Proline Peptide Bond Isomerization in Ubiquitin under Folding and Denaturing Conditions by

Pressure-Jump NMR

Elahe Masoumzadeh, Jinfa Ying, James L. Baber, Philip Anfinrud and Ad Bax

Supporting Information

TEXT

cis-Pro signal in double pressure-jump experiment

At the end of the high-pressure denaturation period, we assume the *cis* population has reached its equilibrium fractional value A (e.g. $A \approx 0.09$ for P19). During the subsequent low-pressure delay of duration T_{LP} (Fig. 4a), the *cis* fraction reduces to $A \exp(-k_{ct}T_{LP})$, where k_{ct} is the *cis* to *trans* isomerization rate at low pressure. Immediately following the next pressure jump back to high pressure, the time domain signal for the first t₁ increment (describing the *cis* fraction for *e.g.* S20) of the 2D SOFAST-HMQC spectrum ($t_1 = 0$) is written as:

$$I(t_1, T_{LP}) = A \exp(-k_{ct}T_{LP}) \exp(i\Omega_N t_1) \exp(-t_1/T_{2N}) \exp(i\Omega_H t_2) \exp(-t_2/T_{2H})$$
(1)

where Ω_N and Ω_H are the angular ¹⁵N and ¹H resonance offset frequencies, and T_{2N} and T_{2H} are the decay constants for transverse ¹⁵N and ¹H magnetization of the *cis* isomer during the high-pressure readout. Without loss of generality, we simplify the analysis below by only considering the signal dependence on the duration of the evolution period, t₁:

$$I(t_1, T_{LP}) = A \exp(-k_{ct} T_{LP}) \exp(-t_1/T_{2N})$$
(2)

Eq. 2 represents the signal of interest, from which k_{ct} is to be derived. However, after the second jump (back to high pressure; Fig. 4a), the *cis* fraction will slowly recover to its equilibrium value, A, at a rate given by k_{ex} where k_{ex} is the sum of the *cis*-to-*trans* and *trans*-to-*cis* isomerization rates at high pressure. Therefore, after jumping back to high pressure for detection, the *cis* fraction generally will contain an additional "high pressure recovery" component:

$$I_{r}(t_{1}) = A \{1 - \exp(-k_{ct}T_{LP})\} [1 - \exp(-Nk_{ex}t_{1})] \exp(-t_{1}/T_{2N})$$
(3)

where $N = 2 \times NS \times (d1+aq)/\Delta t_1$, with NS being the total number of scans collected per (complex) t_1 increment, Δt_1 , aq the duration of the pulse sequence including its t_2 acquisition period, and d1 is the delay between consecutive scans in the high-pressure readout SOFAST-HMQC.

So, the t_1 time domain collected for a given low-pressure duration T_{LP} (sum of eqs 2 and 3) consists of five components:

$$I(t_1, T_{LP}) = A \exp(-k_{ct}T_{LP}) \exp(-t_1/T_{2N})$$
(4A)

$$I(t_1, T_{LP}) = -A \exp(-k_{ct} T_{LP}) \exp(-t_1/T_{2N})$$
(4B)

$$I(t_1, T_{LP}) = A \exp(-t_1/T_{2N})$$
 (4C)

$$I(t_1, T_{LP}) = A \exp(-k_{ct}T_{LP}) \exp(-Nk_{ex}t_1) \exp(-t_1/T_{2N}) = A \exp(-k_{ct}T_{LP}) \exp\{(-Nk_{ex}-R_2)t_1\}$$
(4D)

$$I(t_1, T_{LP}) = -A \exp(-Nk_{ex}t_1) \exp(-t_1/T_2) = -A \exp\{(-Nk_{ex}-R_2)t_1\}$$
(4E)

with $R_2 = 1/T_{2N}$.

where 4A and 4B cancel one another, leaving:

$$I(t_1, T_{LP}) = A \exp(-R_2 t_1)$$
(5A)

$$I(t_1, T_{LP}) = A \{ \exp(-k_{ct}T_{LP}) - 1 \} \exp\{(-Nk_{ex}-R_2)t_1 \}$$
(5B)

As a result, for $T_{LP} = 0$, we obtain:

$$I(t_1,0) = A \exp(-R_2 t_1)$$
 (6A)

whereas for $T_{LP} \rightarrow \infty$:

$$I(t_1, \mathbf{x}) = A \left[\exp(-R_2 t_1) - \exp\{(-Nk_{ex} - R_2) t_1 \} \right]$$
(6B)

Eq. 6B shows that the Fourier transform of $I(t_1, \infty)$ corresponds to the difference between two Lorentzians with ¹⁵N linewidths determined by R₂ and by R₂+*Nk*_{ex}, respectively. The second

component causes a (small) offset in the decay profile of the *cis* isomer intensity of the doublejump experiment that needs to be accounted for, either by simulating its effect based on the known high-pressure k_{ex} value, or by using an adjustable offset parameter in the fit of the exponential decay of *cis* intensities for increasing T_{LP}.

Effect of pressure jump on sample temperature

To assess the time required for temperature stabilization after a pressure jump induced by the adiabatic compression/decompression of the aqueous solvent, we monitored the chemical shift of TSP (3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt, trisodium phosphate) in a 99.9% $D_2O/0.1\%$ H₂O sample by monitoring the temperature-dependent ¹HDO chemical shift relative to TSP, which increases by 10.32 ppb/°C.¹

A series of 1D spectra were acquired for 50 seconds following a jump from 1 bar to 2.4 kbar, and after temperature equilibration at high pressure, a similar set of 1D spectra was recorded immediately following a drop in pressure from 2.4 kbar to 1 bar. The chemical shift of HDO relative to TSP was recorded in each spectrum (Fig. S4). The plot of HDO chemical shift as a function of time revealed a rapid change during the initial 5 seconds, followed by a more gradual temperature change with the sample reaching its set temperature after *ca* 20 s.

Figure S1. ¹H and ¹⁵N chemical shift assignments of L50A ubiquitin, recorded at 278 K, 1 bar, 25 mM phosphate buffer pH 6.4 (at 1 bar). (a) 600 MHz ¹H -¹⁵N HSQC NMR spectrum (b) ¹H and ¹⁵N chemical shifts at 1 bar vs values observed for wild-type ubiquitin. Chemical shift values of L50A ubiquitin (folded, and unfolded at 1 bar, as well as unfolded at 2.4 kbar) are included in Table S1.

Figure S2. Comparison of ¹H and ¹⁵N chemical shifts of pressure-denatured L50A ubiquitin with those of the V17A/V26A mutant, at 278 K, 25 mM phosphate buffer pH 6.4 (at 1 bar).

Figure S3. 800-MHz ¹H-¹⁵N HSQC NMR spectrum of pressure-denatured L50A ubiquitin, recorded at 278 K, 2.4 kbar, 25 mM phosphate buffer pH 6.4 (at 1 bar). Resonances of the resolved *cis* isomer signals, together with those of their corresponding *trans* resonances, are marked.

Figure S4. Chemical shift of HDO relative to trimethylsilylpropanoic acid (TSP), following a pressure jump (a) from 1 bar to 2.4 kbar, and (b) from 2.4 kbar to 1 bar, measured at pH 8.5, for a "set" temperature of 276 K. The graphs correspond to series of 1D spectra, taken at 0.5 s intervals, after switching the pressure, with the start of the first FID at 0.5 s after the pressure drop. The change in solvent temperature can be derived from the reported chemical shifts by using a HDO temperature coefficient of 10.32 ppb/°C.¹

Figure S5. 700-MHz 2D exchange spectrum for the amide region of the heptapeptides (a) acetyl-EVEPSDT-NH₂ and (b) acetyl-EVFPSDT, both recorded at 1 bar (left panels) and 2.5 kbar (right panels), 327 K, pH 3.8, using a mixing time of 400 ms. The 2D spectrum was ¹H-¹H was decoupled in the F₁ (vertical) dimension by using a combination of a non-selective 180° and an amide-selective REBURP 180° pulse ². Isomerization rates, k_{ex} , were calculated based on the intensities of the well resolved cross- and diagonal-peak intensities of residues (a) V2, E3, S5 and D6, and (b) E1, V2, S5 and T7, using eq S12 described of Miloushev *et al.*³. Individual k_{ct} and k_{tc} rate constants were derived from k_{ex} by measurement of the equilibrium *cis* and *trans* populations, obtained from HSQC spectra recorded at both 1 bar and 2.5 kbar of pressure, that yielded statistically indistinguishable values at the two pressures of (a) 9.6 ± 0.8 % and (b) 18.9 ± 1.2 %. For isomerization rates at various temperatures, and derived activation energies, see Table S2.

Figure S6. Region of a 10-minute 800-MHz HSQC spectrum containing weak, near random-coil signals of L50A ubiquitin, started 4 minutes after first dropping the pressure from 2.4 kbar to 1 bar at 277 K, followed by slowly lowering the temperature to 267.9 K during the 4 minutes after the pressure drop. Resonances corresponding to *cis*-P19 are shown in green, and those for *cis*-P37 in blue. No signals corresponding to *cis*-P38 remain visible at this time point.

Figure S7. Intensities of amide ¹H-¹⁵N correlation as a function of residue for weak signals with near random coil chemical shifts that remain visible shortly after dropping the pressure from 2.4 kbar to 1 bar. (a) SOFAST-HMQC intensities at 3 minutes (HMQC-midpoint) after the pressure drop at 276 K (from Fig. S8). (b) HSQC intensities at 9 minutes (HSQC-midpoint) at 267.9 K (from Fig. S6). Intensities that could not be measured due to (partial) overlap with nearby signals from natively folded protein are displayed as low open bars. The absence of near-random-coil unfolded amide signals is indicated with asterisks.

Figure S8. 900-MHz SOFAST-HMQC spectrum (3 min recording time) of L50A ubiquitin, started 1 minute after dropping the pressure from 2.4 kbar to 1 bar at 276K. Resonances from unfolded species (shown in green) correspond to *cis*-P19 (see also Fig. S6).

Figure S9. Growth of resonance intensity for signals of pressure-denatured L50A ubiquitin after a pressure jump to 2.4 kbar that correspond to *cis* isomers for P19 (green), P37 (blue) and P38 (red) at 268K, 273K, 278K and 288K.

Figure S10. Mono-exponential decay fits for the intensities of D21 (green: *cis*-P19) and I36 (blue: *cis*-P37) at 280 K, 284 K, and 288 K (top row), and D39 (red: *cis*-P38) at 279 K, 282 K and 285 K (bottom row) obtained from double pressure-jump NMR experiments (see Figure 4).

	folded	(1bar)	unfolde	d (1bar)	unfolded	(2.4kbar)	
residue	HN	N	HN	N	HN	Ν	
2	8.92	122.34	8.60	123.95	8.95	123.93	
3	8.21	114.35	8.71	123.32	8.62	123.93	
4	8.55	117.91	8.54	125.18	8.76	125.65	
5	9.22	120.64	8.62	123.91	8.40	124.56	
6	8.76	127.17	8.57	125.75	8.60	126.06	
7	8.75	115.22	8.78	117.10	8.57	117.53	
8	9.23	121.13	8.23	124.54	8.74	125.18	
9	7.58	105.67	8.46	112.86	8.39	114.09	
10	7.77	109.07	8.21	111.08	8.49	111.39	
11	7.21	121.76	8.62	121.22	8.32	121.21	
12	8.68	120.40	8.75	118.15	8.62	117.82	
13	9.51	127.57	8.55	125.01	8.65	124.91	
14	8.75	121.13	8.69	119.99	8.62	120.51	
15	8.68	124.66	8.61	126.08	8.64	126.03	
16	8.10	121.99	8.50	122.80	8.64	122.92	
17	8.90	117.38	8.81	121.92	8.47	121.86	
18	8.54	118.55	8.63	126.70	8.79	126.36	
20	6.98	102.92	8.57	115.86	8.71	116.34	
21	7.98	123.52	8.36	122.65	8.61	122.34	
22	7.93	108.49	8.42	114.68	8.36	114.70	
23	8.40	121.12	8.67	123.49	8.42	123.44	
24			8.61	124.28	8.67	124.17	
25	7.91	121.29	8.34	120.52	8.65	120.51	
26	8.00	121.84	8.52	121.35	8.34	121.13	
27	8.53	118.77	8.38	124.70	8.50	124.53	
28	7.86	123.14	8.42	124.86	8.41	124.83	
29	7.75	119.97	8.44	121.21	8.41	121.15	
30	8.31	121.24	8.70	123.45	8.42	123.13	
31	8.47	123.13	8.60	125.07	8.69	124.70	
32	7.95	119.41	8.62	122.71	8.62	122.44	
33	7.36	115.19	8.61	121.97	8.51	121.58	
34	8.69	113.81	8.55	121.50	8.56	121.35	
35	8.44	108.77	8.26	109.91	8.51	110.13	
36	6.06	120.24	8.67	122.53	8.25	122.02	

Table S1. ¹H and ¹⁵N chemical shifts of folded L50A ubiquitin at 278 K, 1 bar, 25 mM phosphate buffer pH 6.4 (at 1 bar), and in the unfolded state at 1 bar (obtained from extrapolation of the pressure-dependent values) and 2.4 kbar.

39	8.50	113.49	8.37	118.74	8.70	118.59
40	7.77	116.55	8.44	120.41	8.31	120.28
41	7.50	118.17	8.35	120.65	8.42	120.61
42	8.42	122.90	8.25	121.08	8.37	121.04
43	8.69	123.87	8.19	122.70	8.24	122.58
44	9.15	122.15	8.54	121.93	8.22	121.84
45	8.95	125.45	8.48	124.57	8.53	124.11
46	8.89	132.38	7.97	126.13	8.46	125.69
47	8.25	102.25	8.35	107.55	7.91	107.64
48	7.81	121.13	8.70	121.27	8.30	121.19
49	8.85	122.85	8.61	122.18	8.65	121.79
50	8.71	130.47	8.66	125.40	8.59	125.21
51	8.31	122.42	8.51	120.48	8.59	120.29
52	8.18	119.15	8.59	121.02	8.52	120.74
53			8.24	109.57	8.52	109.47
54	7.47	119.46	8.53	120.60	8.19	120.63
55	8.74	108.80	8.54	115.91	8.56	116.07
56	8.18	117.40	8.48	124.79	8.55	124.81
57	8.41	113.24	8.42	116.20	8.54	116.29
58	7.84	123.99	8.25	121.96	8.46	121.75
59	7.12	115.42	8.45	120.71	8.25	120.62
60	8.07	115.65	8.16	120.23	8.45	120.19
61	7.26	119.02	8.54	121.41	8.20	121.46
62	7.64	124.57	8.49	123.76	8.50	123.41
63	8.41	119.98	8.53	122.88	8.44	122.70
64	9.30	115.10	8.61	121.65	8.51	121.50
65	7.83	115.24	8.39	117.20	8.60	117.38
66	8.71	116.60	8.20	116.40	8.43	116.53
67	9.30	126.74	8.56	123.43	8.21	123.39
68	9.10	118.69	8.37	119.03	8.58	118.86
69	8.27	123.73	8.45	123.57	8.37	123.24
70	9.09	125.37	8.51	122.59	8.45	122.21
71	8.17	122.46	8.55	126.59	8.49	125.96
72	8.53	123.42	8.56	122.90	8.54	122.65
73	8.41	124.68	8.57	124.01	8.53	123.62
74	8.50	122.13	8.61	121.77	8.54	121.65
75	8.54	111.18	8.18	110.80	8.53	110.63
76	7.97	114.84	0.20	115.21	8.17	115.15

	<i>k_{ex}</i> (s ⁻¹) 323 K	<i>k_{ex}</i> (s ⁻¹) 327 K	<i>k_{ex}</i> (s ⁻¹) 330 K	<i>k</i> _{ex} (s ⁻¹) 333 K	EA (kcal.mol ⁻¹)
acetyl-EVEPSDT-	0.40 ± 0.06	0.60 ± 0.09	0.8 ± 0.1	1.1 ± 0.1	21.4 ± 3.9
NH ₂ , 1bar					
acetyl-EVEPSDT-	0.25 ± 0.03	0.36 ± 0.04	0.49 ± 0.07	0.65 ± 0.06	20.3 ± 3.3
NH ₂ , 2.5kbar					
acetyl-EVFPSDT,	0.41 ± 0.04	0.57 ± 0.06	0.79 ± 0.09	1.0 ± 0.1	19.8 ± 3.1
1bar					
acetyl-EVFPSDT,	0.25 ± 0.02	0.36 ± 0.03	0.48 ± 0.03	0.61 ± 0.06	18.9 ± 2.6
2.5 kbar					

Table S2: Proline isomerization rates, k_{ex} , at different temperature and pressures, and corresponding Arrhenius activation energies, EA, for two synthetic peptides.

References

1. Hartel, A. J.; Lankhorst, P. P.; Altona, C., Nucleic-acid constituents. 24. Thermodynamics of stacking and of self-association of the dinucleoside monophosphate M26A-U from proton NMR chemical shifts-differential concentration temperature profile method. *Eur. J. Biochem.* **1982**, *129* (2), 343-357.

2. Ying, J.; Roche, J.; Bax, A., Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins. *J. Magn. Reson.* **2014**, *241*, 97-102.

3. Miloushev, V. Z.; Bahna, F.; Ciatto, C.; Ahlsen, G.; Honig, B.; Shapiro, L.; Palmer, A. G., Dynamic properties of a type II cadherin adhesive domain: Implications for the mechanism of strand-swapping of classical cadherins. *Structure* **2008**, *16* (8), 1195-1205.