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Resolution in multidimensional NMR is generally limited by the relatively short 
acquisition times in the indirectly detected dimensions. For most types of 2D exper- 
iments, signals acquired for long t, durations, on the order of T2 or larger, contribute 
less to the signal-to-noise (S/N) ratio of the final 2D spectrum than signals acquired 
for short tl durations. As a consequence, the highest sensitivity per unit of measuring 
time is obtained if the ti acquisition time is kept shorter than T,. Therefore, one 
frequently limits the number oft, increments to as small a number as is sufficient to 
provide the required spectral resolution in the F, dimension. Note that in the detected 
dimension, long acquisition times, up to several times T2, may be used without adding 
to the total time needed for recording the spectrum and without adversely affecting 
S/N. As a consequence, in 2D NMR, truncation of the time-domain signal is a problem 
only in the t, dimension. 

A variety of slightly different linear prediction techniques have been proven successful 
at alleviating the problems associated with truncated time-domain signals. Such tech- 
niques have been applied both to 1D signals and :2D (I-7)) 3D (8, 9), and 4D ( 10, 
11) data matrices. In applications where the linear prediction is used to extend the 
time-domain signal prior to Fourier transformation (3, 6-l 1) , it reduces the effect of 
truncation and thereby minimizes the need for strong apodization of the acquired 
data in the t, dimension. As a consequence this procedure improves both sensitivity 
and resolution. 

In 3D and 4D NMR, truncation of the time-domain data is generally unavoidable. 
In particular for 4D NMR experiments (lo-13), truncation can be very severe because 
the acquisition times are frequently much shorter than T2. In several of the indirectly 
detected dimensions, commonly only 8 or 16 increments are used. In these cases, it 
becomes crucial to avoid truncation and enhance resolution in several dimensions 
simultaneously. Previously, we used a sequence consisting of Fourier transformation 
( t2), ID linear prediction ( t, ) , Fourier transformation ( t, ) , inverse Fourier transfor- 
mation ( t2), linear prediction ( t2), and Fourier transformation ( t2) to accomplish this 
(11). The use of such an elaborate procedure is necessitated by the fact that the 
number of frequency components present in each 1D cross section through the mul- 
tidimensional time-domain data generally exceeds the number of data points available 
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in the cross section ( I, 9). However, a closer study of t.his procedure indicates that it 
can cause significant lineshape distortions and artifacts. Even for noise-free real data, 
linear prediction can extend the time-domain accurately only if the number of fre- 
quency components is not larger than one-quarter of the available number of data 
points. This condition frequently is violated. Previously published methods for 2D 
linear prediction (2, 4) derive the linear prediction coefhcients from 1 D cross sections 
through the data matrix and therefore have similar limitations with regard to the 
maximum number of frequency components in the spectrum. Here we demon- 
strate a new method for linear prediction that predicts the truncated time domain 
in two dimensions simultaneously and that does not suffer from the problem 
mentioned above. 

Our 2D linear prediction (LP) method is closely analogous to the ID method, but 
differs in several points. Before discussing the 2D technique, we first briefly outline 
the 1D procedure. In ID linear prediction, a time-domain series consisting of K ex- 
ponentially damped sinusoids, represented by N real data points, x( 1 ), . . . , x(N), 
can be extended by assuming that each data point can be expressed as a linear com- 
bination of M (M > 2K) previous ones: 

x(n) = 5 CkX(II - k). 
k-l 

ill 

The linear prediction coefficients, ck, can be determined by solving the N - Mequations 
of type [l] (provided N - M > M). If the total number of data points is a few hundred 
or less, this least-squares problem can be solved very efficiently by singular-value de- 
composition. Once the linear prediction coefficients are .known, the future of the time 
domain can be calculated in a stepwise manner, using Eq. [ 11. Alternatively, the 
frequencies and damping factors of the decaying sinusoids may be determined by 
calculating the roots of the polynomial, 

Z.M f c .p-’ + . . . + CM = 0 I 

where the time-domain signal is given by 

121 

M 

x(n) = c Akw(@k)(Zk)” 
k=l 

131 

and Ak is the amplitude of the kth sinusoid and & its phase. For real data, the roots 
occur as complex conjugate pairs, and one frequency component accounts for two of 
the polynomial roots. 

In the application of linear prediction to multidimensional NMR, we usually do 
not attempt to calculate the amplitudes and phases of the NMR signals, using Eq. 
[ 31. In the presence of noise, we find that such a procedure frequently leads to results 
that are less accurate than those obtained by peak picking of the Fourier transform 
of the time-domain data which have been extended by a modest number (&N) of 
predicted data points. Note that in the latter application the predicted data points are 
strongly attenuated by the use of digital filtering; i.e., small errors in the linear prediction 
coefficients do not give rise to dramatic distortions. Rooting of polynomial Eq. [ 21 is 
desirable, however, to allow root reflection of frequency components with 1 zk) > 1, 
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i.e., of signal components that increase with time (9). Replacing these zk values by 
.?&/ 1 zk ) ’ and recalculation of the prediction coefficients ensure that the predicted por- 
tion of the signal is damped. 

In the next section, we will describe how true 2D LP can be applied to a time- 
domain matrix of N, X N2 real data points. In our new 2D LP method, Eq. [I] is 
replaced by 

M P 

X(Wz,!‘t) = c c C&m - k, n - 1) 
k=l I=1 

or 
M P-l 

x(m,n) = 2 C ck[x(m - k, n - I). 
k=l I=0 

The coefficients, ck[, are obtained from these linear equations using singular-value 
decomposition, in exactly the same manner as mentioned above for the 1D LP case. 
The total number of frequency components in the 2D time-domain signal now must 
be smaller than (M X P)/ 4. The number of equations, ( iVI - M) X ( N2 - P), must 
be larger than the number of unknown coefficients (M X P for Eq. [4a] and M( P + 
1) for Eq. [ 4b]). The relation between x( m, n) and the matrix with data points x( m 
- k, y1 - I) is graphically illustrated in Fig. 1. When using Eq. [4a], the matrix can 
be extended in both the horizontal and the vertical dimensions with a single set of 
linear prediction coefficients, ckl (Fig. la). When using Eq. [4b], the matrix can be 
extended only in the vertical dimension (Fig. lb), and a second matrix of prediction 
coefficients must be calculated for linear prediction in the horizontal dimension. The 
latter solution is slightly more robust for low signal-to-noise data and is used in the 
present work; a detailed comparison of the two methods will be presented elsewhere. 

With an M X P prediction matrix, C, we can only predict data points x( m, n) for 
which m > M and IZ > P (Eq. [4a]) or n > P (Eq. [ 4b]). As a consequence, without 
further information it is not possible to predict data point x( N, + 1, n) if n < P (Fig. 
la). However, extra information about the NMR signal in the indirectly detected 
dimension is always available, permitting the data to be extended into the negative 
time domain (Fig. lc). To avoid any discontinuities between the negative time-domain 
data and the acquired data, special precautions must be taken. First, since the time 
domain is only a few milliseconds long, and signals decay by only a small fraction 
during this time, the damping factor ( TZ) can be approximated satisfactorily by a 
single number for all frequency components, and the damping can be removed by 
multiplication of the time domain with an increasing exponential, prior to extending 
the data into the negative time dimension. Second, the phase of the signal is generally 
known accurately and can be adjusted experimentally to zero at time zero. Using the 
fact that cosine signals are symmetric about time zero, and assuming that sampling 
is delayed by exactly half a dwell time, the acquired data matrix may be extended into 
the negative time domain [x(-n + 1) = x(n), n = 1,2, - - - ] without any discontinuity 
in the phase of the signal. The shape of the extended matrix is depicted in Fig. lc. 

As mentioned above, in 1D linear prediction, the stability of the procedure can be 
improved by root reflection. In the 2D method described here, this procedure cannot 
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FIG. 1. Shape of the IV, X N2 data matrix used in the 2D linear prediction procedure. Solid circles 
correspond to acquired data points; open circles indicate predicted data. The predicted data are calculated 
from the adjacent enboxed acquired data points, using linear prediction Eq. [4a] (a) or [4b] (b, c). Data 
points marked “X” in (c) have been obtained by reflecting the acquired data into the negative time domain. 

easily be applied. Instead, we use a simple alternative approach: If a predicted data 
point, x’( m, n), has an absolute value larger than the largest acquired data point, 
) x,,,,, 1, its magnitude is decreased according to 

x(m, n) = xfnax/x’(m, n). 

Although, in principle, such a simple reflection procedure might be expected to yield 
artifacts for 2D time-domain signals that contain closely spaced antiphase resonances, 
in practice this does not appear to be a problem for the NOE data sets for which we 
have used it. In the absence of the reflection procedure, the predicted data frequently 
have higher noise levels, particularly for those 2D cross sections in which there are no 
signals. 

For simplicity, the 2D LP procedure has been discussed for real data only. Because 
of the desirable folding properties of complex data (24) we strongly prefer to acquire 
the data in the hypercomplex format (15). Although somewhat more tedious to pro- 
gram, in the examples illustrated below, the linear prediction has been applied in this 
hypercomplex manner. For the case where sampling is started at time zero, this hy- 
percomplex approach gives results that are identical to those obtained by converting 
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the hypercomplex N X N signal into a real 2N X 2N time-domain signal, followed by 
the real 2D LP procedure, outlined above. Note that if sampling is not started at time 
zero, complex time-domain data cannot readily be Iconverted to real data. 

Figure 2 shows the application of 2D LP to a synthesized 8* X 8* time-domain 
signal, where 8* refers to eight complex data points. In the absence of noise, 2D LP 
(Fig. 2A) yields results that are indistinguishable from the Fourier transform of the 
16 * X 16 * noiseless synthesized data (not shown) In contrast, the combination of 
Fourier transformation, 1D linear prediction, and inverse Fourier transformation is 
not capable of generating an accurately linear predicted data set (Fig. 2B). The reason 
for this is that the number of frequency components, in any cross section to which 
1D linear prediction is applied, is larger than one-quarter the number of data points 
in this cross section. 

Figure 2C shows the Fourier transform of the 8+ X 8* matrix in the presence of 
white noise, with no linear prediction. Figure 2D shows the Fourier transform for a 
synthesized 16 * X 16 * matrix, with twofold lower S/N (note that four times the 
number of experiments would have to be conducted to generate the larger data matrix, 
resulting in the twofold lower S/N) . Two-dimensional LP can be successfully used 
on the noise-containing 8 * X 8 * matrix (Fig. 2E), resulting in a spectrum that is of 
higher quality than either of the spectra in Figs. 2C and 2D. Although the combination 
of two 1D linear predictions with Fourier transform and inverse Fourier transform 
(Fig. 2F) improves the spectrum over that in either Fig. 2C or Fig. 2D, the quality is 
significantly lower than that obtained with 2D LP. 

As a final example we illustrate the 2D LP method for experimental data. Figure 
3A shows an Fr / F3 cross section through the “C/ ‘3C-separated 4D NOESY spectrum 
(IO, 13) of 13C-enriched calmodulin complexed with a 26-residue unlabeled peptide. 
The spectrum was recorded at 600 MHz ‘H frequency, using a 1.5 mM sample con- 
centration and a total accumulation time of 1.5 days. The size of the acquired time- 
domain matrix was 8*( 13C, t,) X 16*( ‘H, t2) X 8*( 13C, t3) X 512*( ‘H, t4). The cross 
section has been taken perpendicular to the ‘H/‘H NOESY planes, at ‘H coordinates 
F2 = 0.85 ppm and F4 = 0.43 ppm. Consequently, this cross section shows the cross 
peaks between the 13C nuclei that are attached to the pairs of protons that contribute 
to the 0.85/0.43 ppm NOESY cross-peak density. The contour level is taken at 0.3% 
of the intensity of the diagonal methyl resonances, and the tails of these nearby intense 

FIG. 2. Spectra obtained from simulated time-domain data. The simulated time domain consists of 8 * 
X 8 * data points and is extended to 16 * X 16 * (in the positive time domain) by linear prediction. Cosine- 
squared bell filtering (with the null adjusted at data point 17 >I and zero filling to 64’ are used in both 
dimensions prior to Fourier transformation. Time domain signals range in amplitude from 1 to 10. The 
peak-to-peak amplitude of the time-domain noise equals 4. Broken contour lines correspond to negative 
intensity. (A) In the absence of noise, using 2D LP with a 6* X 6* prediction matrix, on a data matrix 
quadrupled in size (to 16* X 16 * ) by reflecting about time zero (Fig. 1 C ) . Data corresponding to negative 
time are discarded after 2D LP, prior to 2D FT. (B) In the absence of noise, using 1 D LP (six coefficients) 
in each dimension, with Fourier transformation and inverse Fourier transformation in the orthogonal di- 
mension, as described in the text. (C) Fourier transform of the original 8 * X 8 * matrix in the presence of 
noise. (D) Fourier transform of the simulated 16* X 16* matrix, with twice the noise amplitude in (C). 
(E) Using 2D LP in the presence of noise [the same noise level as that used for (C )] , generated in the same 
manner as (A). (F) 1 D LP in the presence of noise, using the same scheme as that used for ( B) 
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FIG. 3. Two-dimensional F,/F, cross section (at F,/F, = 0.85/0.43 ppm) through the 4D 13C/“C- 
separated NOESY spectrum of calmodulin, complexed with a 26-residue peptide. (a) In the absence of 
linear prediction, using cosine-squared bell filtering and zero filling from 8* X 8* to 64* X 64* prior to 
2D FT. (b) With 2D LP, using a 6 * X 6 * prediction matrix and {extending the data matrix into the negative 
time domain (resulting in 16: X 16* ) prior to 2D LP. After 2D LP the negative time-domain data are 
discarded, and the remaining 16 * X 16 * is subjected to cosine bell filtering and zero filling to 64 * X 64 *, 
prior to 2D FT. Except for the 196/L696 and V35y/L396 cross peaks, all cross peaks correspond to intraresidue 
interactions. The artifact near FJF, = 28/23 ppm results from the fact that in the 2D LP procedure no 
proper root reflection can be applied. Broken contour lines correspond to negative intensity. 

diagonal peaks give rise to the spurious diagonal resonances observed in Fig. 3. Figure 
3a has been obtained without linear prediction and Fig. 3b illustrates the resolution 
enhancement obtainable with 2D linear prediction. Prior to calculating the mirror 
image data, signal decay was removed by multiplying the time domain with 
et(fl+‘3)‘T21, with T2 = 20 ms and tr,, = t3,, = 2.4 ms. The length of the time domain 
was extended to twice its original value (4.8 ms) in both the t, and the t3 dimensions. 
The improved resolution afforded by the linear prediction clearly reveals six NOE 
interactions in this cross section, in addition to nearly a dozen spurious diagonal peaks 
resulting from the nearby intense diagonal peaks in the ‘H/ ‘H planes. 

The 2D LP method works very well, provided that the data are severely truncated 
in both dimensions. This means that it is only of real use for the analysis of 3D and 
4D data sets, where this situation commonly occurs. The price to be paid for 2D LP 
is the enormous amount of computing time needed. For example, in the present case, 
where the method is applied to an 8* X 8* data set, 36 hypercomplex coefficients 
need to be calculated from 220 equations, requirin:g 19 seconds on an IBM 6000/ 530 
workstation. This process is repeated twice, to obtain predicted data in both dimensions 
(Eq. [ 4b] ) . Application of this type of procedure to a 16 * X 16 * acquired data matrix, 
using a 12 * X 12* prediction matrix, requires about 20 minutes. Considering that 
this type of procedure must be applied to all cross sections through the 3D or 4D data 
set, the required computational time presently limits the general applicability of the 
2D LP method. The large amount of computation time required also presents the 
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main stumbling block for extending the procedure outlined here to three or more 
dimensions. However, extrapolating the increase in computer power witnessed over 
the past decade, it may be anticipated that these applications will become feasible in 
the foreseeable future. 

ACKNOWLEDGMENTS 

We thank Mitsuhiko Ikura for providing the assignments for the cross section shown in Fig. 3 and Stephan 
Grzesiek and Geerten Vuister for useful comments during the preparation of the manuscript. G.Z. is supported 
by a fellowship from the Cooperative Graduate Program in Biophysics, sponsored by the Foundation for 
Advanced Education in the Sciences and the Graduate School of the University of Maryland at College 
Park. This work was supported by the Intramural AIDS-targeted Anti-Viral Program of the Office of the 
Director of the National Institutes of Health. 

REFERENCES 

1. A. E. S~HUSSHEIM AND D. COWBURN, J. Magn. Reson. 71, 371 ( 1987). 
2. J. GORCESTER AND J. H. FREED, J. Magn. Reson. 78,292 ( 1988). 
3. C. F. TIRENDI AND J. F. MARTIN, J. Magn. Reson. 81, 577 ( 1989). 
4. H. GESMAR AND J. J. LED, J. Magn. Reson. 83,53 ( 1989). 
5. J. HOCH, in “Methods in Enzymology” (N. Oppenheimer and T. L. James, Eds.), Vol. 176, p. 216, 

Academic Press, San Diego, 1989. 
6. Y. ZENG, J. TANG, C. A. BUSH, AND J. R. NORRIS, J. Magn. Reson. 83,473 ( 1989). 
7. J. L. LED AND H. GESMAR, J. Biomol. NMR 1,237 ( 199 1). 
8. E. T. OLEJNKZAK AND H. L. EATON, J. Magn. Reson. 87,628 ( 1990). 
9. G. ZHU AND A. BAX, J. Magn. Reson. 90,405 ( 1990). 

10. G. M. CLORE, L. E. KAY, A. BAX, AND A. M. GRONENBORN, Biochemistry 30, 12 ( 199 1). 
II. L. E. KAY, M. IKURA, G. ZHU, AND A. BAX, J. Magn. Reson. 91,422 ( 199 1). 
12. L. E. KAY, G. M. CLORE, A. BAX, AND A. M. GRONENBORN, Science 249,411 ( 1990). 
13. E. R. P. ZUIDERWEG, A. M. PETROS, S. W. FESIK, AND E. T. OLWNICZAK. J. Am. Chem. Sot. 113, 

370 (1991). 
14. A. BAX, M. IKURA, L. E. KAY, AND G. ZHU, J. Magn. Reson. 91, 174 ( 1991). 
15. D. J. STATES, R. A. HABERKORN, AND D. J. RUBEN, J. Magn. Reson. 48,286 ( 1982). 


