
	 1	

SMILE	User’s	Manual	
	
	

Table	of	Content	
	
	
1. Introduction--- 2	
2. How	to	obtain	the	program--- 2	
3. Hardware	and	OS	requirements------------------------------------- 4	
4. General	considerations	and	procedures------ ------------------------ 4	
5. SMILE	command	line	options	
5.1 -nDim-- 7	
5.2 -sample	and	-sampleCount--------------------------------------- 7	
5.3 -x/y/zP0	and	-x/y/zP1-- 8	
5.4 -nThread--- 8	
5.5 -maxMem-- 8	
5.6 -[x/y/z]zf	and	-[x/y/z]zfSize------------------------------------- 8	
5.7 -[x/y/z]Apod,	-[x/y/z]Q1,	-[x/y/z]Q2,	-[x/y/z]Q3----------------- 9	
5.8 -thresh--- 9	
5.9 -sigma	and	–nSigma--- 10	
5.10 -maxIter-- 10	
5.11 -x/y/zCT-- 10	
5.12 -[x/y/z]Neg	and	-[x/y/z]Alt-------------------------------------- 11	
5.13 -off--- 11	
5.14 -report-- 12	
5.15 Other	SMILE	options	used	during	the	development----------------- 12	

6. SMILE	examples	
6.1 2D	TROSY	20%	NUS	reconstruction--------------------------------- 12	
6.2 SMILE	as	an	alternative	to	LP--------------------------------------- 15	
6.3 3D	HNCO	5%	NUS	reconstruction----------------------------------- 17	
6.4 3D	13C	NOESY-HSQC	30%	NUS	reconstruction------------------------ 20	
6.5 4D	methyl	HMQC-NOESY-HMQC	1.56%	NUS	reconstruction----------- 22	

7. Contact	and	reference--- 25	
8. Acknowledgements--- 25	
	
	
	
	

	 2	

1. Introduction	
	
The	 Sparse	 Multidimensional	 Iterative	 Lineshape	 Enhanced	 (SMILE)	 algorithm	
integrates	a	priori	information	about	NMR	signals	for	most	robust	reconstruction	of	
non-uniformly	sampled	(NUS)	multidimensional	data.		It	also	treats	the	data	as	one	
single	spectrum	instead	of	many	cross	sections,	further	increasing	robustness	at	the	
expense	 of	 an	 increase	 in	 the	 computational	 burden.	 	 The	 algorithm	 has	 been	
implemented	 as	 a	 new	NMRPipe	 function,	 called	 SMILE.	 	 Together	with	 such	new	
tools	 as	 nusExpand.tcl	 and	 nusZF.com	 recently	 released	 by	 Frank	 Delaglio,	 the	
SMILE	 processing	 function	 streamlines	 the	 NUS	 spectral	 reconstruction.	 	 This	
manual	is	written	to	help	users	in	the	NMRPipe	community	set	up	a	multithreading	
SMILE	reconstruction	job	on	a	multicore	Linux	workstation	or	on	a	Mac	computer.	
	
2. How	to	obtain	the	program	
	
The	 SMILE	 processing	 function	 is	 available	 as	 a	 plug-in	 for	 the	NMRPipe	 package	
released	by	Frank	Delaglio	on	November	24,	2015.		Users	are	required	to	install	this	
latest	version	of	NMRPipe,	which	can	be	downloaded	from:	
	

http://spin.niddk.nih.gov/NMRPipe/install/	
	
Note	 that	 File	 4	 (plugin.smile.tZ)	must	 be	 downloaded	 in	 order	 for	 SMILE	 to	 run,	
although	it	is	not	a	required	component	for	NMRPipe.		This	plug-in	file	includes	the	
actual	executable	program	(nusPipe)	 that	provides	 the	SMILE	processing	 function.	
Depending	 on	 the	 system	 on	 which	 NMRPipe	 is	 installed,	 nusPipe	 placed	 in	 the	
nmrbin.linux9,	 nmrbin.linux212_64,	 or	 nmrbin.mac	 folder	 under	 the	 $NMRBASE	
directory	 is	 called	 during	 the	 processing.	 	 In	 addition,	 the	 following	 three	
environmental	 variables	 are	 set	 in	 the	 nmrInit.mac.com,	 nmrInit.linux9.com,	 or	
nmrInit.linux212_64.com	initialization	script:	
	
setenv NMR_PLUGIN_FN SMILE
setenv NMR_PLUGIN_EXE nusPipe
setenv NMR_PLUGIN_INFO "[-nDim -sample sName ...] MD NUS Reconstruction"

	
Future	developments	and	updates	of	SMILE	will	be	posted	on	this	site.	Users	 then	
need	to	simply	download	the	updated	executables	and	replace	those	in	the	current	
release.	
	
To	 test	 if	 SMILE	 is	 properly	 installed	on	 a	 computer,	 one	 can	 enter	”nmrPipe -fn
SMILE –help”	on	a	terminal.		If	the	SMILE	plug-in	is	correctly	set	up,	it	should	print	
the	following	help	page	on	the	screen:

	 3	

--
 | This is the Beta version of SMILE processing function. Please |
 | contact Jinfa Ying <jinfaying@niddk.nih.gov> for any bugs you |
 | may find. Your comments/suggestions are much appreciated too! |
 | Also reference to Ying, J. et al., JBNMR, in preparation. |
 --

SMILE: Sparse Multidimensional Iterative Lineshape Enhanced.
 -nDim [4] Number of Dimensions.
 -[x]zf [2] Zero Fill (Power of 2);
 For indirect time-domains only.
 (use -yzf -zzf etc, or for all indirect
 dimensions when no axis is specified.)
 -[x]zfSize[0] Zero Fill size, larger than -T value in fid.com;
 For indirect time-domains only.
 (use -yzfSize -zzfSize etc
 If provided, -zf ignored
 -[x]Alt Use sign alternation for FT;
 For indirect time-domains only.
 (use -yAlt -zAlt etc, or for all indirect
 dimensions when no axis is specified.)
 -[x]Neg Negate imaginary for FT;
 For indirect time-domains only.
 (use -yNeg -zNeg etc, or for all indirect
 dimensions when no axis is specified.)
Phasing Parameters (also use -y.. -z.. etc);
 -xP0 [0] Zero Order Phase Correction;
 -xP1 [0] First Order Phase Correction;
Apodization Parameters (also use -y.. -z.. etc);
applies to all indirect dimensions if no axis is specified;
defines window used on SMILE data:
 -[x]Apod fName Window Function File Name.
 -[x]Apod [SP] Window Function: EM GM SP JMOD.
 -[x]Q1 [0.50] Window Function Parameter Q1.
 -[x]Q2 [0.98] Window Function Parameter Q2.
 -[x]Q3 [1.00] Window Function Parameter Q3.
Three additional parameters for the Sine window only;
 and are ignored when -Apod is not SP;
 -[x]ELB [0.0] Exponential, Hz. (LB)
 -[x]GLB [0.0] Gaussian, Hz. (GB)
 -[x]GOFF [0.0] Gauss Offset, 0 to 1. (GOFF)
SMILE Parameters:
 -sample sName NUS sampling schedule.
 -sampleCount sCount No. of valid samples in the schedule.
 -off [0,0,0] Offset for the sampling schedule in each indirect dim.
 -nThread [1] Number of threads to be used.
 -thresh [0.80] Threshold for peak picking.
 -subConst[1.00] Peak intensity downscaling factor before being subtracted.
 -maxNPks [0] Max # of peaks per Slice/Plane/Cube for 2/3/4D in each iter.
 Zero for SMILE to automatically determine.
 For 2D, SMILE always automatically set to 1.
 -nSimPks [30] No. of simulated peaks for LW correction.
 -minTDL [0.1] Min TD Length (AcqT/T2) to be simulated.
 -maxTDL [10.0] Max TD Length (AcqT/T2) to be simulated.
 -maxMem [0.0] Maximum memory in GBytes.
Constant/Mixed Time acquisition (also use -y and -z...);
 -xCT [0] Constant Time flag.
 =0 for Real time evolution.
 =td/2 for CT time evolution.
 <td/2 for Mixed time evolution.
Convergence Tests:
 -maxIter [200] Maximum Iteration Count.
 -sigma [0.0] RMS noise of the spectrum;
 Zero for Auto Estimates.
 -nSigma [6] No. of sigma to be considered as peaks.
Notes:
 1. Important options are -nDim -sample -nThread
 -maxIter -[x/y/z]zf -[x/y/z]P0/P1
 -[x/y/z]Apod/Q1/Q2/Q3
 2. Underestimate -sigma * -nSigma
 --> pick up noises as peaks.
 3. Overestimate -sigma * -nSigma
 --> miss peaks.
 4. If possible, use 2-fold zero fills.

	

	 4	

3. Hardware	and	OS	requirements	
	
Currently,	 the	SMILE	 function	 is	only	ported	 for	Linux	and	Mac	OS	X.	 	Both	32-bit	
linux9	and	64-bit	linux212_64	versions	were	compiled	on	CentOS	6.7	using	the	Intel	
compiler	icc	(15.0.1.133/20141023)	and	the	glibc2.12	library	(newer	than	glibc2.8	
used	 for	 the	 linux9	version	of	 the	main	NMRPipe	package,	see	 the	 installation	site	
above).	 	 This	 means	 that	 linux9	 NMRPipe	 users	 may	 be	 able	 to	 call	 the	 other	
processing	functions,	but	not	SMILE,	unless	glibc2.12	or	above	is	available.		The	Intel	
libraries	 required	 by	 both	 Linux	 versions	 of	 SMILE	 are	 statically	 linked	 such	 that	
users	without	 those	 installed	 libraries	can	still	 run	the	program.	 	The	Mac	version	
was	 built	 on	 OS	 X	 10.6.8	 (also	 newer	 than	 10.5.8	 used	 for	 the	 mac	 version	 of	
NMRPipe)	using	gcc	4.9,	and	 includes	both	 the	 i386	and	x86_64	architectures,	but	
not	 the	 PowerPC	 architecture.	 	 All	 SMILE-builds	 allow	 multithreading	 spectral	
reconstruction	 on	 a	 shared	 memory	 computer	 system	 via	 the	 OpenMP	 API.		
Although	 not	 required,	 the	 OpenMP	 environmental	 variables	 (staring	with	 OMP_)	
and	 the	GNU	extensions	 (for	 the	mac	version,	 starting	with	GOMP_)	as	well	as	 the	
Intel	 extensions	 (for	 the	 Linux	 versions,	 starting	 with	 KMP_)	 may	 be	 used	 to	
optimize	the	SMILE	calculation.		Note	that	OMP_DYNAMIC	and	OMP_SCHEDULE	are	
set	 internally	 by	 SMILE,	 and	 OMP_NUM_THREADS	 is	 set	 through	 the	 “-nThread”	
option	described	below.	 	 Setting	 these	 environmental	 variables	has	no	 effect	 on	 a	
SMILE	 job.	 	 For	 more	 details	 about	 the	 other	 environmental	 variables,	 visit	 the	
following	or	any	other	OpenMP	websites:	
	
https://computing.llnl.gov/tutorials/openMP/#EnvironmentVariables	
https://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html#Environment-Variables	
https://software.intel.com/en-us/node/522775	
	
Depending	 on	 the	 size	 of	 the	 expanded	 NUS	 data,	 SMILE	 may	 demand	 a	 large	
amount	of	memory	for	a	3D	or	4D	reconstruction.	 	Users	can	estimate	the	minimal	
amount	 of	memory	 SMILE	 needs	 from	 the	 size	 of	 the	 data	matrix	 after	 the	 direct	
dimension	 is	 processed.	 	 For	 the	 4D	 reconstruction	 example	 discussed	 below	
(Section	6.5),	after	the	direct	dimension	(t4)	is	processed,	the	data	matrix	consists	of	
56*	 (t1,	 complex)	×	 80*	 (t2,	 complex)	×	 80*	 (t3,	 complex)	×	 646	 (F4,	 real)	points.		
The	total	 file	size	of	 the	 input	data	 into	SMILE	then	is	1.85×109	data	points,	or	6.9	
GB.		With	at	least	two	fold	zero	fills	in	all	the	indirect	dimensions	for	FT	(resulting	in	
256*	×	320*	×	320*	×	646	for	the	spectrum),	SMILE	prefers	approximately	520	GB	of	
memory,	 but	 can	 run	 fine	 with	 a	 minimum	 of	 ~17	 GB	 memory	 by	 setting	 the	 -
maxMem	option	accordingly	(see	Section	5.5),	i.e.	roughly	only	2.5	times	the	size	of	
the	 input	 files.	 	 This	 factor	 may	 be	 dropped	 further	 to	 1.5	 in	 future	 releases.	 	 If	
SMILE	is	started	on	a	system	without	sufficient	memory,	an	error	is	printed	and	the	
program	quits.	
	
4. General	considerations	and	procedures	
	
To	 make	 NUS	 reconstruction	 as	 close	 to	 the	 conventional	 data	 processing	 as	
possible,	 SMILE	 requires	 the	 non-uniformly	 sampled	 Bruker	 or	 Varian	 data	 to	 be	

	 5	

sorted	and	expanded,	with	the	unsampled	points	filled	with	zeros.		Although	this	can	
be	done	using	the	nusExpand.tcl	script	either	before	or	after	the	time-domain	data	is	
converted	 to	 the	 NMRPipe	 format,	 doing	 this	 prior	 to	 the	 data	 conversion	 is	
advantageous	because	the	expanded	data	can	be	converted	by	a	conventional	script	
without	 any	 unusual	 changes.	 	 For	 example,	 if	 any	 indirect	 dimension	 is	 acquired	
with	the	Echo-AntiEcho	quadrature	mode,	the	time-domain	data	reshuffling	can	be	
done	directly	during	the	conversion.		If	the	conversion	is	done	before	the	expansion,	
the	data	must	be	first	treated	in	a	complex	mode,	and	then	be	sorted	and	expanded,	
followed	by	an	NMRPipe	macro	to	extract	the	real	and	imaginary	components	from	
each	 Echo-AntiEcho	 pair.	 	 One	 disadvantage	 of	 expanding	 the	 data	 first	 is	 the	
generation	of	a	very	 large	 time-domain	data	 file.	 	However,	 the	 file	can	be	deleted	
once	 the	 data	 is	 converted.	 	 Another	 disadvantage	 is	 that	 this	 approach	 does	 not	
work	for	any	data	acquired	in	the	magnitude	mode	(QF	flag	on	Bruker).		However,	as	
SMILE	 is	 intended	 for	 phase-sensitive	 experiments,	 it	 should	 not	 be	 a	 problem	 to	
always	run	nusExpand.tcl	before	the	data	conversion,	although	the	other	approach	
can	be	used	too.	
	
Because	SMILE	begins	from	the	data	 in	the	NMRPipe	format,	 it	works	equally	well	
for	Bruker,	Varian	or	any	other	 type	of	 raw	NUS	data,	provided	 they	are	correctly	
converted	prior	to	the	reconstruction.	 	Although	all	examples	given	 in	this	manual	
are	collected	on	Bruker	spectrometers,	Varian	users	can	set	up	and	run	SMILE	in	the	
same	way.		For	the	details	about	setting	up	a	conversion	script	for	Varian	NUS	data,	
refer	 to	 the	 help	 page	 of	 the	 “varian”	 script	 in	 the	 NMRPipe	 package	 by	 entering	
“varian	-help”	on	a	terminal.	
	
Once	 the	 data	 is	 expanded	 and	 converted,	 the	 direct	 dimension	 must	 be	 first	
apodized,	 zero	 filled,	Fourier	 transformed,	and	phased	and	 the	 imaginary	must	be	
discarded.	 	To	minimize	 the	size	of	 the	data	matrix,	 the	spectral	 region	of	 interest	
should	 be	 extracted	 in	 the	 direct	 dimension.	 	 In	 addition,	 it	 is	 required	 that	 the	
direct	dimension	(along	the	x-axis	in	NMRPipe)	is	transposed	to	the	last	dimension	
(i.e.	y-,	z-,	or	a-axis	for	2D,	3D,	or	4D),	while	the	relative	order	of	the	other	indirect	
dimensions	should	not	be	altered	during	the	transposition.	This	means	that	for	a	4D	
data	 set,	 the	 indirect	 dimensions	 originally	 along	 the	 y-,	 z-,	 and	 a-axis	 must	 be	
transposed	to	the	x-,	y-,	and	z-axis,	respectively,	and	the	direct	dimension	must	be	
stored	along	the	a-axis.		See	the	3D	and	4D	examples	(Sections	6.3-6.5)	for	how	this	
is	done.		SMILE	also	requires	the	sampling	schedule	to	be	arranged	accordingly,	i.e.	
with	the	first	column	corresponding	to	the	x-axis,	second	column	to	the	y-axis,	and	
the	 third	 column	 to	 the	 z-axis	 for	 the	 4D.	 	 No	 axis	 reordering	 can	 be	 done	 at	 the	
runtime.	
	
Similar	 to	 other	 NUS	 reconstruction	 algorithms,	 the	 quality	 of	 the	 SMILE	
reconstruction	 may	 deteriorate	 if	 the	 baseline	 in	 the	 direct	 dimension	 is	 poorly	
distorted.		Users	are	advised	to	collect	the	data	with	care	to	keep	the	baseline	as	flat	
as	 possible,	 although	 this	 may	 be	 difficult	 in	 certain	 types	 of	 experiments.	 	 For	
Bruker	 users,	 the	 oversampling	 should	 be	 handled	 during	 the	 processing	 of	 the	
direct	dimension	instead	of	the	conversion	step	(as	done	for	all	examples	shown	in	

	 6	

this	manual),	which	should	help	improve	the	baseline	flatness.		If	the	spectral	region	
of	 interest	 in	 the	 direct	 dimension	 is	 narrow	 (often	 the	 case	 for	 intrinsically	
disordered	proteins)	but	the	data	 is	collected	with	a	reasonably	 large	width,	users	
may	have	a	sufficiently	large	baseline	segments	for	making	a	reasonable	correction	
during	 the	 processing	 of	 the	 direct	 dimension	 at	 the	 expense	 of	 a	 very	 slightly	
elevated	noise	level.		For	the	indirect	dimensions,	it	is	highly	recommended	that	the	
first	 order	 phase	 correction	 should	 be	 as	 close	 to	 0°,	 180°	 or	 360°	 as	 possible,	
although	 a	 small	 deviation	 from	 these	 values	 may	 be	 well	 tolerated	 during	 the	
reconstruction.		For	a	given	indirect	dimension	acquired	with	a	first	order	phase	of	
360°,	the	time-shifting	property	of	FT	can	be	employed	to	easily	eliminate	the	linear	
phase	 correction	 and	 to	 avoid	 the	 constant	 baseline	 offset.	 	 An	 example	 of	 this	 is	
shown	below	for	a	3D	HNCO	reconstruction	(Section	6.3).	
	
Although	not	extensively	tested,	SMILE	should	work	for	reconstructing	a	spectrum	
with	 strong	 axial	 peaks	 on	 the	 edge(s)	 of	 one	 or	 more	 indirect	 dimensions.		
However,	the	presence	of	strong	axial	peaks	slows	down	the	SMILE	reconstruction	
significantly.		Collecting	data	with	no	or	minimal	axial	peaks	generally	will	improve	
the	performance.		In	addition,	NMR	data	with	fairly	strong	t1	noise	ridges	(e.g.	from	
the	residual	water	peak	in	the	13C	noesy-hsqc	example	in	Section	6.4	below)	can	be	
reconstructed	too,	although	the	calculation	may	run	more	slowly	or	may	take	more	
iterations	to	complete.	
	
SMILE	stops	if	it	either	reaches	the	maximum	number	of	iterations	specified	by	the	
“-maxIter“	option	or	detects	no	more	peaks	above	a	threshold	that	 is	based	on	the	
values	set	by	the	“-sigma”	or	“-nSigma”	options.	 	Before	SMILE	exits,	 it	outputs	the	
reconstructed	 time-domain	 data	 onto	 the	 unix	 pipe	 such	 that	 a	 conventional	
NMRPipe	processing	 can	 continue	or	 the	 reconstructed	data	 can	be	 first	 saved	by	
the	 pipe2xyz	 program.	 	 The	 SMILE	 time-domain	 output	 data	 have	 the	 same	 size,	
format	 and	 axis	 order	 as	 the	 input	 data,	 except	 that	 the	 zeros	 for	 the	 unsampled	
points	 are	 now	 replaced	 with	 the	 reconstructed	 values.	 	 Conventional	 NMRPipe	
processing	 can	 then	 be	 used	 to	 obtain	 the	 final	 spectrum.	 	 Note	 that	 the	 indirect	
dimensions	 of	 the	 reconstructed	 data	 remain	 apodized,	 and	 no	 window	 function	
should	 be	 applied	 again	 unless	 one	 wants	 to	 use	 a	 different	 window	 during	 the	
conventional	processing,	in	which	case	the	user	can	use	the	corresponding	NMRPipe	
function	 with	 the	 “-hdr	 -inv”	 option	 to	 invert	 the	 window	 and	 then	 apply	 a	 new	
apodization	function	before	the	FT	of	the	indirect	dimension(s).	
	
For	best	reconstruction,	it	is	recommended	that	users	first	treat	the	expanded	data	
as	 being	 fully	 sampled	 and	 process	 it	 without	 a	 SMILE	 reconstruction.	 	 By	
monitoring	 some	 of	 the	 strongest	 peaks,	 this	 allows	 users	 to	 examine	 the	 phase	
correction	 in	all	dimensions,	 to	determine	an	optimal	 spectral	 region	 in	 the	direct	
dimension,	and	to	decide	if	the	imaginary	of	a	particular	indirect	dimension	needs	to	
be	 negated	 or	 if	 the	 sign	 in	 an	 indirect	 dimension	 needs	 to	 be	 alternated.	 	 If	 the	
conventional	NMRPipe	FT	function	requires	–alt	or	-neg	to	get	a	correct	spectrum,	

	 7	

then	a	similar	flag	is	required	for	that	dimension	during	the	SMILE	reconstruction.		
See	the	-[x/y/z]Alt	or	-[x/y/z]Neg	SMILE	options	(Section	5.12)	below.	
	
5. SMILE	command	line	options	
	
After	processing	of	the	direct	(fully	sampled)	dimension,	the	SMILE	function	can	be	
called	 for	 reconstruction	 of	 the	 unsampled	 data.	 	 A	 SMILE	 reconstruction	 can	 be	
fine-adjusted	 by	 setting	 many	 command	 line	 arguments,	 although	 most	 of	 these	
already	 have	 reasonable	 default	 values	 and	 therefore	 are	 not	 required	 for	 most	
reconstructions.		For	example,	for	the	3D	HNCO	data	discussed	in	Section	6.3,	only	8	
options	need	to	be	explicitly	defined	for	the	reconstruction:	
	
xyz2pipe -in ft1/test%04d.ft1 -x \
| nmrPipe -fn SMILE -nDim 3 -sample nuslist -nThread 32 \
 -sampleCount 800 -nSigma 5 -off 0 -1 -report 1 \
 -xCT 43 \
| pipe2xyz -out ft1/rc%04d.ft1 -x

	
This	 helps	 keep	 the	 SMILE	 command	 line	 short	 and	 concise,	 as	 compared	 to	 the	
following	fully	specified	but	lengthy	line	for	doing	exactly	the	same	reconstruction:	
	
xyz2pipe -in ft1/test%04d.ft1 -x \
| nmrPipe -fn SMILE -nDim 3 -sample nuslist -nThread 32 \
 -sampleCount 800 -nSigma 5 -off 0 -1 -report 1 \
 –maxIter 200 -maxMem 0 –thresh 0.8 –sigma 0 \
 -xCT 43 –xApod SP –xQ1 0.5 –xQ2 0.98 –xQ3 1 \
 -yCT 0 –yApod SP –yQ1 0.5 –yQ2 0.98 –yQ3 1 \
 -xzf 2 –xP0 0 –xP1 0 \
 -yzf 2 –yP0 0 –yP1 0 \
| pipe2xyz -out ft1/rc%04d.ft1 -x	
	
5.1 -nDim	
	
The	first	option	“-nDim”	tells	SMILE	the	total	number	of	dimensions,	 including	the	
directly	detected	dimension,	which	 is	required	 for	SMILE	to	properly	 initialize	 the	
array	space.		SMILE	works	for	2D,	3D	or	4D.	If	the	“-nDim”	is	outside	the	range	of	2-
4,	an	error	is	printed	and	the	program	quits.		The	default	value	is	4.	
	
5.2 -sample	and	-sampleCount	
	
The	 “-sample”	 option	 allows	 users	 to	 provide	 SMILE	 with	 the	 NUS	 sampling	
schedule.	 	 If	 SMILE	 fails	 to	 read	 the	 list	 or	 if	 no	 list	 is	 provided,	 it	 aborts	with	 an	
error	 message.	 	 While	 reading	 the	 list,	 SMILE	 ensures	 the	 sampling	 lists	 are	
consistent	 with	 the	 sizes	 of	 the	 indirect	 dimensions,	 and	 otherwise	 stops	 with	 a	
specific	error	displayed.		One	optional	command	line	argument	closely	related	to	“-
sample”	is	“-sampleCount”.		The	default	count	is	the	number	of	entries	(pairs	for	3D	
and	 triples	 for	 4D)	 in	 the	 entire	 sampling	 list.	 	 However,	 if	 one	 stops	 the	 NUS	
experiment	before	it	finishes,	the	“-sampleCount”	option	allows	the	user	to	use	the	
original	 list	without	 it	being	 truncated.	 	Only	 the	 first	 -sampleCount	entries	 in	 the	
list	 are	 then	 read	 by	 SMILE.	 	 This	 option	 also	 can	 be	 useful	 for	 further	 down-
sampling	 a	NUS	data	 set,	 for	 example,	 to	 examine	how	 the	 reconstructed	 spectral	

	 8	

quality	is	impacted	by	the	amount	of	sampling.		This	works	because	any	data	points	
not	in	the	sampling	list	read	by	SMILE	are	automatically	set	to	zeros,	even	if	they	are	
experimentally	sampled.	
	
5.3 -x/y/zP0	and	–x/y/zP1	
	
For	optimal	reconstruction,	SMILE	needs	to	know	the	required	zero	order	(P0)	and	
first	order	(P1)	phase	corrections	in	each	of	the	indirect	dimensions.		An	axis	name	
must	precede	P0	and	P1,	i.e.	the	option	-P0	or	-P1	is	not	valid,	but	-xP0	or	-xP1	is.		As	
mentioned	in	Section	5.7	for	the	apodization	options,	the	-x/y/zP1	value	is	used	for	
determining	 the	 first	 time	 point	 scaling	 factor	 for	 the	 x-,	 y-,	 and	 z-dimensions,	
respectively.	 	 The	 scaling	 factor	 is	 0.5	 if	 the	 first	 order	 phase	 correction	 is	 in	 the	
range	 of	 (-45°,	 +45°),	 and	 otherwise	 set	 to	 1.0.	 	 The	 first	 point	 in	 each	 indirect	
dimension	remains	scaled	in	the	final	reconstructed	data.	
	
5.4 -nThread	
	
Unless	SMILE	is	used	to	reconstruct	a	2D	spectrum,	the	“-nThread”	option	(default:	
1)	should	be	specified.		This	allows	SMILE	to	use	multiple	CPU	cores	to	run	some	of	
the	calculations	in	parallel	via	OpenMP	multithreading.		The	number	of	threads	one	
should	use	depends	on	the	size	of	the	data,	but	in	general	no	more	threads	than	the	
number	of	CPU	cores	should	be	used.	
	
5.5 -maxMem	
	
As	 mentioned	 above,	 the	 “-maxMem“	 option	 is	 useful	 when	 users	 do	 not	 have	 a	
sufficient	amount	of	computer	memory	for	a	large	data	reconstruction.		The	default	
value	is	zero	and	SMILE	tries	to	allocate	as	much	memory	as	it	needs.		If	the	memory	
is	 insufficient,	 SMILE	 aborts	 with	 an	 error	 message.	 	 This	 can	 be	 avoided	 if	 the	
system	has	a	memory	larger	than	the	minimal	amount	of	space	required	by	SMILE	
(ca	 2.5	 times	 the	 size	 of	 the	 converted	 input	 file,	 after	 the	 direct	 dimension	 is	
processed	and	the	desired	region	is	extracted).		The	-maxMem	restricts	the	amount	
of	memory	SMILE	can	use	and	makes	the	program	automatically	employ	a	memory	
saving	mode.		However,	it	may	still	quit	if	less	than	the	specified	amount	of	memory	
is	 actually	 available	 or	 if	 the	 -maxMem	 amount	 is	 smaller	 than	 the	 required	
minimum.	
	
5.6 -[x/y/z]zf	and	-[x/y/z]zfSize	
	
The	 total	 amount	 of	 memory	 required	 for	 running	 the	 SMILE	 function	 strongly	
depends	on	the	amount	of	zero	filling	in	all	the	dimensions.		Although	a	double	zero	
fill	for	each	dimension	is	desirable	(i.e.,	4	times	the	original	time	domain	length),	it	
increases	the	data	size	and	potentially	can	make	the	reconstruction	intractable	due	
to	a	too	slow	reconstruction	speed	or	an	insufficient	amount	of	memory.		A	one-fold	
zero	 fill	 may	 suffice,	 provided	 that	 the	 digital	 resolution	 (i.e.	 Hz/point)	 after	 the	
zero-filling	and	FT	is	ca	35%	of	the	full	line	width	(Hz)	at	the	half	height	or	better.		

	 9	

The	amount	of	zero	filling	in	each	indirect	dimension	is	controlled	by	-xzf,	-yzf,	and	-
zzf	(or	just	-zf	simultaneously	for	all	the	indirect	dimensions)	and	the	default	value	
for	those	arguments	is	2.		The	size	after	the	zero-fill	always	automatically	rounds	up	
to	 the	 next	 power	 of	 2.	 	 For	 example,	 if	 the	 size	 in	 an	 indirect	 dimension	 is	 56*	
complex	pairs,	a	two-fold	zero	fill	followed	by	the	rounding	gives	256*.		Likewise,	a	
size	of	80*	complex	pairs	with	 the	same	zero	 filling	and	rounding	yields	512*.	 	To	
suppress	the	automatically	rounding,	SMILE	allows	users	to	provide	the	actual	size	
for	an	indirect	dimension	to	be	zero	filled	to,	using	the	options	of	-xzfSize,	-yzfSize,	
or	-zzfSize.		This	way,	a	user	can	zero	fill	80*	to	320*	instead	of	512*.		The	FT	library	
used	 by	 SMILE	 can	 transform	 a	 vector	 of	 any	 length	 and	 the	 performance	 is	 not	
adversely	impacted	even	if	the	size	is	not	a	power	of	2.	
	
5.7 -[x/y/z]Apod,	-[x/y/z]Q1,	-[x/y/z]Q2,	-[x/y/z]Q3	
	
During	the	SMILE	processing,	all	the	indirect	dimensions	are	apodized.		The	“-Apod”	
specifies	the	type	of	window	function	and	can	take	SP,	EM,	GM,	TM,	TRI,	GMB,	and	
JMOD	 for	 sine,	 exponential,	 Gaussian,	 trapezoid,	 triangle,	 another	 version	 of	
Gaussian,	and	J	modulation	profile,	respectively.		These	functions	are	identical	to	the	
standard	NMRPipe	 function	of	 the	same	name.	 	The	additional	 “-Q1”,	 “-Q2”,	and	 “-
Q3”	options	provide	up	to	3	parameters	for	completely	defining	each	function.		For	
more	 detailed	 information,	 refer	 to	 the	 following	 NMRPipe	 webpage:	
<http://spin.niddk.nih.gov/NMRPipe/ref/nmrpipe/apod.html>.	 	 For	 SP,	 the	 “-Q1”	
corresponds	to	“-off”,	“-Q2”	to	“-end”,	and	“-Q3”	to	“-pow”.		The	“-Q3”	option	may	be	
ignored	 for	 those	 functions	 that	 require	only	2	parameters.	 	For	example,	when	“-
Apod”	 is	 set	 to	GMB,	 “-Q1”	 is	used	 for	 “-lb”	 and	 “-Q2”	 for	 “-gb”,	while	 “-Q3”	 is	not	
used.	 	The	default	window	 functions	 in	SMILE	 is	SP	with	 “-Q1”	set	 to	0.5,	 “-Q2”	 to	
0.98,	and	“-Q3”	to	1.			
	
An	axis	designation	may	precede	these	options	for	applying	a	window	function	to	a	
particular	dimension.	 	For	 instance,	 “-xApod	GM	–xQ1	-5	–xQ2	3,	 -xQ3	0.5”	set	 the	
first	 indirect	 dimension	 to	 use	 a	 Gaussian	 window.	 	 The	 options	 with	 an	 axis	
specified	take	precedence	over	those	containing	no	axis.		For	example,	for	a	4D	data	
set,	 “-Apod	 SP	 -xApod	 GM”	 applies	 a	 Gaussian	 function	 to	 the	 x-dimension,	 and	 a	
sine	window	 to	 the	 y-	 and	 z-dimensions.	 	 In	 the	3D	 13C	NOESY-CT-HSQC	example	
(Section	6.4	below),	we	show	how	the	GM	and	SP	windows	are	applied	to	the	x-	and	
y-dimensions,	respectively.	
	
The	first	time	point	scaling	is	determined	by	SMILE	based	on	the	first	order	phase	
correction.	It	is	automatically	set	to	1.0	or	0.5	if	the	-xP1,	-yP1,	or	-zP1	is	in	the	range	
from	-45°	 to	+45°.	 	No	SMILE	option	 is	available	 for	setting	 the	scaling	 factor	 to	a	
value	other	than	0.5	or	1.0.	
	
5.8 -thresh	
	
This	option	defines	the	threshold	of	the	weakest	peaks	relative	to	the	most	intense	
peak	 to	 be	 reconstructed	 in	 each	 iteration.	 The	 default	 value	 is	 0.8.	 	 For	 a	 2D	

	 10	

reconstruction,	 the	 option	 becomes	 irrelevant	 because	 only	 the	 strongest	 peak	 is	
selected.		For	faster	3D	and	4D	reconstruction,	this	may	even	dropped	to	0.5,	while	a	
slightly	 higher	 value	 than	 the	 default	 can	 sometimes	 improve	 the	 performance	 at	
the	expense	of	a	potentially	 longer	computation	time.	 	For	example,	 for	the	3D	13C	
NOESY-HSQC	 spectrum	 in	 Section	 6.4	 (high	 number	 of	 peaks	 and	 large	 dynamic	
range),	setting	“-thresh”	to	0.95	leads	to	a	slightly	better	reconstruction.	
	
5.9 -sigma	and	-nSigma	
	
Those	 two	options	 allow	users	 to	 provide	 the	 intrinsic	 thermal	 noise	 level	 and	 to	
define	the	weakest	peaks	that	can	be	reconstructed.		The	default	value	for	-sigma	is	
0,	requiring	SMILE	to	automatically	determine	the	intrinsic	noise	level.		The	default	
for	-nSigma	is	6.	This	works	reasonably	well	for	4D,	although	a	slightly	lower	value	
(4	or	5)	may	improve	the	performance	for	2D	and	moderate	size	3D	spectra.	
	
5.10 	-maxIter	
	
This	option	defines	the	maximum	number	of	iterations.		SMILE	stops	the	calculation	
and	 outputs	 the	 reconstructed	 data,	 even	 if	 noise	 threshold	 has	 not	 yet	 been	
reached.		The	default	value	is	200.		For	fast	trial	reconstructions,	users	may	want	to	
use	a	low	-maxIter	value	in	combination	with	a	lowered	-thresh	value,	discussed	in	
Section	 5.8.	 	 However,	 for	 the	 final	 reconstruction,	 a	 high	 number	 of	 iterations	 is	
recommended	for	optimal	SMILE	performance	to	ensure	that	 the	 iterative	process	
doesn’t	truncate	prematurely.		
	
5.11 	-x/y/zCT	
	
This	option	tells	SMILE	if	any	 indirect	dimension	 is	acquired	 in	a	constant-time	or	
mixed-time	 manner.	 	 The	 default	 value	 is	 zero,	 which	 indicates	 a	 dimension	 is	
recorded	by	real-time	increments.	 	 If	 the	x-dimension	is	recorded	in	CT,	then	-xCT	
should	 be	 set	 to	 the	 number	 of	 complex	 pairs	 (i.e.	 the	 same	 as	 -xT	 in	 the	 fid.com	
conversion	script).		However,	if	the	x-dimension	is	acquired	in	mixed	time	(i.e.	first	
as	a	constant-time	and	then	followed	by	real-time	increments),	then	-xCT	should	be	
set	to	the	last	increment	before	the	real-time	increment	starts.		For	example,	in	the	
3D	HNCO	 example	 discussed	 in	 Section	 6.3,	 the	 15N	 dimension	 has	 200*	 complex	
pairs	 for	 a	 total	 acquisition	 time	of	 108.8	ms.	 	 This	 exceeds	 the	 typical	 25ms	 1JNC'	
rephasing	time.	 	As	a	result,	 the	 first	44*	pairs	(~23.4	ms)	 is	recorded	 in	constant	
time,	while	the	rest	in	real-time.		In	this	case,	-xCT	should	be	set	to	43	because	the	
index	is	zero-based.		Users	can	determine	this	value	by	first	finding	the	initial	length	
of	the	delay	to	be	decremented	and	the	actual	decrement.		In	the	HNCO	experiment,	
d0	is	decremented	and	has	an	initial	value	of	11.74	ms.	 	The	decrement	for	d0	(i.e.	
in0)	is	0.272	ms.		-xCT	is	therefore	set	to	the	integer	obtained	by	rounding	down	the	
ratio	of	11.74/0.272	=	43.2.	
	

	 11	

Currently,	 the	 -x/y/zCT	value	 cannot	be	 set	 to	be	 larger	 than	 the	 corresponding	 -
x/y/zT	values	in	the	fid.com	conversion	script.		Otherwise,	the	reconstruction	exits	
with	an	error	at	some	point.	
	
The	CT	option	can	help	ensure	optimal	reconstruction,	but	its	use	is	not	very	critical	
as	long	as	the	indirect	dimension	is	properly	apodized.		Users	therefore	may	choose	
to	ignore	it.	
	
5.12 	-[x/y/z]Neg	and	-[x/y/z]Alt	
	
These	two	options	are	equivalent	to	the	-neg	and	-alt	options	of	the	conventional	FT	
function	 in	 the	 NMRPipe	 package.	 	 Enter	 “nmrPipe	 -fn	 FT	 -help”	 for	 additional	
information.		If	“nmrPipe	-fn	FT”	of	the	x-,	y-,	or	z-dimension	requires	-neg	or	-alt	to	
get	a	correct	spectrum,	then	–x/y/zNeg	and	–x/y/zAlt	are	also	required	for	SMILE.		
When	no	axis	is	specified,	the	options	apply	to	all	the	indirect	dimensions.	 	It	must	
be	pointed	out	that	the	-Neg	option	is	not	critical	at	all	because	it	only	reverses	the	
spectrum	 during	 the	 SMILE	 reconstruction,	 and	 data	 can	 still	 be	 correctly	
reconstructed	even	without	being	reversed.	However,	the	-Alt	is	absolutely	required	
by	 SMILE	 if	 FT	 needs	 –alt	 and	 the	 linear	 phase	 correction	 in	 the	 corresponding	
dimension	is	not	zero.		The	NMRPipe	FT	function	needs	-alt	and	SMILE	requires	-Alt	
if	one	acquires	an	indirect	dimension	using	Bruker’s	standard	States-TPPI	mode.		To	
verify	 those	 settings,	 users	 are	 recommended	 to	 carry	 out	 a	 “quick	 and	 dirty”	
NMRPipe	processing	of	the	expanded	NUS	data	without	SMILE	reconstruction	or	by	
setting	the	-maxIter	option	to	0.	
	
5.13 	-off	
	
This	is	an	option	that	allows	users	to	provide	the	offset	in	their	sampling	schedule	
for	each	indirect	dimension.	 	 It	serves	the	same	purpose	as	the	“-off“	option	in	the	
nusExpand.tcl	 script,	 and	 the	 offset	 values	 are	 subtracted	 from	 the	 corresponding	
sampling	schedule.	 	 It	can	take	as	many	as	3	space-	or	comma-separated	numbers	
for	a	4D	data	set.		The	default	value	is	zero.		If	the	indices	in	the	sampling	schedule	
for	a	particular	dimension	are	not	zero-based,	 then	 the	offset	 should	be	1	 for	 that	
dimension.	 	 This	 option	 is	 particularly	 useful	 for	 an	 indirect	 dimension	 acquired	
with	one	point	delay	and	therefore	with	360°	 first	order	phase	correction.	 	This	 is	
the	case	in	the	3D	HNCO	example	presented	below	in	Section	6.3.		The	C’	dimension	
(z-dimension	 in	 fid.com,	 but	 becomes	 y-dimension	 during	 the	 SMILE	
reconstruction)	was	acquired	with	a	delay	equal	to	one	full	increment.		The	offset	of	
“0	 -1”	 (or	 “0,	 -1”)	 actually	 shifts	 the	 y-dimension	 (i.e.	 the	 C’	 dimension)	 sampling	
schedule	forward	by	1.	 	As	a	result,	the	point	with	t2=0	is	treated	as	an	unsampled	
point,	and	the	first	actually	sampled	point	becomes	the	second	point,	and	so	forth.		
This	is	equivalent	to	the	time-shifting	prior	to	the	Fourier	transform	and	eliminates	
the	 required	 360°	 first	 order	 phase	 correction	 and	 the	 concomitant	 constant	
baseline	offset	in	the	C’	dimension.	
	

	 12	

5.14 	-report	
	
Although	 not	 displayed	 in	 the	 help	 page	 of	 the	 beta	 SMILE	 version,	 this	 option	
(default:	0)	can	be	set	to	1	for	saving	all	critical	reconstruction	parameters	in	the	log	
file	 “smile.log”.	 	 In	 addition,	 this	 log	 file	 includes	 two	 RMS	 values	 for	 each	 cross	
section	along	the	direct	dimension:	one	for	the	input	data	before	the	first	iteration	
and	 the	 other	 for	 the	 residual	 spectrum	 after	 the	 last	 iteration.	 	 The	 difference	
between	 the	 two	RMS	values	 is	 related	 to	 the	quality	of	 the	reconstruction.	 	 In	an	
ideal	case,	the	residual	RMS	after	the	reconstruction	can	approach	the	thermal	(and	
t1)	noise	 level,	while	cross	sections	with	a	high	number	of	 strong	peaks	may	have	
slightly	 (20-30%)	 elevated	 residual	 RMS	 values.	 	 Note	 that	 this	 file	 will	 be	
overwritten	if	users	run	the	SMILE	job	again.	
	
5.15 	Other	SMILE	options	used	during	the	development	
	
Several	 other	 SMILE	 options	 that	 are	 not	 discussed	 here	 for	 the	 time	 being	 are	
included	 in	 the	 SMILE	 help	 page	 (see	 Section	 2	 above	 or	 from	 the	 “nmrPipe	 -fn	
SMILE	-help”	command).	These	were	used	primarily	for	development	purposes	and	
may	be	removed	in	future	versions.		Users	generally	do	not	need	those	to	optimize	a	
reconstruction.	
	
6. SMILE	examples	
	
To	demonstrate	how	SMILE	is	used	for	a	good	reconstruction,	users	can	download	5	
examples	from:	
	
http://spin.niddk.nih.gov/bax/software/SMILE	
	
Each	example	directory	includes	all	the	original	Topspin	2.1	files,	the	expansion	and	
conversion	 script	 fid.com	 as	 well	 as	 the	 processing	 script	 smile.com.	 	 To	 avoid	
overwriting	the	original	files,	users	are	recommended	to	rename	all	script	files	and	
output	directories.	
	
6.1 2D	TROSY	20%	NUS	reconstruction	
	
This	is	a	NUS	data	set	artificially	made	by	dropping	80%	of	fully	sampled	points	in	
ser.orig,	 and	 the	 ser	 file	 randomly	 retains	 the	 remaining	 20%	 indirect	 points	
according	 to	 the	 sampling	 schedule	 in	 nuslist.	 	 The	 spectrum	 fullSample.ft2	 was	
obtained	by	processing	the	fully	sampled	ser.orig	data	and	provides	a	benchmark	to	
evaluate	 how	 good	 the	 reconstruction	 is.	 	 The	 other	 spectrum	 noSmile.ft2	 was	
obtained	 from	 the	 20%	 sparsely	 sampled	 ser	 without	 SMILE	 reconstruction,	 and	
clearly	shows	strong	NUS	sampling	artifacts.	
	
The	first	step	to	process	the	NUS	data	is	to	set	up	an	NMRPipe	conversion	script	(i.e.	
fid.com)	 that	 sorts	 the	 ser	 file	 according	 to	 the	 schedule	 in	nuslist	 and	 fills	 all	 the	
unsampled	 points	 with	 zeros.	 	 The	 “bruker”	 command	 in	 the	 latest	 NMRPipe	

	 13	

package	has	been	updated	 to	 facilitate	 this	 set-up	process.	 	Although	“bruker”	can	
automatically	detect	 the	nuslist	 file	and	enter	 its	NUS	mode,	a	 command	 line	with	
explicit	NUS	related	options	(i.e.	“bruker	-nus	-nouseMask”)	is	recommended.		Here	
the	option	“-nus”	tells	“bruker”	to	enter	the	NUS	mode,	while	“-nouseMask”	disables	
the	generation	of	a	mask	file	that	is	as	large	as	the	expanded	time-domain	data	but	
not	needed	for	SMILE.	 	 If	 the	sampling	schedule	 is	not	 in	the	nuslist	 file,	users	can	
pass	the	filename	to	the	command	using	“-sample	filename”	option.		Enter	“bruker	-
help”	on	a	 terminal	 for	more	details	about	additional	 command	 line	options.	 	 It	 is	
worth	pointing	out	that	a	conversion	script	can	be	set	up	in	the	same	way	for	Varian	
NUS	data	by	using	“varian	-nus	-nouseMask”.		See	the	help	page	printed	by	“varian	–
help”	for	more	information.	
	
The	“bruker	-nus	-nouseMask”	brings	up	the	following	graphics	user	interface	that	
should	be	very	similar	to	the	one	for	a	conventional	data	set,	but	contains	additional	
fields	for	users	to	provide	the	NUS	related	information:	
	

	
	
User	 should	make	 sure	 the	 correct	NUS	 sampling	 list	 file	 is	 selected	 for	 the	 “NUS	
Schedule”	 field.	 	 For	 the	 “NUS	 Samples”,	 the	 default	 value	 is	 the	 length	 of	 the	
sampling	list	(i.e.	number	of	elements,	pairs,	or	triples	in	the	sampling	schedule	for	
2D,	3D,	and	4D,	respectively),	and	this	value	is	used	to	set	the	“-sampleCount”	option	
for	nusExpand.tcl	during	the	expansion.		If	a	NUS	experiment	stops	before	the	entire	
sampling	 list	 is	 read	 or	 if	 users	 just	 want	 to	 further	 down	 sample	 the	 already	
collected	data	for	whatever	reasons,	this	field	can	be	manually	changed	to	a	smaller	
value.	 	Note	 that	any	change	made	to	“NUS	Sample”	makes	 the	“Read	Parameters”	
button	highlighted,	prompting	users	to	click	it	again	for	updating	the	“Valid	Points”	
and	“Total	Points	R+I”.		This	is	needed	because	cutting	the	sampling	list	down	may	
change	 the	 largest	 sampling	 value,	 which	 requires	 the	 “Valid	 Points”	 to	 be	 set	
accordingly	for	a	correct	data	conversion.		In	this	example,	all	370	points	defined	in	
the	nuslist	file	were	sampled,	and	the	largest	value	in	the	list	is	1849.		Because	the	

	 14	

sampling	index	is	zero	based,	i.e.	from	0	to	1849,	the	expanded	data	(default	output	
as	“ser_full”)	by	nusExpand.tcl	consists	of	1850	complex	pairs.	
	
The	“NUS	Index	Offsets”	should	be	set	 to	0	because	the	15N	sampling	 list	nuslist	 is	
zero	based	and	there	is	no	time-shifting	needed	for	this	example	to	remove	any	first	
order	phase	correction.		Note	that	the	digital	oversampling	correction	preferentially	
is	made	(automatically	by	NMRPipe)	during	processing	instead	of	during	conversion	
(using	the	-AMX	option),	which	sometimes	can	improve	the	spectral	baseline.	
	
Since	the	data	is	sorted	and	expanded	prior	to	the	conversion,	Echo-AntiEcho	can	be	
used	as	the	“Acquisition	Mode”	for	the	y-axis.		For	Bruker	users	who	collect	data	in	a	
standard	 way,	 it	 is	 likely	 that	 clicking	 the	 “Read	 Parameters”	 button	 can	 set	 the	
“Observe	Freq	MHz”,	“Center	Position	PPM”	and	“Axis	Label”	entries	correctly.		Make	
sure	 that	 the	 “Center	Position	PPM”	should	be	 set	 to	 “H2O”	 for	 the	x-axis	prior	 to	
each	click	 if	 the	carrier	 is	on	the	water	resonance.	 	Otherwise	the	center	positions	
may	need	to	be	calculated	and	entered	manually	for	each	dimension.	 	Note	that	all	
the	example	data	were	collected	with	some	unusual	Topspin	set-up	and	users	may	
need	to	manually	update	the	values	in	several	fields	because	not	all	the	information	
required	by	“bruker”	is	available	from	the	Bruker	acquisition	files.		With	all	entries	
correctly	set	and	updated,	clicking	the	“Save	Script”	button	generates	the	following	
fid.com	script:	
	
#!/bin/csh

nusExpand.tcl -mode bruker -sampleCount 370 -off 0 \
 -in ./ser -out ./ser_full -sample ./nuslist

bruk2pipe -in ./ser_full \
 -bad 0.0 -aswap -AMX -decim 1920 -dspfvs 20 -grpdly 67.9841918945312 \
 -xN 8192 -yN 3700 \
 -xT 4096 -yT 1850 \
 -xMODE DQD -yMODE Echo-AntiEcho \
 -xSW 10416.667 -ySW 1818.182 \
 -xOBS 800.134 -yOBS 81.086 \
 -xCAR 4.868 -yCAR 118.782 \
 -xLAB HN -yLAB 15N \
 -ndim 2 -aq2D States \
 -out ./test.fid -verb -ov

	
The	 above	 script	 first	 sorts	 and	 expands	 the	 ser	 file	 into	 ser_full,	 followed	 by	 a	
conventional	data	conversion	 from	ser_full	 to	 test.fid	 in	 the	NMRPipe	 format.	 	The	
smile	reconstruction	script	below	starts	with	a	conventional	processing	of	the	direct	
dimension,	 followed	by	 the	matrix	 transposition	 such	 that	 the	direct	dimension	 is	
stored	 in	 the	 y-dimension	 while	 the	 indirect	 NUS	 dimension	 becomes	 the	 x-axis,	
after	which	“nmrPipe	-fn	SMILE”	can	begin	the	reconstruction:	
	
#!/bin/csh

nmrPipe -in test.fid \
| nmrPipe -fn POLY -time \
| nmrPipe -fn GMB -lb -4 -gb 0.8 -c 1.0 \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 -24 -p1 0 -di \
| nmrPipe -fn POLY -auto -ord 2 -x1 10ppm -xn 6ppm \
| nmrPipe -fn EXT -x1 8.8ppm -xn 7.8ppm -sw -round 2 \

	 15	

| nmrPipe -fn TP \
| nmrPipe -fn SMILE -nDim 2 -sample nuslist -maxIter 500 \
 -nThread 4 -nSigma 4 -xP0 90 -xP1 0 -report 1 \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 90 -p1 0 -di \
| nmrPipe -fn TP \
 -verb -ov -out smile.ft2

	
Note	that	“nmrPipe	-fn	POLY		-auto	-ord	2	-x1	10ppm	-xn	6ppm”	is	applied	after	the	
phase	 correction	 is	 made,	 but	 before	 the	 narrow	 spectral	 region	 of	 interest	 is	
extracted.		This	may	help	improve	the	baseline	along	the	direct	dimension,	but	may	
slightly	increase	the	noise	level	in	the	final	data	set.		Users	should	take	this	step	with	
caution	 as	 it	may	 actually	 distort	 the	 baseline	 if	 the	 resonance	 is	more	 dispersed	
such	that	not	enough	baseline	segments	are	available.		In	practice,	users	can	check	if	
such	a	baseline	correction	 is	beneficial	by	examining	 the	spectrum	without	SMILE	
reconstruction	(or	by	setting	-maxIter	to	0).	 	 It	also	must	be	mentioned	that	the	“-
round	2”	option	must	be	included	for	the	“nmrPipe	-fn	EXT”	function	to	ensure	the	
direct	dimension	to	have	an	even	number	of	points.		Otherwise,	SMILE	quits	with	an	
error	message	in	case	the	direct	dimension	gets	an	odd	number	of	points.	
	
Most	command	line	options	used	here	are	self	explanatory.		For	2D,	“-nSigma	4”	can	
be	 used	 for	 a	 slightly	 cleaner	 reconstruction.	 “-report	 1”	 instructs	 SMILE	 to	 save	
some	critical	parameters	in	“smile.log”	(see	Section	5.14	for	more	details).		Note	that	
there	is	no	apodization	function	specified	for	the	15N	dimension.		SMILE	applies	the	
default	 function	(-xApod	SP	–xQ1	0.5	–xQ2	0.98	–xQ3	1)	 to	apodize	 the	data.	 	The	
data	remains	to	be	apodized	with	the	first	point	properly	scaled	and	therefore	there	
is	no	need	to	apply	any	window	function	prior	to	the	conventional	FT	step	after	the	
reconstruction	completes.	
	
The	 final	 reconstructed	 spectrum	 is	 in	 smile.ft2,	 and	 users	 can	 compare	 this	with	
fullSample.ft2	and	noSmile.ft2.	
	
6.2 SMILE	as	an	alternative	to	LP	for	extending	the	constant-time	acquisition	from	

28	ms	to	56	ms	in	a	fully	sampled	CT-[13C-1H]-HSQC	experiment	
	
This	 example	 shows	 how	 SMILE	 can	 be	 used	 as	 an	 alternative	 method	 to	 linear	
prediction	for	extending	the	acquisition	time	of	a	fully	sampled	indirect	dimension	
by	 treating	 it	 as	 a	 special	 NUS	 data	 set.	 	 The	 conversion	 script	 is	 first	 created	 by	
using	 the	 “bruker	 -nonus”	 command.	 	 Although	 not	 typically	 required	 for	 a	 fully	
sampled	 data	 set,	 the	 “-nonus”	 option	 explicitly	 instructs	 “bruker”	 to	 enter	 the	
conventional	conversion	mode.		Without	this	option,	“bruker”	automatically	starts	in	
its	NUS	conversion	mode	when	the	file	“nuslist”	(created	by	nusZF.com,	see	below)	
exists.	
	

	 16	

	
	
Note	again	that	the	“Center	Position	PPM”	for	the	x-axis	should	be	set	to	“H2O”	prior	
to	each	clicking	of	the	“Read	Parameters”	button	if	the	carrier	was	placed	on	water	
during	 the	 experiment.	 	 Otherwise,	 users	 may	 need	 to	 manually	 calculate	 and	
update	 the	carrier	positions	 in	both	dimensions.	 	Once	all	 the	entries	are	updated	
and	manually	corrected	 if	necessary,	click	the	“Save	Script”	button	to	generate	the	
following	conventional	fid.com	script	without	the	nusExpand.tcl	line:	
	
#!/bin/csh

bruk2pipe -in ./ser \
 -bad 0.0 -aswap -AMX -decim 2080 -dspfvs 20 -grpdly 67.9842071533203 \
 -xN 2048 -yN 914 \
 -xT 1024 -yT 457 \
 -xMODE DQD -yMODE Complex \
 -xSW 9615.385 -ySW 16666.667 \
 -xOBS 600.133 -yOBS 150.910 \
 -xCAR 4.820 -yCAR 50.111 \
 -xLAB 1H -yLAB 13C \
 -ndim 2 -aq2D States \
 -out ./test.fid -verb -ov

	
The	 NMRPipe	 script	 nusZF.com	 (provided	 in	 the	 new	 release	 by	 Frank	 Delaglio)	
starts	 from	the	 fully	sampled	test.fid	and	creates	a	new	data	set	 (test_ext.fid)	with	
zeros	 padded	 in	 the	 indirect	 dimension.	 	 By	 setting	 “-yZFARG”	 to	 “zf=1”,	 the	
program	increases	the	CT	acquisition	by	exactly	one	fold,	i.e.	from	28	ms	to	56	ms.		
The	 “-schedule”	 option	 allows	 user	 to	 provide	 a	 file	 name	 for	 the	 artificial	 NUS	
sampling	 schedule	 to	 be	 created	during	 the	 extension.	 	Use	 “nusZF.com	 -help”	 for	
more	command	line	options.	
	
nusZF.com -in test.fid -out test_ext.fid \
 -schedule nuslist -mask None \
 -yZFARG zf=1

	
The	 extended	 data	 can	 be	 considered	 as	 50%	 sparsely	 sampled	 and	 can	 be	
reconstructed	using	SMILE	 in	a	 similar	way	as	described	above	 for	 the	2D	TROSY	
example	(Section	6.1)	by	using	the	following	script:	
	
	

	 17	

	
#!/bin/csh

nmrPipe -in test_ext.fid \
| nmrPipe -fn POLY -time \
| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 1.0 \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 47.9 -p1 37.2 -di -verb \
| nmrPipe -fn EXT -x1 6.5ppm -xn -2.0ppm -sw \
| nmrPipe -fn TP \
| nmrPipe -fn SMILE -nDim 2 -sample nuslist -nThread 4 \
 -nSigma 4 -maxIter 1000 -report 1 \
 -xApod SP -xQ1 0.5 -xQ2 0.995 -xQ3 1 \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 0 -p1 0 -di -verb \
| nmrPipe -fn TP \
| nmrPipe -fn POLY -auto \
 -ov -out smile.ft2

	
6.3 3D	HNCO	5%	NUS	reconstruction	
	
This	3D	HNCO	serves	as	an	example	for	processing	the	NUS	data	collected	with	the	
experiment	 terminated	 before	 its	 completion.	 	 As	 for	 the	 2D,	 we	 start	 with	 the	
command	 “bruker	 -nus	 -nouseMask”	 to	 construct	 the	 expansion	 and	 conversion	
script.		Although	the	nuslist	consists	of	8000	(15N,	13C)	sampling	pairs,	only	10%	of	
the	total	NUS	data	points	were	sampled.	 	As	a	result,	the	“NUS	Samples”	should	be	
manually	updated	to	800	from	the	default	value	8000.		Note	that	the	change	in	the	
“NUS	Samples”	makes	the	“Read	Parameters”	as	well	as	the	“Valid	Points”	and	“Total	
Points	 R+I”	 entries	 highlighted,	 reminding	 users	 of	 clicking	 the	 button	 again	 to	
update	 the	number	of	points	 that	may	or	may	not	become	smaller.	 	Remember	 to	
manually	set	 the	 “Center	Position	PPM”	 to	 “H2O”	before	each	click	 in	order	 for	all	
carrier	positions	to	be	correctly	calculated,	unless	the	carrier	was	placed	elsewhere.	
	
At	 this	 fid.com	 conversion	 step,	 the	 first	 column	 in	 the	 sampling	 schedule	
corresponds	to	the	y-axis,	while	the	second	column	to	the	z-axis,	unless	the	“Reverse	
NUS	 Column	 Order”	 is	 checked.	 	 The	 13C	 dimension	 (i.e.	 along	 the	 z-axis)	 was	
originally	recorded	with	one	full	point	delay	for	80	complex	points	in	total	indexed	
from	 0	 to	 79.	 	 By	 setting	 the	 second	 offset	 to	 -1	 in	 the	 “NUS	 Index	 Offset”	 in	 the	
figure	 below,	 we	 shift	 the	 second	 column	 in	 the	 sampling	 schedule	 (i.e.	
corresponding	to	the	13C	sampling	list)	from	an	index	range	of	0-79	to	1-80.		This	is	
because	the	offset	is	always	subtracted	by	nusExpand.tcl	(and	SMILE	as	well)	from	
the	 index	 in	 the	 sampling	 list,	 thus	 0	 -	 (-1)	 =	 1,	 …,	 and	 79	 -	 (-1)	 =	 80.	 	 Because	
nusExpand.tcl	 always	 interprets	 any	 offset-corrected	 sampling	 schedule	 as	 zero-
based,	 shifting	 the	 index	 forward	by	1	 is	 equivalent	 to	 treating	 the	 first	 t2=0	data	
point	 as	 an	 additional	 unsampled	 point,	 thereby	 effectively	 changing	 the	 13C	
acquisition	 from	 one	 point	 delay	 to	 no	 delay.	 	 This	 manipulation	 eliminates	 the	
otherwise	required	360°	first	order	phase	correction	as	well	as	the	baseline	offset	in	
the	 corresponding	dimension.	 	Note	 that	 the	 “Valid	Points”	 for	 the	 z-axis	must	 be	
manually	changed	from	80	to	81	and	the	“Total	Points	R+I”	must	be	updated	from	
160	to	162	to	accommodate	the	addition	of	the	unsampled	point.	 	Note	that	the	-1	
offset	 is	applied	only	 internally	by	nusExpand.tcl	when	sorting	and	zero	 filling	 the	

	 18	

NUS	 data.	 	 The	 file	 (i.e.	 nuslist)	 containing	 the	 sampling	 schedule	 remains	
unchanged	during	the	conversion.		No	new	offset-corrected	sampling	schedule	text	
file	 is	 created	 either.	 	 As	 a	 result,	 the	 same	 offset	must	 be	 applied	 during	 SMILE	
reconstruction,	and	the	SMILE	“-off”	option	is	designed	to	do	just	that.	
	

	
	
The	above	setting	generates	the	following	fid.com	script:	
	
#!/bin/csh

nusExpand.tcl -mode bruker -sampleCount 800 -off 0 -1 \
 -in ./ser -out ./ser_full -sample ./nuslist

bruk2pipe -in ./ser_full \
 -bad 0.0 -aswap -AMX -decim 2496 -dspfvs 20 -grpdly 67.9842376708984 \
 -xN 2048 -yN 400 -zN 162 \
 -xT 1024 -yT 200 -zT 81 \
 -xMODE DQD -yMODE Echo-AntiEcho -zMODE Complex \
 -xSW 8012.821 -ySW 1838.235 -zSW 1661.130 \
 -xOBS 600.433 -yOBS 60.848 -zOBS 151.004 \
 -xCAR 4.821 -yCAR 118.923 -zCAR 176.093 \
 -xLAB HN -yLAB 15N -zLAB 13C \
 -ndim 3 -aq2D States \
 -out ./fid/test%03d.fid -verb -ov

	
After	running	the	above	script	to	complete	the	expansion	and	conversion,	the	direct	
dimension	is	then	processed	and	stored	in	the	z-dimension:	
	
#!/bin/csh

xyz2pipe -in ./fid/test%03d.fid –x \
| nmrPipe -fn POLY -time \
| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 0.5 \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn POLY -auto -ord 2 -x1 11ppm -xn 6ppm \
| nmrPipe -fn EXT -x1 10ppm -xn 6.4ppm -sw -round 2 \
| nmrPipe -fn PS -p0 -58 -p1 0.0 -di \
| pipe2xyz -out ft1/test%04d.ft1 -z

Note	that	a	baseline	correction	is	applied	using	a	wider	range	(6-11	ppm)	than	the	

	 19	

extracted	region	(6.4-10ppm),	which	may	improve	the	baseline.		Also	the	“-round	2”	
option	 is	 used	 to	 ensure	 an	 even	 number	 of	 points	 in	 the	 direct	 dimension	 after	
being	 extracted.	 	 The	data	 is	 output	 to	 ft1/test%04d.ft1	 via	 pipe2xyz	 along	 the	 -z	
option,	which	permutes	the	original	xyz-axes	to	yzx,	thereby	transposing	the	current	
axis	 (i.e.	 the	 direct	 dimension)	 from	 the	 x-	 to	 z-axis,	 but	 keeping	 the	 relative	 axis	
order	of	the	two	indirect	dimensions	(i.e.	the	original	y-	and	z-axes	becoming	the	x-	
and	y-axes,	respectively).		The	same	axis	order	can	be	obtained	through	ZTP	by	first	
swapping	 the	 x-	 with	 z-axes	 followed	 by	 TP	 to	 rotate	 the	 y-axis	 to	 the	 first	
dimension.		Regardless,	users	should	use	the	command	“showhdr	ft1/test%04d.ft1”	
to	check	the	axis	order:	
	
FILE: ft1/test0001.ft1 DIM: 3 QUAD: Complex 2DMODE: States Not Transposed
BYTES: 261248 PRED: 261248 MIN: 0 MAX: 0 VALID: 0
ORDER: 1 3 2 PIPE: 0 CUBE: 0 FILES: 1106 200x162x2 2D Series

 X-Axis Y-Axis Z-Axis

DATA SIZE: 200 162 1106
APOD SIZE: 200 81 276
SW Hz: 1838.234985 1661.130005 2163.618164
OBS MHz: 60.848000 151.003998 600.432983
ORIG Hz: 6326.361328 25770.585938 3843.471191
DOMAIN: Time Time Freq
MODE: Complex Complex Real
NAME: 15N 13C HN

	
Note	that	SMILE	always	assigns	the	first	column	in	the	sampling	schedule	to	the	x-
axis,	and	the	second	column	to	the	y-axis.	 	If	this	is	not	the	case,	users	must	either	
transpose	 the	 data	 or	 swap	 the	 sampling	 list	 such	 that	 the	 axis	 order	 in	 the	
ft1/test%04d.ft1	 and	 nuslist	 is	 identical.	 Otherwise,	 SMILE	 will	 encounter	 an	
inconsistency	between	the	sampling	list	and	the	data	size	of	each	indirect	dimension	
(unless	any	two	indirect	dimensions	happen	to	have	the	same	size),	and	quits	after	
an	error	is	reported.	

xyz2pipe -in ft1/test%04d.ft1 -x \
| nmrPipe -fn SMILE -nDim 3 -sample nuslist -nThread 32 \
 -sampleCount 800 -nSigma 5 -off 0 -1 -report 1 \
 -xCT 43 \
| pipe2xyz -out ft1/rc%04d.ft1 -x

The	 command	 line	 above	 performs	 a	 3D	 SMILE	 reconstruction.	 	 Note	 that	 -
sampleCount	 must	 be	 specified	 and	 be	 consistent	 with	 the	 value	 in	 the	
nusExpand.tcl	script,	unless	users	truncate	the	sampling	schedule	and	keep	the	top	
800	 lines	only.	 	The	 “-off”	option	also	needs	 to	be	 set	 to	 the	 same	values	used	 for	
nusExpand.tcl,	 and	 the	 -1	 offset	 for	 the	 second	 column	 effectively	 shifts	 the	 13C	
sampling	list	forward	by	1	as	discussed	above,	but	the	shifting	only	occurs	internally	
within	SMILE,	which	does	not	change	the	nuslist	file.		Like	nusExpand.tcl,	the	shifted	
sampling	list	is	considered	as	zero-based	by	SMILE.	
	
The	15N	dimension	was	acquired	using	the	so-called	mixed	time	evolution	approach	
(see	Ying	et	al.,	J.	Biomol.	NMR,	2007,	37,	195-204).		The	first	44	complex	pairs	were	
recorded	 in	a	constant	 time	manner,	while	 the	additional	points	 through	real	 time	
increments.	 	As	 the	sampling	 list	 is	zero	based,	 the	“-xCT	43”	 instructs	SMILE	that	
exactly	44	complex	pairs	out	of	200	belong	to	the	constant	time	evolution.	

	 20	

	
Although	 the	 SMILE	 function	 can	 be	 connected	 via	 a	 unix	 pipe	 to	 the	 following	
conventional	 processing	 of	 the	 two	 indirect	 dimensions,	 we	 recommend	 to	 first	
output	 the	 results	 to	 ft1/rc%04d.ft1	 files.	 	 This	 allows	 users	 to	 play	 with	 the	
subsequent	processing	without	 repeating	 the	 time-consuming	reconstruction	step.		
Note	 that	 no	 window	 function	 is	 applied	 in	 the	 following	 conventional	 script	
because	 the	 data	 was	 already	 apodized	 during	 the	 above	 SMILE	 reconstruction	
using	the	default	parameters	(-Apod	SP	-Q1	0.5	-Q2	0.98	-Q3	1	for	both	15N	and	13C).	

xyz2pipe -in ft1/rc%04d.ft1 -x \
| nmrPipe -fn ZF -zf 1 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 0 -p1 0 -di \
| nmrPipe -fn TP \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 0 -p1 0 -di \
| nmrPipe -fn TP \
| nmrPipe -fn ZTP \
| pipe2xyz -out ft/test%04d.ft3 -x

proj3D.tcl -in ft/test%04d.ft3

	
6.4 3D	13C	NOESY-HSQC	30%	NUS	reconstruction	
	
This	 example	 demonstrates	 that	 SMILE	 works	 in	 the	 presence	 of	 strong	 t1	 noise	
ridges.		It	also	shows	how	the	indirect	dimensions	are	apodized	differently	with	GM	
and	 SP	 during	 the	 reconstruction,	 but	 during	 the	 subsequent	 conventional	
processing	the	GM	window	is	inverted	and	an	SP	function	is	applied	instead.	
	
The	expansion	and	conversion	script	is	first	constructed	by	entering	“bruker	-nus	-
nouseMask”.		Make	sure	the	“NUS	Schedule”	and	“NUS	Samples”	fields	are	correctly	
set,	 and	 the	 “Center	 Position	 PPM”	 has	 “H2O”	 before	 each	 click	 of	 the	 “Read	
Parameters”	 button.	 	 Manually	 update	 the	 other	 entries	 if	 necessary	 before	 the	
script	is	saved.		The	carrier	frequency	in	the	indirect	1H	dimension	was	shifted	to	3.4	
ppm	in	the	pulse	sequence.	But	this	is	relative	to	the	O1P	of	4.698.		As	a	result,	the	
correct	position	should	be	3.400	+	4.868	–	4.698	=	3.570	ppm.	
	

	

	 21	

The	above	“bruker”	settings	lead	to	the	following	fid.com	conversion	script:	
	
#!/bin/csh

nusExpand.tcl -mode bruker -sampleCount 12012 -off 0 \
 -in ./ser -out ./ser_full -sample ./nuslist

bruk2pipe -in ./ser_full \
 -bad 0.0 -aswap -AMX -decim 1848 -dspfvs 20 -grpdly 67.9869537353516 \
 -xN 2048 -yN 364 -zN 440 \
 -xT 1024 -yT 182 -zT 220 \
 -xMODE DQD -yMODE Echo-AntiEcho -zMODE Complex \
 -xSW 10822.511 -ySW 7462.687 -zSW 7246.377 \
 -xOBS 900.274 -yOBS 226.383 -zOBS 900.274 \
 -xCAR 4.868 -yCAR 45.131 -zCAR 3.570 \
 -xLAB H-acq -yLAB 13C -zLAB H-ind \
 -ndim 3 -aq2D States \
 -out ./fid/test%03d.fid -verb -ov

	
After	 running	 fid.com,	 the	direct	 dimension	must	 be	 processed	 and	 transposed	 to	
the	z-axis	using	the	pipes	as	follows:	
	
xyz2pipe -in fid/test%03d.fid \
| nmrPipe -fn POLY -time \
| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 0.5 \
| nmrPipe -fn ZF -zf 1 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn EXT -x1 6ppm -xn -0.5ppm -sw -round 2 \
| nmrPipe -fn PS -p0 -9.0 -p1 0 -di \
| pipe2xyz -ov -out ft1/test%04d.ft1 -z

	
Note	 that	 in	 this	example,	 there	 is	no	POLY	baseline	correction	applied	before	 the	
region	 of	 interest	 was	 extracted.	 	 For	 a	 NOESY	 spectrum	 like	 this,	 there	 are	 not	
enough	 baseline	 segments	 in	 each	 1D	 slice	 to	 make	 a	 good	 correction.	 	 Also	 the	
direct	 dimension	 is	 zero	 filled	 once,	 which	 already	 yields	 1110	 points	 and	 a	
sufficiently	high	digital	 resolution	(ca	1.3	Hz).	 	The	SMILE	reconstruction	can	now	
begin	using	the	following	script:	
	
xyz2pipe -in ft1/test%04d.ft1 -x -verb \
| nmrPipe -fn SMILE -nDim 3 -maxIter 600 -nSigma 6 \
 -sample nuslist -nThread 64 -thresh 0.95 \
 -xApod GM -xQ1 0 -xQ2 50 -xQ3 0 \
 -yApod SP -yQ1 0.5 -yQ2 0.98 -yQ3 1 \
 -xzfSize 728 -xP0 90 -xP1 0 -xCT 182 \
 -yzfSize 880 -yP0 90 -yP1 180 -report 1 \
| pipe2xyz -out ft1.GM/rc%04d.ft1 -x

	
The	indirect	dimensions	are	apodized	differently	with	GM	and	SP	for	x-	and	y-axis,	
respectively.	 	 This	 is	 done	 just	 to	 show	 the	 syntax	 of	 using	different	windows	 for	
SMILE	reconstruction.		There	is	no	particular	advantage	of	applying	GM	in	this	case,	
which	makes	 the	 CT	 13C	 peaks	 broader.	 	 The	 following	 script	 shows	 how	 the	 GM	
window	 in	 the	 13C	 dimension	 is	 inverted	 through	 the	 “-inv”	 option	 of	 the	 GM	
function.		Note	the	“-hdr”	option	instructs	GM	to	read	the	Q	values	of	the	GM	window	
from	the	header.		This	can	be	done	because	SMILE	saves	the	apodization	parameters	
of	each	indirect	dimension	in	the	header.		However,	the	first-point	scaling	factor	for	
the	“-c”	option	is	not	saved	in	the	header	and	therefore	the	scaling	was	not	inverted.		
As	a	result,	no	scaling	should	be	repeated	when	the	new	SP	window	is	applied	(i.e.	-c	
set	 to	1.0	 instead	of	0.5).	 	 For	 the	y-axis	 (i.e.	 the	 1H	dimension),	no	SP	 function	 is	

	 22	

applied	 as	 the	 data	 is	 already	 apodized	 by	 SMILE	 unless	 a	 different	 window	 is	
needed.	
	
xyz2pipe -in ft1.GM/rc%04d.ft1 -x \
| nmrPipe -fn GM -hdr -inv \
| nmrPipe -fn SP -off 0.5 -end 0.995 -pow 1 -c 1.0 \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 90 -p1 0 -di \
| nmrPipe -fn TP \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 90 -p1 180 -di \
| nmrPipe -fn TP \
| nmrPipe -fn ZTP \
| nmrPipe -fn POLY -auto -ord 2 \
| pipe2xyz -out ft.GM/test%04d.ft3 -x

proj3D.tcl -in ft.GM/test%04d.ft3

	
For	 comparison,	 the	 reconstruction	 can	 be	 done	 using	 a	 cosine	 window	 for	 both	
indirect	dimensions	using	the	processing	scripts	below.	 	The	settings	of	“-Apod”,	“-
Q1”,	“-Q3”	with	no	axis	designation	apply	to	both	indirect	dimensions,	while	“-xQ2	
0.995”	and	“-yQ2	0.98”	cut	the	sine	windows	at	179.1°	for	the	CT	13C	dimension	and	
172.4°	for	the	regular	1H	dimension,	respectively.	
	
xyz2pipe -in ft1/test%04d.ft1 -x -verb \
| nmrPipe -fn SMILE -nDim 3 -maxIter 600 -nSigma 6 \
 -sample nuslist -nThread 32 -thresh 0.95 \
 -Apod SP -Q1 0.5 -xQ2 0.995 –yQ2 0.98 -Q3 1 \
 -xzfSize 728 -xP0 90 -xP1 0 -xCT 182 \
 -yzfSize 880 -yP0 90 -yP1 180 -report 1 \
| pipe2xyz -out ft1.SP/rc%04d.ft1 -x

xyz2pipe -in ft1.SP/rc%04d.ft1 -x \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 90 -p1 0 -di \
| nmrPipe -fn TP \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 90 -p1 180 -di \
| nmrPipe -fn TP \
| nmrPipe -fn ZTP \
| nmrPipe -fn POLY -auto -ord 2 \
| pipe2xyz -out ft.SP/test%04d.ft3 -x

proj3D.tcl -in ft.SP/test%04d.ft3

	
	
6.5 4D	methyl	HMQC-NOESY-HMQC	1.56%	NUS	reconstruction	
	
Enter	 the	 command	 “bruker	 -nus	 -nouseMask”	 to	 set	 up	 the	 expansion	 and	
conversion	 scripts.	 	 Click	 the	 “Read	 Parameters”	 button,	 and	make	 sure	 the	 “NUS	
Schedule”	 is	set	to	nuslist	and	the	“NUS	Samples”	to	5600	(equal	to	the	number	of	
triples	in	the	nuslist	for	the	completed	experiment).		The	“Acquisition	Mode”	for	all	
indirect	dimensions	should	be	set	to	“Complex”,	and	the	“Observe	Freq	MHz”	should	
be	 set	 to	 the	 values	 as	 in	 the	 figure	below.	 	Make	 sure	 the	 “Spectral	Width	Hz”	 is	
updated	manually,	if	necessary.	 	The	“Center	Position	PPM”	should	be	set	to	“H2O”	
for	 the	x-axis	before	 clicking	the	“Read	Parameters”	button	each	time,	which	then	
allows	 users	 to	 choose	 a	 correctly	 calculated	 carrier	 frequency	 for	 the	 other	

	 23	

dimensions.	 	 If	 the	 carrier	 position	 along	 the	 x-axis	 is	 set	 to	 a	 number	 in	 ppm,	
clicking	the	“Read	Parameters”	button	changes	the	position	to	0	ppm,	which	would	
then	 require	 users	 to	manually	 enter	 the	 center	 positions	 for	 all	 the	 dimensions.		
Note	 that	 for	 the	carrier	position	along	 the	y-axis,	 it	 is	set	 to	0.6	ppm	in	 the	pulse	
sequence,	but	that	is	the	position	relative	to	the	O1P	at	4.703	ppm.		At	285K,	water	
resonates	at	4.897	ppm.		As	a	result,	the	correct	center	for	the	y-axis	is	4.897	–	4.703	
+	 0.6	 =	 0.794	 ppm.	 	 For	 the	 “Axis	 Label”	 along	 each	 axis,	 users	 can	 use	 a	 unique	
string	that	helps	identify	each	dimension.		To	make	sure	a	manual	change	is	updated	
in	the	script	before	it	is	saved,	users	must	hit	the	enter	key	after	the	change	is	made.	
	

	
	
The	above	setting	yields	the	following	fid.com	script:	
	
#!/bin/csh

nusExpand.tcl -mode bruker -sampleCount 5600 -off 0 \
 -in ./ser -out ./ser_full -sample ./nuslist

bruk2pipe -in ./ser_full \
 -bad 0.0 -aswap -AMX -decim 2496 -dspfvs 20 -grpdly 67.9842376708984 \
 -xN 2048 -yN 112 -zN 160 -aN 160 \
 -xT 1024 -yT 56 -zT 80 -aT 80 \
 -xMODE DQD -yMODE Complex -zMODE Complex -aMODE Complex \
 -xSW 8012.821 -ySW 1201.923 -zSW 1984.127 -aSW 1984.127 \
 -xOBS 600.433 -yOBS 600.433 -zOBS 150.981 -aOBS 150.981 \
 -xCAR 4.897 -yCAR 0.794 -zCAR 20.392 -aCAR 20.392 \
 -xLAB Hm -yLAB Hnoe -zLAB Cnoe -aLAB Cm \
 -ndim 4 -aq2D States \
| pipe2xyz -x -out ./fid/test%03d%03d.fid -verb -ov

	
After	running	the	fid.com	script,	users	can	begin	the	conventional	processing	of	the	
direct	 dimension.	 	 As	 pointed	 out	 in	 the	 other	 examples,	 a	 baseline	 correction	 is	
applied	 to	 a	wider	 range	 than	 the	 spectral	 region	 of	 interest,	 before	 the	 region	 is	
extracted.	 	 The	 “-round	 2”	 option	 ensures	 the	 direct	 dimension	 to	 have	 an	 even	
number	of	points.	 	Finally,	 the	processed	x-dimension	 is	permutated	 to	 the	a-axis,	
while	 the	 original	 y-,	 z-,	 and	 a-axis	 become	 x-,	 y-,	 and	 z-axis,	 respectively.	 	 The	
relative	 axis	 order	 of	 the	 indirect	 dimensions	 must	 be	 preserved	 and	 they	 must	
correspond	to	the	three	columns	in	the	NUS	sampling	schedule.	 	 	Otherwise,	either	
the	 columns	 in	 the	 sampling	 list	 need	 to	 be	 swapped	 or	 the	 data	matrix	must	 be	

	 24	

rearranged.	 	 Regardless,	 the	 direct	 dimension	 must	 be	 processed	 with	 its	
imaginaries	discarded,	and	must	be	stored	along	the	a-axis	for	a	4D	data	set.	
	
#!/bin/csh

xyz2pipe -in fid/test%03d%03d.fid -x \
| nmrPipe -fn POLY -time \
| nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 0.5 \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn POLY -auto -ord 2 -x1 3ppm -xn -1ppm \
| nmrPipe -fn EXT -x1 1.4ppm -xn -0.7ppm -sw -round 2 \
| nmrPipe -fn PS -p0 122 -p1 0 -di \
| pipe2xyz -ov -out ft1/test%03d%03d.ft1 -a

The	data	is	now	ready	for	the	4D	reconstruction	using	the	script	below.	 	Note	that	
the	reconstruction	is	allowed	to	access	490	GB	of	memory	via	“-maxMem	490”.		As	
discussed	above,	around	17	GB	space	is	minimally	required.		Also	a	two-fold	zero	fill	
without	 being	 rounded	 to	 the	 next	 power	 of	 2	 is	 used	 via	 the	 “-yzfSize”	 and	 “-
zzfSize”	options	for	the	two	13C	dimensions	to	keep	the	total	data	size	smaller.		The	
“-xNeg”	 and	 “-yNeg”	 options	 instruct	 SMILE	 to	 negate	 the	 imaginary	 during	 the	
processing,	 as	 required	 by	 the	 conventional	 FT	 function	 during	 the	 subsequent	
processing.

xyz2pipe -in ft1/test%03d%03d.ft1 -x \
| nmrPipe -fn SMILE -nDim 4 -maxIter 200 -nSigma 6 \
 -sample nuslist -nThread 60 \
 -maxMem 490 -report 1 \
 -xzf 2 -xP0 0.0 -xP1 0.0 -xNeg \
 -yzfSize 320 -yP0 0.0 -yP1 0.0 -yNeg \
 -zzfSize 320 -zP0 90 -zP1 180 \
| pipe2xyz -out ft1/rc%03d%03d.ft1 -x

xyz2pipe -in ft1/rc%03d%03d.ft1 -x \
| nmrPipe -fn ZF -zf 2 -auto \
| nmrPipe -fn FT -neg \
| nmrPipe -fn PS -p0 0 -p1 0 -di \
| nmrPipe -fn TP \
| nmrPipe -fn ZF -zf 1 -auto \
| nmrPipe -fn FT -neg \
| nmrPipe -fn PS -p0 0 -p1 0 -di \
| pipe2xyz -out ft/test%03d%03d.ft3 -y

xyz2pipe -in ft/test%03d%03d.ft3 -z \
| nmrPipe -fn ZF -zf 1 -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 90 -p1 180 -di \
| pipe2xyz -out ft/test%03d%03d.ft4 -z

proj4D.tcl -in ft/test%03d%03d.ft4

	 25	

	
7. Contact	and	reference	
	
Contact	 Jinfa	 Ying	 at	 jinfaying@niddk.nih.gov	 for	 any	 bugs,	 comments	 and	
suggestions.		Your	feedbacks	are	much	appreciated.		Cite	the	work	by	referencing	to	
Ying	et	al.,	J.	Biomol.	NMR,	in	preparation.	
	
8. Acknowledgements	
	
This	manual	 is	written	by	Jinfa	Ying	and	Ad	Bax.	 	We	thank	Dennis	Torchia	for	his	
contribution	 to	 the	 initial	 formulation	 of	 the	 SMILE	 algorithm	 and	 for	 his	 many	
helpful	discussions	during	the	development.		We	are	also	grateful	to	Frank	Delaglio	
for	providing	his	source	codes	of	NMRPipe,	for	answering	many	questions	from	us,	
and	for	his	development	of	routines	that	facilitate	the	handling	of	NUS	data	prior	to	
SMILE	 reconstruction.	 	 We	 thank	 Alex	 Maltsev	 and	 Yang	 Shen	 for	 their	 helpful	
discussions	in	coding	the	algorithm.	Jung	Ho	Lee,	Nik	Sgourakis,	Julien	Roche,	Fang	
Li,	Yawen	Bai	(NCI),	and	Hanqiao	Feng	(NCI)	are	thanked	for	providing	the	samples	
and	data	used	in	this	work.	

