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Abstract
Although the order of the time steps in which the non-uniform sampling (NUS) schedule is implemented when acquiring 
multi-dimensional NMR spectra is of limited importance when sample conditions remain unchanged over the course of 
the experiment, it is shown to have major impact when samples are unstable. In the latter case, time-ordering of the NUS 
data points by the normalized radial length yields a reduction of sampling artifacts, regardless of the spectral reconstruction 
algorithm. The disadvantage of time-ordered NUS sampling is that halting the experiment prior to its completion will result 
in lower spectral resolution, rather than a sparser data matrix. Alternatively, digitally correcting for sample decay prior to 
reconstruction of randomly ordered NUS data points can mitigate reconstruction artifacts, at the cost of somewhat lower 
sensitivity. Application of these sampling schemes to the Alzheimer’s amyloid beta (Aβ1–42) peptide at an elevated concen-
tration, low temperature, and 3 kbar of pressure, where approximately 75% of the peptide reverts to an NMR-invisible state 
during the collection of a 3D 15N-separated NOESY spectrum, highlights the improvement in artifact suppression and reveals 
weak medium-range NOE contacts in several regions, including the C-terminal region of the peptide.
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Introduction

Non-uniform sampling (NUS) of the indirect dimensions 
of multi-dimensional NMR spectra is a natural generaliza-
tion of the original idea of exponential sampling (Barna 
et al. 1987) and offers considerable savings in the mini-
mal amount of time required for recording high resolution 
spectra (Rovnyak et al. 2004; Mobli et al. 2012; Coggins 
et al. 2012; Bermel et al. 2012; Orekhov and Jaravine 2011; 
Billeter 2017). Provided that the reconstruction algorithm 

does not introduce significant residual point-spread-function 
(PSF) “noise” in the final spectrum, NUS can even yield an 
increase in signal-to-noise per unit of time by concentrat-
ing most of the time domain sampling at earlier time points 
(Barna et al. 1987; Hyberts et al. 2013; Palmer et al. 2015), 
albeit at the cost of a potential decrease in accuracy of line-
shape and resolution (Ying et al. 2017). The latter disadvan-
tage can be mitigated by co-processing the data with a refer-
ence spectrum, using the multi-dimensional decomposition 
(MDD) approach (Mayzel et al. 2014) provided that such a 
spectrum is available. Numerous different algorithms have 
been introduced for reconstructing a frequency domain spec-
trum from the sparsely sampled time domain data, each with 
inherent advantages and disadvantages among many defin-
ing factors of spectral reconstruction performance such as 
speed of reconstruction, linearity of the reconstructed spec-
tral intensities, fidelity of peak positions and linewidths, and 
achievable dynamic range (Barna et al. 1987; Hyberts et al. 
2012, 2013; Ying et al. 2017; Delsuc and Tramesel 2006; 
Mobli et al. 2007; Balsgart and Vosegaard 2012; Hoch et al. 
2014; Kazimierczuk and Orekhov 2011; Bostock et al. 2012; 
Holland et al. 2011). Efforts at an objective comparison of 
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the performance of the various algorithms have also been 
initiated, in order to clarify their relative effectiveness in 
common applications (2018).

Early implementations of NUS simply deleted time 
points from a regular, full sampling schedule, and such 
ordered schedules will here be referred to as “convention-
ally ordered”. The advantages and disadvantages of ran-
dom ordering versus conventional ordering of the sampling 
schedule in NUS data collection have been discussed by 
Hyberts et al. (2014) Various home-written procedures use 
the conventionally ordered sampling schedule and some 
versions of Varian’s Biopack software enabled this mode 
of sampling schedule selection by means of a “sequential” 
checkbox in one of their protocols for generating a sam-
pling list. More recent protocols appear to favor random 
ordering, and this is currently the only displayed option in 
standard commercial Bruker software, unless users gener-
ate their own ordered sampling list. A particularly attractive 
feature of randomly ordered NUS is the ability to predefine 
the desired spectral resolution and then periodically moni-
tor the signal-to-noise ratio of an NMR spectrum during 
data collection (Hyberts et al. 2014). Signal-to-noise in such 
applications represents the aggregate of the PSF noise and 
the intrinsic signal-to-noise encapsulated in the time domain 
data, where the latter approximately scales with the square 
root of the number of transients collected. The PSF noise 
results from failure to optimally reconstruct the frequency 
domain spectrum from a sparse set of time domain data 
points and typically decreases rapidly as the sampling of 
the time domain data becomes less sparse (Hyberts et al. 
2014). In such applications, the minimal amount of time 
needed to acquire a multi-dimensional NMR data set can 
be defined “on the fly”, before jumping to the collection of 
a different type of spectrum, frequently on the same sample 
(Eghbalnia et al. 2005).

Other important applications of NUS involve collection 
of NMR data on unstable samples, where it is known a pri-
ori that a chemical reaction will limit the available amount 
of time to a duration less than would be required for full 
sampling of the indirect time domain. Examples include the 
study of protein folding or unfolding (Schanda et al. 2007; 
Schlepckow et al. 2008), enzymatic turnover of substrate 
(Kern et al. 1999), and the common case of samples that are 
inherently unstable due to aggregation or fibril formation, 
as well as proteins or nucleic acids subject to auto-cleavage. 
Stability of samples in the latter applications typically scales 
inversely with concentration. For such studies, application 
of NUS is particularly advantageous as it permits fast col-
lection of high-resolution multi-dimensional spectra that can 
be of high sensitivity provided that sample concentration 
is adequate and that the PSF “noise” can be contained to 
a level lower than the thermal noise. Previous applications 
of NUS to the study of unstable samples either exploited 

multi-dimensional decomposition, which effectively limits 
the reconstructed spectra to time domain sections that were 
recorded in narrow bands of time (Mayzel et al. 2014), or the 
co-addition of multiple NUS spectra from a series of dilute 
samples (Miljenovic et al. 2017).

Here, we describe two alternate, user-friendly, and more 
generally applicable strategies for the application of NUS 
to transient (or time-sensitive) samples. Specifically, by 
time-ordering of the sparse set of collected time-domain 
data points according to the normalized radial length of 
each time point, sample degradation will primarily mani-
fest as an additional decay constant of the time domain data. 
This essentially results in some additional line broadening 
in the indirectly sampled dimensions, analogous to what 
would be observed in a fully sampled data set. In contrast, 
typical application of NUS with random ordering of the 
time domain data results in a noise-like decay of the sig-
nal amplitude that, in the absence of special adaptations to 
the reconstruction algorithm, can strongly elevate the level 
of PSF-like noise. To the best of our knowledge, this limi-
tation applies to all currently known NUS reconstruction 
algorithms but can be eliminated by time-ordered sampling. 
However, this approach is not without drawbacks since time-
ordered sampling requires the total time duration of data 
collection to be defined prior to starting the experiment and 
also introduces additional line broadening to all indirectly 
acquired spectral dimensions by amounts that are deter-
mined by the decay rate of the time-sensitive sample.

A second strategy, limited to samples that decay with a 
uniform time constant, incorporates 1D reference spectra 
in the time domain matrix. In this manner, the decay of 
sample concentration with time can be reversed digitally by 
upscaling of the signals recorded at later time points, before 
conventional NUS processing. Although this latter strat-
egy retains the advantage that an acquisition can be halted 
whenever a satisfactory signal-to-noise level is achieved, it 
is intrinsically of lower sensitivity than that of time-ordered 
NUS since weaker signals, acquired after the sample has 
partially decayed, require upscaling prior to conventional 
NUS processing, thereby amplifying the impact of thermal 
noise.

To test the capability of these NUS strategies on tran-
sient samples, we applied both approaches to a sample of the 
Aβ1–42 peptide undergoing significant decay of the soluble, 
monomeric species. For this, we prepared a high concentra-
tion (1.2 mM) sample of Aβ1–42 in a buffer of high ionic 
strength and acidic pH. Importantly, it is known that these 
sample conditions promote aggregation and fibril formation 
of this peptide and, hence, disappearance of the NMR sig-
nals of the monomeric observable species. To slow down 
the effects of aggregation, NMR spectra were collected at 3 
kbar of hydrostatic pressure and low temperature (280 K), 
resulting in an approximate exponential decay of the soluble 
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peptide with a time constant of ~ 1 day. High resolution 3D 
NOESY spectra with NUS sampling were then collected 
in order to probe the potential presence of transient oligo-
meric species. Although these proved undetectable in our 
measurements, some weak medium-range NOEs indicative 
of transient formation of local structure could be observed. 
The absence of a detectable concentration dependence of 
the Aβ1–42 1H–15N HSQC spectrum suggests that these weak 
(≤ ~ 0.5%) NOEs are either intramolecular or result from 
transient binding to the growing fraction of aggregated pep-
tides, previously observed by DEST experiments (Fawzi 
et al. 2011).

Materials and methods

Vector construction, expression and purification 
of Aβ1–42

The Aβ1–42 peptide was generated from an expression con-
struct consisting of a 6His tag followed by the immuno-
globulin binding domain B1 of protein G (GB1), Avi-Tag 
(Avidity, LLC), TEV protease cleavage site, and Aβ1–42. The 
last residue (G/S) in the TEV protease recognition sequence 
(ENLYFQG/S) was omitted such that upon cleavage the 
Aβ1–42 peptide starts with the native N-terminal D residue 
spanning the sequence  D1AEFRHDSGY EVHHQKLVFF 
AEDVGSNKGA IIGLMVGGVV  IA42.

The DNA insert was cloned into the pJ414 vector 
(ATUM) and transformed into E. coli BL21-DE3 cells 
(Thermo Fisher Scientific). Cells were grown in minimal 
medium with 15N ammonium chloride as the sole source 
of nitrogen and the Aβ1–42 fusion protein was expressed 
using established protocols. Following cell harvesting, high 
speed centrifugation, and acquisition of the cell lysate, the 
fusion protein was purified under denaturing conditions by 
Ni–NTA affinity chromatography. This was then followed 
by size-exclusion chromatography (SEC) on a Superdex-75 
column (GE Healthcare) to remove minor high molecular 
weight contaminants and urea as well as to exchange the 
buffer to that which is suitable for cleavage by TEV pro-
tease. Upon cleavage, as monitored by SDS-PAGE, Aβ1–42 
collected in the flow-through from the Ni–NTA column was 
dialyzed extensively against 20 mM ammonium hydroxide 
and 1.2 mg aliquots were lyophilized and stored at − 70 °C. 
Purity was confirmed both by SDS-PAGE and HPLC. 
The mass of the recombinant 15N-labeled Aβ1–42 (4568.1) 
matched the calculated mass (4568.8) as verified by electro-
spray ionization mass spectrometry. This method yielded ca 
18 mg of pure peptide per liter of culture.

The autoproteolysis resistant (S219V) catalytic domain 
of TEV protease (27 kDa) containing a 6His tag at its N 
terminus was expressed as previously described (Lucast 

et al. 2001). Purification steps included Ni–NTA affinity 
chromatography, followed by SEC using TEV protease stor-
age buffer. The stock solution (~ 70 µM) of the enzyme was 
stored in 1-mL aliquots at − 70 °C.

Aβ1–42 NMR sample preparation

High (1.2 mM) and low (0.02 mM) concentration Aβ1–42 
samples for NMR experiments were prepared as follows. A 
concentrated stock solution of pure Aβ1–42 was prepared by 
dissolving 1.2 mg of the dry peptide in 153 µL of 50 mM 
NaOH. This solution (150 µL) was neutralized with 15 µL of 
0.5 M HCl which had been pre-mixed with 55 µL of 0.5 M 
sodium phosphate pH 6, to attain a high concentration of 
Aβ1–42 peptide in a total sample volume of 220 µL. A sec-
ond, dilute NMR sample was prepared from the stock solu-
tion (3 µL) by adding 147 µL of 50 mM NaOH, succeeded 
by neutralization and dilution as described above.

Data acquisition and processing

All Aβ1–42 NMR spectra were recorded under 3 kbar of static 
pressure at 280 K on a 900 MHz Bruker Avance III spec-
trometer, operated by Topspin 2.1 software, and equipped 
with a TCI cryogenic probe containing a z-axis gradient 
probe, and a high-pressure accessory (Daedalus Innova-
tions), including a ceramic high-pressure tube (Peterson and 
Wand 2005) with an outer diameter of 5.0 mm and an inner 
diameter of 2.8 mm, requiring a sample volume of 220 µL 
prior to solvent compression.

Each 3D NOESY-HSQC spectrum was acquired using an 
NOE mixing time of 150 ms while using standard Rance-
Kay (Palmer et al. 1991; Kay et al. 1992) and States-TPPI 
(Marion et al. 1989) quadrature detection methods for the 
indirect 15N and 1H dimensions, respectively.

In the directly detected 1H dimension, 1300 complex 
points were recorded, corresponding to an acquisition time 
of 120.1 ms. For the indirect dimensions,  t1max and  t2max val-
ues were 53.8 ms and 30.7 ms for 15N and 1H, respectively, 
with spectral windows set to 20.4 ppm (15N) and 9.26 ppm 
(1H), using a sparsity level of 12%, or 3072 hypercomplex 
 (t1,  t2) sets of 4 FIDs per 3D data set, with 4 scans per FID 
used for phase cycling to remove axial peaks. Total meas-
uring time for two interleaved (see below) NOESY-HSQC 
NUS data sets was ca 38 h.

Evaluation of the effect of the sampling order on the NUS 
spectra was carried out by interleaving two independent, 3D 
NOESY-HSQC spectra. For this, two random NUS sched-
ules containing the same set of 3072 full quadrature time 
points (4 FIDs for each  (t1,  t2) time point) but ordered differ-
ently were used. No deviations from random sampling, such 
as  T2 weighting (Barna et al. 1987) or Poisson gap sampling 
(Hyberts et al. 2012) were applied in either schedule. For the 
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first set, the order of the sampling schedule was fully ran-
dom. For the second sampling scheme, the schedule was 
obtained by sorting the first set according to the normalized 
radial length of the sampling vectors, calculated as 
�

∑

i=1,2

�

ki∕Ni

�2 , where Ni is the maximum increment num-
ber in the i-th dimension and ki = 0, 1, 2, …, Ni − 1 . This 
yielded the time-ordered sampling schedule consisting of the 
same randomly sampled data points.

To record two data sets under identical conditions, except 
for the sampling schedules, the collection of both data sets 
was carried out in an interleaved manner, using a single NUS 
list file. This mode of acquisition does not require modifi-
cations of the pulse sequence or experimental set-up but 
does require that the two sampling list files be merged in an 
interleaved manner before starting the experiment, and that 
the acquired time domain data be separated into the time-
ordered and randomly ordered NUS data sets before process-
ing and reconstruction. In addition, two single quadrature 
time points, corresponding to the 15N echo and anti-echo 
FIDs of the  t1 = t2 = 0 time point, were included in the inter-
leaved sampling list after completion of every 166 full quad-
rature time points (664 FIDs). These  t1 = t2 = 0 data points 
serve to monitor the sample decay every hour.

Following completion, the interleaved data sets were 
separated into two data sets containing an equal number of 
FIDs using the NMRPipe software (Delaglio et al. 1995). 
Duplicate FIDs from the  t1 = t2 = 0 time points can be auto-
matically averaged during NMRPipe NUS data expansion. 
However, to prevent the first  (t1,  t2 = 0, 0) FID from being 
impacted by sample decay, an in-house C program was used 
to remove the spiked duplicate data prior to NUS reconstruc-
tion by the SMILE program (Ying et al. 2017). Next, the 
time domain matrix was expanded to a uniformly sampled 
data set using nusExpand.tcl in the NMRPipe software suite, 
thereby filling data points corresponding to non-sampled 
FIDs with zeros, before conversion to into the NMRPipe 
data format. SMILE NUS reconstruction, within NMRPipe, 
starts with conventional processing of the directly detected 
1H dimension, followed by iterative detection of the most 
intense peaks after 3D Fourier transformation, analysis of 
their lineshape, and generation and subsequent subtraction 
of the best-fitted synthetic signals from the input experimen-
tal data (Ying et al. 2017).

In the directly detected  (t3) dimension, the time domain 
data was apodized with a Lorentzian to Gaussian transforma-
tion function, exp(19t3 − 910t2

3
 ), where  t3 is in seconds. This 

is equivalent to the application of the nmrPipe GM process-
ing function with g1 and g2 set to 6 and 16 Hz, respectively. 
No extrapolation of the indirectly sampled time domains 
was used during NUS reconstruction, and the expanded  (t1, 
 t2) time domain matrix consisted of 100* × 256* complex 
points in the indirect dimensions. Both  t1 and  t2 dimensions 

were apodized by a cosine function, extending from 0° to 
86.4°. Data were analyzed using NMRDraw (Delaglio et al. 
1995).

To evaluate the effect of time ordering on the quality of 
the reconstructed spectra by other commonly used meth-
ods, both time-ordered and randomly ordered NUS data sets 
were also processed using the IST algorithm implemented 
in hmsIST (Hyberts et al. 2012) as well as the IRLS and 
MDD algorithms within MDDNMR (Kazimierczuk and 
Orekhov 2011; Orekhov et al. 2001). The same apodiza-
tion, zero filling, and phasing parameters as for SMILE were 
used in these reconstructions, and no extrapolation of the 
indirect dimensions was employed. The reconstruction was 
performed using the resources available on NMBox (Macie-
jewski et al. 2017).

Results and discussion

Spectral simulations

The effect of randomizing the collection of time domain 
data for a decaying sample is first shown for a fully sampled 
synthetic data set, focusing on the interferogram, S(t1, ω2), 
obtained for a signal in a 15N–1H HSQC spectrum that is 
on-resonance in the 15N dimension (Fig. 1). A fully sampled 
set is used for generating the simulated data, such that NUS 
reconstruction artifacts or the use of any specific algorithm 
do not play a role. Exponential decay of the sample, with a 
time constant that corresponds to 50% signal loss when the 
last FID is sampled, manifests as a faster apparent signal 
decay rate in the  t1 dimension when signals are sampled 
sequentially (compare Fig. 1a with b). By contrast, when the 
order of sampling of the  t1 domain is randomized (Fig. 1c), 
the amplitude of any given interferogram data point will be 
attenuated by an amount of up to 50% that depends on the 
temporal position of the sampled FID data point relative to 
the start of the experiment. As expected, Fourier transfor-
mation of the resulting time domain signal shows noise-like 
features (Fig. 1f), even though the synthetic time domain 
signal was noise free.

As illustrated here using a fully sampled indirect time 
domain, where sampling was ordered and sequential, the 
sample decay manifests as faster signal decay and there-
fore additional line broadening. The amplitude modulation 
introduced by random ordering (Fig. 1c) equally applies for 
non-uniformly sampled data, which typically uses random 
ordering of the time domain data points.

Time-ordering of fully sampled data converts signal 
decay into an additional apparent decay constant in the 
indirectly sampled dimensions. For NUS data, time-ordered 
sampling typically retains a very small degree of spurious 
amplitude modulation as a result of the uniform sample 
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decay between sequentially sampled  t1 durations, whereas 
the spacing on the sampling grid is non-uniform. In practice, 
the  t1 noise introduced by this imperfection is typically far 
below the thermal noise.

Time ordering of 3D and 4D data

The principle of time ordering the collection of the FIDs 
equally applies to the recording of 2D, 3D, 4D, or higher 
dimensional data sets. The data collection can be ordered in 
a number of ways, and the effect of such ordering on the 
lineshape was assessed by simulations of 3D fully sampled 
data. Use of fully sampled instead of NUS data sets pre-
vented the evaluation from being impacted by the NUS 
reconstruction algorithm. Specifically, a noise-free 3D 
hypercomplex time domain data set was generated by the 
simTimeND routine in NMRPipe, yielding a data matrix of 
191* × 200* × 30* hypercomplex points, corresponding to 
acquisition times of 63.7 ms, 30.8 ms, and 53.6 ms for the 
 t3,  t2, and  t1 dimensions, respectively. The  t3 acquisition time 
was chosen to be 2 × T2, while the acquisition times for  t2 
and  t1 were set to the transverse decay times,  T2, of the simu-
lated data. This data set was used to first evaluate the con-
ventional ordering method, i.e., “sorted” first by  k1 and then 
by  k2, where  k1 and  k2 are the increment numbers in the  t1 
and  t2 dimensions, respectively. Subsequently, a 100% sam-
pling schedule containing a full grid of the data points in  t2 

and  t1 dimensions in a random order was generated, which 
served to simulate the effect of random ordering. A number 
of different, time-ordered schedules were then derived from 
sorting the random full schedule by either the values of 
∑

i=1,2 ki , 
∑

i=1,2

�

ki∕Ni

�

 , 
�

∑

i=1,2

�

ki
�2 , or 

�

∑

i=1,2

�

ki∕Ni

�2 , 
where again Ni is the maximum increment number in the i-th 
dimension and ki = 0, 1, 2, …, Ni − 1 . These ordering meth-
ods are hereafter referred to as sum, normalized sum, radial 
length, and normalized radial length, respectively. Although 
the simulated data was uniformly and fully sampled, the 
NUS utility script nusCompress.tcl, included in the NMR-
Pipe distribution, allowed arrangement of the  t3 FIDs in the 
simulated data to that of the above random and ordered sam-
pling schedules. Using these sampling schedules, amplitudes 
of the FIDs were multiplied by an exponentially decaying 
function, such that the last FID in the NUS data sets was 
downscaled to 25% of its original value, thereby simulating 
the effect of sample loss on the recorded signal of an experi-
ment. Each data set (except the one with conventional order-
ing) was then sorted using the nusExpand.tcl script within 
NMRPipe, followed by conventional NMRPipe processing. 
Note that nusExpand.tcl was only used to reorder the fully 
sampled array before conventional processing and not for its 
primary function of data expansion. The  (F2,  F1) plane con-
taining the simulated on-resonance  (F3) peak was then used 
to evaluate the impact of sample degradation and time 

Fig. 1  Simulation of the impact of sample decay on a–c the time 
domain in the indirect dimension of a fully sampled 2D experiment, 
and d–f corresponding frequency domain NMR data. a Interfero-
gram, S(t1, ω2) of a fully sampled, noise-free, on-resonance signal 
of 116  ms duration and an intrinsic  T2 of 87  ms, in the absence of 
sample decay. b Simulated time domain data, recorded convention-
ally, while the sample exponentially degrades with a time constant 

that results in a decrease in sample concentration by 50% at the end 
of data collection. c Simulated time domain decay when the order-
ing in the  t1 dimension is randomized, as applies to common NUS 
data collection. d–f Fourier transforms of the time domain signals of 
a–c, after apodization with a cosine bell function and zero filling. Red 
boxes mark segments of the baseline that are upscaled tenfold



 Journal of Biomolecular NMR

1 3

ordering, with results described below. Although the simula-
tion was performed for a 3D data set, the results equally 
apply to NUS data acquisition of higher dimensional 
spectra.

It is readily apparent that all evaluated time ordering 
schemes (Fig. 2b–f) strongly reduce the reconstruction noise 
in comparison to random ordering (Fig. 2a). This is also 
reflected in the much smoother interferograms, S(ω1,  t2, ω3) 
and S(t1, ω2, ω3) (Fig. 2g, h). Essentially, whenever Δt1/A1 
differs from Δt2/A2, where Δti and  Ai are the increment and 
acquisition time in the i-th dimension, respectively, ordering 
by simply taking the sum,  k1 + k2 (Fig. 2b, SI Fig. S1a), is 

less effective at smoothing the amplitude distortion result-
ing from sample decay, and therefore is excluded as a sam-
pling approach. Conventional ordering of the fully sampled 
data set yields the lowest impact of sample degradation on 
the signal decay in the  t2 dimension but at the expense of 
the largest increase in the  t1 dimension (Fig. 2g, h). The 
interferograms for this mode of ordering retain a more 
mono-exponential decay than the other ordering approaches 
(Fig. 2g, h), resulting in a lineshape closest to be Lorentz-
ian. However, the linewidth is impacted very differently in 
the two indirect dimensions, with significant broadening in 
 F1 but minimally in  F2 (Fig. 2d). This results from the loop 

Fig. 2  Impact of time ordering on the apparent noise level, lineshape, 
and peak intensity when reconstructing a noise-free simulated time-
domain signal, on-resonance in the  F1 and  F2 dimensions. Sample 
decay is accounted for by an exponential decrease of the amplitude 
of the FIDs by exp{−1.4(k−1)/N}, where N is the total number of 
acquired FIDs, and k is the FID number (k = 1 for the first FID, and 
k = N for the last FID). The length of the simulated time domain data 
is set to the transverse relaxation time in both the  t1 and  t2 dimensions 
(53.6 ms,  t1; 30.8 ms,  t2). The 2D planes are  (F2,  F1) cross sections 
taken at the center of the peak in the  F3 dimension for spectra with 

different FID acquisition order. a Randomly ordered, or sorted by b 
the sum: 

∑

i=1,2 ki ; c the normalized sum: 
∑

i=1,2

�

k
i
∕N

i

�

 ; d conven-

tional ordering  (k1 first and then  k2), e radial length: 
�

∑

i=1,2

�

k
i

�2 , 

and f normalized radial length: 
�

∑

i=1,2

�

k
i
∕N

i

�2 . A low first contour 
level (0.2% of the peak height) is used for panels (b–f), while a four 
times higher level is used for a. g S(ω1,  t2, ω3) and h S(t1, ω2, ω3) 
interferograms, corresponding to the six modes of ordering of the 
detected FIDs. Plots of panels b, c, e, and f at four times lower con-
tour levels are shown in SI Fig. S1
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structure of the conventional 3D experiment, where the  t2 
incrementation loop is nested within the outer  t1 incrementa-
tion loop. Conventional ordering therefore can result in an 
undesirable imbalance in spectral resolution. The strong-
est sample decay artifacts in the other ordering protocols 
(Fig. 2c, e, f) are more than three orders of magnitude lower 
than the peak intensity, and therefore will stay well below 
the thermal noise in most practical applications.

The  t2 and  t1 interferograms, S(ω1,  t2, ω3) and S(t1, ω2, 
ω3) (Fig. 2g, h), show that the amplitudes at  t2 = 0 (Fig. 2g) 
or  t1 = 0 (Fig. 2h) are different, even though the amplitudes 
at S(t1 = 0,  t2 = 0, ω3) are the same for all datasets. The ti = 0 
value of an interferogram is impacted by the decay rate in 
the other indirectly sampled dimensions. For example, the 
S(t1 = 0, ω2, ω3) of the conventionally ordered data set has 
the highest intensity, but decays the fastest (Fig. 2h). As 
shown in Fig. 2f, ordering by the normalized radial length 
is preferred since it represents the best compromise of peak 
intensity, lineshape and artifact levels, despite the noticeable 
deviation of its interferograms from being strictly exponen-
tial (Fig. 2g, h) and therefore a peak lineshape deviation 
from Lorentzian.

Application of time‑ordered NUS to 3D HSQC‑NOESY 
of Aβ1–42

Effectiveness of the time-ordered versus randomly ordered 
NUS sampling was evaluated for a concentrated sample of 
the Aβ1–42 peptide. High sample concentration of this pep-
tide was used to potentially increase the population of tran-
sient dimeric and/or oligomeric species, and to identify the 
structure of such species using NOEs. However, although 
high sample concentrations of Aβ1–42 dramatically increase 
the signal to noise (S/N) attainable per unit of time in the 
NOESY spectrum, there is a detrimental cost on available 
measurement time due to the strong concentration depend-
ence of the irreversible aggregation kinetics of Aβ1–42 which 
leads to the formation of amyloid fibrils. As demonstrated 
by Akasaka and co-workers for a disulfide-deficient variant 
of hen lysozyme, amyloid formation can also be inhibited 
and even reversed by using high hydrostatic pressure (Kama-
tari et al. 2005). Work by the Kalbitzer group demonstrated 
that high pressure can resolubilize Aβ1–40 amyloid fibrils 
(Munte et al. 2013; Cavini et al. 2018), presumably because 
the mature fibrils contain voids that result in a fibril vol-
ume that is higher than that of the corresponding disordered 
peptides. It might be expected that the number of water-
inaccessible void volumes in lower order oligomeric species 
is substantially less than those of mature fibrils and that high 
hydrostatic pressure will have a correspondingly smaller 
adverse effect on the formation of such species (Roche et al. 
2012). However, although we find that the use of high pres-
sure and low temperature dramatically lowers the rate of 

Aβ1–42 aggregation, the peptide eventually aggregates to 
form pressure-resistant fibrils. Under the conditions used, 
specifically, at 3 kbar and 280 K, the soluble fraction of our 
ca 1.2 mM Aβ1–42 sample decayed approximately fourfold 
during the collection of two interleaved 3D NUS NOESY-
HSQC spectra (Fig. 3).

As expected, SMILE processing of the randomly ordered 
3D NUS NOESY-HSQC spectrum results in a high level 
of apparent sampling “noise”, obscuring many of the weak 
NOE interactions present in this intrinsically disordered 
peptide (Fig. 4a). By contrast, processing of the simultane-
ously acquired time-ordered 3D NUS NOESY-HSQC data 
set yields a high-quality 3D spectrum. Figure 4 compares 
“skyline projections” over a ca. 4 ppm range in the 15N 
dimension, which encompasses about half of the residues 
in Aβ1–42, and illustrates the strong spectral improvement 
obtained by time-ordering of the NUS data. One-dimen-
sional cross sections, taken through the 3D spectra at the 
amide of V39 further demonstrate this improvement (Fig. 5). 
We note that the amplitude modulation introduced by a 
decaying sample while using random ordering of its NUS 
sampling points adversely impacts all common NUS recon-
struction protocols, which then yield spectra that become 
dominated by this amplitude “noise” to comparable extents 
(SI Fig. S3).

In our time-ordered NUS 3D spectrum, NOE cross 
peaks with intensities greater than ca 0.7% of the diagonal 
peak are reliably detected. Under the recording conditions, 
sequential 1HN–1HN cross peaks at intensities ranging 
between 2 and 3.5% are obtained for all sequential amides 

Fig. 3  Plot of the Aβ1–42 signal intensity decay during the interleaved 
3D NOESY-HSQC experiment. Blue circles represent the normalized 
intensity measured from the 1D spectra, corresponding to  t1,  t2 = 0, 0 
time points, spiked every hour during the 3D data collection. The red 
line represents a bi-exponential fit, I(t) = 0.191 exp(−t/5.1) + 0.815 
exp(−t/33.4) to the intensity decay, where t is the time in units of 
hours after the start of the measurement
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that are not obscured by resonance overlap (Fig. 6; SI Fig. 
S4). Intraresidue  HN–Hα intensities are mostly in the 4–6% 
range relative to the diagonal intensity, and sequential H�

i−1
 

to  HN NOEs are approximately two times stronger. These 
NOE intensity ratios are quite typical for an intrinsically 
disordered polypeptide (Mantsyzov et al. 2014), and at 
first appearance seem fully compatible with prior conclu-
sions that the Aβ1–42 peptide lacks significant populations 
of turns or meta-stable secondary structure elements that 
have lifetimes greater than about 1 ns (Roche et al. 2016). 
Virtually all of the βN(i, i + 1) connectivities observed in 
the non-oxidized form of Aβ1–40 (Hou et al. 2004), in addi-
tion to many not previously noted, could be unambigu-
ously identified in the 3D spectrum (SI Fig. S4). Under 
different sample conditions, a number of long-range NOEs 
has also been reported for Aβ1–42, putatively reporting on 
transiently structured forms of the polypeptide (Kotler 
et al. 2015). Of those involving amide protons, the F4-HN 
to A21-Hβ cross peak could not be confirmed unambigu-
ously because the A21 and A2 methyl protons perfectly 
overlap under our sample conditions. Presence of a weak 
G25-HN to D23-Hα NOE (SI Fig. S4) is consistent with 
earlier data (Kotler et al. 2015).

Several weak NOEs, not commonly seen in intrinsically 
disordered polypeptides, can also be identified in our 3D 
NOESY-HSQC spectrum (Fig. 6). These include a weak, 
symmetric NOE between V36-HN and V39-HN, and a weak 
NOE between I41-HN and M35-Hα, which becomes more 
pronounced in spectra recorded at pH 8 (Fig. S5). Such 
interactions suggest the transient formation of a turn type 
structure in this region of the polypeptide, which requires the 
additional two residues in Aβ1–42 compared to Aβ1–40. The 
transient presence of such a turn-containing motif in Aβ1–42, 
but not in Aβ1–40, could explain the small but significant 
amide chemical shift and 3JHNHα differences observed for 
residues M35-G38 between the two peptides (Roche et al. 
2016).

As described previously (Ying et al. 2017), SMILE recon-
structs the NMR signals using exponentially decaying sinu-
soidal functions. Since the interferograms in Fig. 2g, h of 
the time-ordered NUS data deviate from mono-exponential 
decay, the 3D time-ordered NOESY data serves as a good 
test for the robustness of the SMILE algorithm when the 
Lorentzian lineshape assumption is not strictly satisfied. 
For this purpose, reconstruction of the time-ordered SMILE 
NOESY spectrum is compared to the data reconstructed by 

Fig. 4  Skyline-projected regions of 3D NOESY-HSQC spectra on the 
1H–1H plane. The projection was limited to the 120.27–124.17 ppm 
region 15N chemical shifts and therefore only includes amide sig-
nals of residues resonating in this region (depicted between the two 
dashed lines in SI Fig. S2). Two separate but fully interleaved sets of 
3D time domain data were recorded, using duplicates of a single sam-
pling list, but with the order of these sampling points randomized for 
a and sorted for b. c Was reconstructed from the same experimental 

data as used for a but utilized upscaling of each FID by the inverse of 
the fitted, bi-exponential decay function of Fig. 3. a, b are plotted at 
the same contour levels, while the lowest contour level is 1.6 times 
higher in c reflecting the increase of the peak intensity by a factor of 
ca 1.6 resulting from the signal upscaling, which increases the intrin-
sic thermal noise level by a factor of ca 2.4. Individual cross sections 
through the 3D spectrum are compared in Fig. 5
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other widely used algorithms, including hmsIST (Hyberts 
et al. 2012), IRLS (Kazimierczuk and Orekhov 2011), and 
MDD (Orekhov et al. 2001). As shown for a representative 
cross section in Fig. S6, SMILE retains the ability to detect 
the weakest G37-V39  HN–HN NOE. Of the other programs, 
only the computationally expensive IRLS algorithm per-
forms comparably to SMILE. This result demonstrates that 
the Lorentzian lineshape assumption in SMILE is not limit-
ing its performance in practical situations, even for the time-
ordered data that clearly deviate from exponential decay. 
The primary reason for this robustness stems from the fact 
that SMILE effectively approximates the non-exponential 
decay of strong signals (which dominate the PSF noise) as 
the sum of exponentially decaying functions during suc-
cessive iterations of the algorithm. The weakest peaks are 

either well approximated as a single exponentially decay-
ing sinusoid within the available thermal signal-to-noise, 
or are never recognized by the SMILE algorithm, as they 
contribute minimally to the PSF noise, in which case they 
retain the lineshape encoded in the decay of the sampled 
time domain data.

Compensation for decay in randomly ordered NUS 
data

As illustrated above (Fig. 4a), standard NUS reconstruc-
tion of randomly ordered data results in a high degree of 
 t1-noise like features. The amplitude modulation of the col-
lected time domain data induced by the progressive sample 
decay is intimately coupled to the use of random sampling 
order. However, if the rate at which the sample degrades is 
known, this decay in sample intensity can be reversed simply 
by multiplying each acquired FID by exp(t/Td), where t is 
the time after starting data acquisition, and  Td is the decay 
constant of the sample.

Insertion of multiple  t1,  t2 = 0, 0 time points in the sam-
pling list of the experiment permits straightforward moni-
toring of the sample decay during the NUS data collection 
process (Fig. 3). For Aβ1–42, the sample decay is found to 
be well-fitted with a bi-exponential function, which then is 
inverted and used to upscale all acquired FIDs accordingly. 
This procedure negates the intensity variation induced by 
the random ordering of the acquired time domain data. How-
ever, it also amplifies the noise, and thereby the weight, of 
the FIDs acquired towards the end of the experiment where 
signals are weakest. This procedure therefore decreases the 
attainable sensitivity, an effect clearly visible in the spec-
trum reconstructed using this approach (Figs. 4c, 5c). This 
decreased sensitivity is pronounced for our Aβ1–42 spectrum 
because the monomer concentration at the time when the 
last FID was collected had decreased by about fourfold. For 
samples that exhibit a decay by less than a factor of two, the 
corresponding sensitivity loss becomes much smaller, and 
inverting the effect of sample decay prior to reconstruction 
of randomly ordered NUS data becomes a viable option. 
For the time-ordered data, digitally reversing the sample 
decay generally is not needed because the noise originating 
from the very small amplitude modulation that results from 
the variability in the time steps generally will be far below 
the thermal noise (Fig. 2f–h) in typical NUS experiments 
when using normalized radial ordering of the sampling list. 
The primary consequence of digitally reversing the effect of 
sample decay then becomes comparable to the result of apo-
dizing conventional, fully sampled time domain data with 
a positive exponential, line-narrowing function: adversely 
impacting sensitivity while (modestly) improving spectral 
resolution.

Fig. 5  Cross sections taken through the 3D spectra for which pro-
jected regions are shown in Fig. 4.  F1 cross sections for V39 are taken 
at  (F2,  F3) = (120.56, 8.08) ppm from the SMILE-reconstructed 3D 
NOESY-HSQC spectra acquired using a the normalized radial length 
and b randomly ordered sampling schedules, containing the same 
time points and a sparsity of 12% for each spectrum. c The same 
cross section obtained from the randomly ordered data set but with 
FID intensities corrected for sample decay prior to NUS reconstruc-
tion. In all panels, black traces are scaled to display the full amplitude 
of the diagonal resonance; red traces are upscaled tenfold
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Concluding remarks

Slow degradation of a sample during the collection of a con-
ventional multi-dimensional NMR spectrum will manifest 
itself as additional line-broadening in the indirectly sampled 
frequency dimensions and most severely in the dimension 
that is incremented last. Analogously, fluctuations in sample 
temperature, amplifier stability, shimming, or other instru-
mental parameters that are slow on the time scale over which 
data collection of an individual FID is averaged, will result 
in deviations from ideality of the frequency domain line 
shapes. On the other hand, if such fluctuations occur on time 
scales comparable to the collection of individual FIDs, they 
manifest themselves as  t1-noise (Mehlkopf et al. 1984). If the 
order of the recorded sample points is random in the indirect 
dimensions, as commonly practiced in NUS data collection, 
then the subsequent re-ordering, which is required prior to 
Fourier transformation, redistributes the gradual changes in 
amplitude, phase, or frequency of the collected FIDs and 
makes them appear uncorrelated in the time-ordered matrix. 
This reordering therefore transforms these slow variations 
into changes that appear random and uncorrelated between 
sequential FIDs in the ordered time domain matrix, thereby 

resulting in  t1-noise like artifacts rather than the line-shape 
distortions that would be seen in fully sampled, convention-
ally acquired multi-dimensional NMR spectra.

For multi-dimensional NMR data collected with ran-
domly-ordered NUS, the distortions from instabilities and 
sample degradation superimpose on the collected data. Re-
ordering of the collected data prior to SMILE reconstruction 
then redistributes the distortions in the same way as would 
happen for a fully sampled N-dimensional spectrum with 
random ordering of the indirect time domain points and 
therefore adds an element of  t1-noise to the randomly 
ordered NUS data. This  t1-noise interferes with faithful 
reconstruction of the frequency domain and is most severe 
for slices in the indirect dimensions that contain intense 
resonances. Keeping the ordering of the indirectly sampled 
dimensions during NUS data collection conventional will 
strongly reduce the  t1-noise like artifacts during spectral 
reconstruction. On the other hand, slow fluctuations in line 
shape in the directly detected dimension, due to changes in 
shimming, temperature, or other instrumental parameters, 
which would manifest as  t1-noise in conventional NUS, will 
instead result in line shape distortions. When NUS data are 
collected in a time-ordered fashion, monotonic sample decay 

Fig. 6  Strip plot of the time-
ordered 3D NOESY-HSQC for 
the last 9 residues of Aβ1–42. 
Sequential NOEs are marked by 
blue arrowed lines, unless there 
is a longer-range NOE passing 
through the sequential one. Red 
lines represent medium-range 
NOEs, with the inter-residue 
peaks circled in red. Noise and 
reconstruction artifacts above 
the contour threshold, as well 
as off-strip peaks, are marked 
×. Each strip is taken from 
the 1H–1H plane and labeled 
with its  HN chemical shift and 
residue. A complete strip plot 
is presented in Fig. S4, with the 
corresponding 1H–15N HSQC 
spectrum shown in Fig. S2
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will mainly manifest itself as additional line broadening. The 
precise protocol used for ordering the time points in the indi-
rect dimensions of a q-D NMR spectrum is not particularly 
critical but preferentially carried out on the basis of the nor-
m a l i z e d  i n d i r e c t  t i m e  d o m a i n  l e n g t h 
vector: 

�

∑

i=1,…,q−1

�

ki∕Ni

�2

Despite the superficial similarity to the concentric ring/
shell sampling methods (Marion 2006; Coggins and Zhou 
2008; Coggins et al. 2010), it is important to realize that 
our time ordering approach is not a sampling method, but 
instead uses the normalized radial length to sort the schedule 
generated by any of the common sampling methods. There-
fore, use of a time-ordered schedule does not cause the arti-
fact patterns associated with concentric ring/shell sampling, 
unless the time-ordered sampling scheme itself is generated 
by such a method.

It is worth pointing out that the time-ordering of the sam-
pling schedule is applicable to both real-time and constant-
time evolution. However, in cases where the experiment 
includes a constant-time evolution period, one could order 
the time points such that the constant-time dimension is 
more broadened by the sample decay, thereby leading to 
more balanced line widths in the indirect dimensions. Alter-
natively, using conventional ordering with the constant-time 
dimension incremented first will optimize sensitivity at the 
expense of some loss of resolution in the dimension that is 
incremented last.

As reported previously (Ying et al. 2017), for data pro-
cessed with the SMILE program, exponentially weighting a 
sampling schedule or using the weighted Poisson-gap sam-
pling (Hyberts et al. 2012) decreases the accuracy of peak 
positions and also lowers the spectral resolution. It is worth 
noting that the normalized radial length sampling essentially 
favors the data points when  t1 and  t2 are short because these 
data points are collected before the sample significantly 
decays. It is important to take this factor into account when 
designing deviations from regular, fully randomly spaced 
sampling schemes.

Clearly, in addition to the choice of a sampling sched-
ule when recording NUS data, the ordering of the sampling 
schedule can have important consequences for the final 
spectral characteristics. It therefore is important to specify 
both the sampling schedule and the ordering method used 
when presenting NUS spectra, in particular when recorded 
on unstable samples.

Application of the time-ordered NUS protocol to the 
collection of a 3D NOESY-HSQC spectrum on a highly 
concentrated Aβ1–42 sample, kept at 3 kbar of pressure and 
280 K to minimize fibril formation and concomitant sig-
nal loss, resulted in a very high-quality spectrum. Unless 
obscured by resonance overlap, all conventional sequen-
tial NOE connectivities, normally seen in disordered 

polypeptides, were clearly observed, including a full set of 
sequential  HN–HN NOEs. Several less common NOE inter-
actions were also observed, however. These include several 
medium-range NOEs for the C-terminal region, as well as 
multiple weak NOEs for residues D23-K28 that are not nor-
mally seen in linear unstructured peptides. None of these 
interactions appear spatially proximate in the intact fibril, 
whose structure was recently determined by solid-state NMR 
spectroscopy (Colvin et al. 2016), indicating that the pres-
ence of unusual NOE contacts in solution at high pressure 
does not foreshadow the structure adopted in the amyloid 
state. Despite the high concentration used, we also do not 
find evidence for intermolecular interactions. In particular, 
the exceptionally close agreement between chemical shifts 
measured at concentrations that differ by a factor of 60 (Fig. 
S2) strongly indicates the absence of significantly populated 
intermolecular interactions under the conditions where we 
carried out our experiments. Numerous other medium and 
long-range NOEs, mostly involving sidechain–sidechain 
interactions, have previously been reported by others at 
atmospheric pressure (Ball et al. 2011). Our result therefore 
suggests that the use of high pressure adversely impacts the 
formation of transient long-range interactions, which could 
correlate with the much lower rate at which fibrils form 
under such conditions.
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