16 modulation with a 1.5 kHz RF field. Carbonyl pulses have a shaped amplitude profile, corresponding to the center lobe of a sin \(\alpha \) function and a duration of 202 \(\mu \)s. The carrier for the \(\text{C}_{\alpha /\beta} \) pulses is positioned at 46 ppm, for the \(\text{C}_\alpha \) pulses at 56 ppm, and for the carbonyl pulses at 177 ppm. The power of the 90° and 180° \(\text{C}_{\alpha /\beta} \) pulses, as well as of the 180° \(\text{C}_\alpha \) pulses, is adjusted such that they do not excite the 13CO nuclei (i.e., 4.43, 11.4, 10.6 kHz RF field for 150.9 MHz 13C frequency, respectively). The proton spin-lock pulse, SL, is applied for a duration of 1.8 ms, whereas the carbon \(\text{C}_{\alpha /\beta} \) spin-lock pulse, SL, is applied for 1 ms at 11.4 kHz. 13C isotropic mixing is accomplished using two cycles of the DIPS-3 scheme (13) (16.1 ms at a field strength of 7 kHz). Delay durations are \(\delta = 1.5 \) ms, \(\zeta = 1.6 \) ms, \(\eta = 4 \) ms, \(\theta = 11.4 \) ms, \(T_{\alpha} = 11 \) ms, \(\epsilon = 5.4 \) ms, \(\lambda = 2.25 \) ms. For scheme (A), the initial delays for the \(t_i \) evolution period (see text) were set to \(t_i = 0 \), \(t_i' = 0 \), \(t_i'' = 105 \) ms. Increments for those delays were set according to Eq. [2] for a total acquisition time of 6.2 ms. Phase cycling is as follows: \(\phi_1 = 0 \); \(\phi_2 = \pi \), \(\phi_3 = \pi / 2 \), \(\phi_4 = \pi / 2 \), \(\phi_5 = 0 \) (Bloch-Siegert phase error compensation (2)). 13C isotropic mixing is accomplished using two cycles of the DIPS-3 scheme (13) (16.1 ms at a field strength of 7 kHz). Delay durations are \(\delta = 1.5 \) ms, \(\zeta = 1.6 \) ms, \(\eta = 4 \) ms, \(\theta = 11.4 \) ms, \(T_{\alpha} = 11 \) ms, \(\epsilon = 5.4 \) ms, \(\lambda = 2.25 \) ms. For scheme (A), the initial delays for the \(t_i \) evolution period (see text) were set to \(t_i = 0 \), \(t_i' = 0 \), \(t_i'' = 105 \) ms. Increments for those delays were set according to Eq. [2] for a total acquisition time of 6.2 ms. Phase cycling is as follows: \(\phi_1 = 0 \); \(\phi_2 = \pi \), \(\phi_3 = \pi / 2 \), \(\phi_4 = \pi / 2 \), \(\phi_5 = 0 \) (Bloch-Siegert phase error compensation (2)).

Between time points \(c \) and \(d \), 13C chemical-shift evolution is active for a total time \(t_1(\text{CS}) = t_1' + \epsilon + t_1'' - t_1' \). 1H-13C J coupling evolution is active for a time \(t_1(J_{\text{CC}}) = t_1' + \epsilon + t_1'' - t_1' \). J coupling to a carbonyl spin will be active for a time \(t_1(J_{\text{CC}}) = t_1' + \epsilon - t_1'' + t_1' \), and J coupling to another aliphatic carbon is active for \(t_1(J_{\text{CH}}) = t_1' + \epsilon + t_1'' + t_1' \). For optimal performance, it is required that for all \(t_i \) increments \(t_1(J_{\text{CC}}) = 0 \) and \(t_1(J_{\text{CH}}) \approx 1/3J_{\text{CH}} \). 2.1 ms in practice
Similarly, C_x^α magnetization evolves according to

$$C_x^\alpha \rightarrow C_x^\alpha \frac{2\pi J_{CaCB} C_x^\alpha C_y^\beta T}{1 + \cos(2\pi J_{CaCB} T)}$$

and

$$C_x^\alpha \rightarrow C_x^\alpha \frac{1 - \cos(2\pi J_{CaCB} T)}{2} + C_x^\alpha C_y^\beta \sin(2\pi J_{CaCB} T)$$

$$- C_x^\alpha C_y^\beta \sin(2\pi J_{CaCB} T)$$

As discussed below, not only the second term but also the fourth term on the right-hand side of expression [4a] gives rise to observable magnetization. Similarly, the first and third terms in [4b] contribute to the correlation with C_x. During the delay 2ξ between time points c and f, rephasing and dephasing of the C_x^α magnetization takes place due to the weak coupling Hamiltonians $J_{CaCB} C_x^\alpha C_y^\beta$ and $J_{CaCB} C_x^\alpha C_y^\beta$, respectively. The two terms of interest according to [5]

$$C_x^\alpha \rightarrow 2C_x^\alpha C_y^\beta \sin(2\pi J_{CaCB} T)$$

$$- C_x^\alpha C_y^\beta \sin(2\pi J_{CaCB} T)$$

where \cdots denotes terms that are not transferred into observable magnetization by the remainder of the pulse sequence. Combining the results of expressions [4] and [5] and rearranging the trigonometric terms yield the following transfer functions between time points c and f:

$$C_x^\alpha \rightarrow C_x^\alpha C_y^\beta \left\{ \cos(2\pi J_{CaCB} T) \right\}$$

and

$$C_x^\alpha \rightarrow C_x^\alpha C_y^\beta \left\{ \cos(2\pi J_{CaCB} T) \right\}$$

$C_x^\alpha C_y^\beta$ terms are transferred into $C_x^\alpha C_y^\beta$ by the 90° pulses applied to $^{13}C_x$ and $^{13}C_y$ at time f, resulting in $C_x^\alpha N_f$ at time f. The 90° $^{13}C_y'/^{15}N$ pulses, applied at time f, convert $C_y^\beta N_f$ into transverse ^{15}N magnetization, which after a constant-time evolution period, of total duration $2T_N$, is converted into transverse amide proton magnetization, observed during the detection period, t_3.

The net magnetization transfer during the pulse sequence from C_x and C_y to H_N for $t_1 = t_2 = 0$ determines the integrated intensity of the C_x-N-H_N and C_y-N-H_N correlations in the $C(CO)NH$ spectrum. As can be seen from expression [6], correlations to C_x and C_y can become of opposite sign, de-

FIG. 2. Strip plots of the correlations observed for the amides of residues Gly-121 to Leu-129 of calcineurin B taken from (A) the $C(CO)NH$ and (B) the $H(CCO)NH$ spectrum. Each amide correlates with (A) the aliphatic side-chain carbon resonances of the preceding residue (the preceding residue of Gly-121 is Val-120) and (B) the side-chain protons of the preceding residue. Resonances which are not marked by Greek letters correspond to correlations to amide $^1H-N^{15}N$ pairs that are close in frequency to the one for which the strip has been selected. Solid dots mark C_x, C_y, and H_N. H_N correlations that have been observed in 3D CBCA(CO)NH and HBBH(CBCACO)NH spectra (data not shown).
depending on the duration of the isotropic mixing, T, and the value of J_{CC}, after scaling for off-resonance effects during isotropic mixing (7). This sign reversal is of a different nature than that observed in TOCSY spectra of complex homonuclear spin systems (12). In the present case, it results from the fact that the antiphase term, present at the end of the isotropic mixing period, partially refocuses before transfer to another nucleus (cf. Eq. [5b]). As can be seen from expression [6], for a two-spin system this effectively increases the apparent isotropic mixing time by half of the refocusing interval length.

The H(CCO)NH experiment (Fig. 1B) is virtually identical to the C(CO)NH experiment, discussed above. The only difference is found in the position of the t_1 evolution period, which is now inserted between time points a and b. In order to obtain optimal resolution in the F_1 dimension, the same procedure as that discussed above for the t_1 evolution period in the C(CO)NH experiment is used in the t_1 dimension of the H(CCO)NH experiment. Details are provided in the legend to Fig. 1 and in the description of the HBHA(CBCA(CO)NH) experiment.

The experiments are demonstrated for a 0.4 ml. 2.3 m M, pH 4.9 sample of calcineurin B, a calcium-binding protein of 170 residues (Mr, 19.2 kDa), in the presence of 20 m M Ca$^{2+}$. Experiments are carried out on a Bruker AMX-600 spectrometer, operating at 37°C, equipped with an external class A/B 100 W power amplifier for the 13C channel, and using Software Version 920501. A data matrix of $57^* \times 32^* \times 512^*$ data points, where n^* refers to n complex data points, was used for the C(CO)NH experiment and $68^* \times 32^* \times 512^*$ data points for the H(CCO)NH data set. Acquisition times were 6.2 ms (t_1), 19.8 ms (t_2), and 55.3 ms (t_3) for the C(CO)NH experiment and 10.1 ms (t_1), 19.8 ms (t_2), and 55.3 ms (t_3) for the H(CCO)NH experiment. Spectra were acquired using a 32-step phase cycle, repeated four times for each t_1 and t_2 increment to obtain quadrature information in these dimensions. The total measuring times were 77 and 87 h for the C(CO)NH and H(CCO)NH data sets, respectively. Further details regarding the experiment are given in the legend to Fig. 1. For both data sets, after digital filtering with a 60°-shifted sine-bell function in the t_1 and t_2 dimensions, zero filling to $128^* (t_1)$ and $1024^* (t_2)$, and Fourier transformation, the length of the t_2 time domain was doubled by mirror image linear prediction (14), prior to cosine-squared windowing, zero filling to 128^*, and Fourier transformation.

Figure 2A shows strips from the 3D H(CCO)NH spectrum, taken parallel to the F_1 axis, for the amides of residues Gly-121 through Leu-129. Each amide shows the J correlations to the carbons of the side chain of the preceding residue. Solid dots mark the positions of C_n and C_d resonances observed in the CBCA(CO)NH spectrum (data not shown). For the 16 ms isotropic mixing time used, the correlations with many of the C_n and C_d resonances are much weaker than those to C_i and C_s resonances. Thus, the previously described CBCA(CO)NH experiment clearly provides a useful complement to the C(CO)NH data. The present data are particularly useful as they indicate immediately the residue type for many of the residues with long side chains.

Figure 2B shows F_1 strips from the 3D H(CCO)NH spectrum, for the same amides as those shown in Fig. 2A. These strips now show correlations to the protons of the side chain preceding the observed amide. Again, solid dots mark the positions of H_n and H_s resonances, observed in the HBHA(CBCA(CO)NH spectrum (data not shown). With few exceptions, it is readily clear from inspection of Figs. 2A and 2B which of the side-chain proton resonances correspond to which side-chain carbon resonance. This avoids the need for recording a 4D HC(CO)NH spectrum, in which the 1H and 13C frequencies of the side chains are measured simultaneously, albeit at much lower frequency resolution.

The experiments described above provide an extremely convenient method for obtaining a majority of the 1H and 13C side-chain assignments by linking them directly to the backbone amide resonances, which typically show a much lower degree of spectral overlap than the C_n/H_n resonances. The C(CO)NH and H(CCO)NH experiments are significantly lower in sensitivity than, for example, the CBCA(CO)NH experiment, mainly because of the relaxation occurring during the isotropic mixing and because of the fact that only a fraction of the side-chain 13C magnetization is transferred to C_n by the isotropic mixing, prior to relay to the observed amide. Nevertheless, as demonstrated here, the experiment is applicable to proteins with sizes of up to 20 kDa, provided the sample concentration is at least several millimolar. As shown for the HCCH–TOCSY experiment, the intensities of the correlations are rather complex functions of the side-chain topology, the scaling of the J_{CC} couplings caused by finite RF power, and the duration of the mixing period (15, 16). As discussed above, the intensity of magnetization transfer from side-chain carbons to C_n follows a time dependence which is quite similar to that observed in the HCCH–TOCSY experiment, with the main difference that the curves derived previously are shifted to shorter mixing times by a few milliseconds, because of the refocusing of antiphase $C_n^* C_s^*$ terms during the delay 2ξ.

ACKNOWLEDGMENTS

We thank Claude Klee for help and encouragement in our study of calcineurin B. Hao Ren for protein expression, and Marius Clore and Dennis Torchia for useful discussions. This work was supported by the AIDS Targeted Anti-Viral Program of the Office of the Director of the National Institutes of Health.

REFERENCES

2. S. Grzesiek and A. Bax, J. Biomol. NMR, in press.