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Abstract Implementation of a new algorithm, SMILE, is

described for reconstruction of non-uniformly sampled

two-, three- and four-dimensional NMR data, which takes

advantage of the known phases of the NMR spectrum and

the exponential decay of underlying time domain signals.

The method is very robust with respect to the chosen

sampling protocol and, in its default mode, also extends the

truncated time domain signals by a modest amount of non-

sampled zeros. SMILE can likewise be used to extend

conventional uniformly sampled data, as an effective

multidimensional alternative to linear prediction. The

program is provided as a plug-in to the widely used

NMRPipe software suite, and can be used with default

parameters for mainstream application, or with user control

over the iterative process to possibly further improve

reconstruction quality and to lower the demand on com-

putational resources. For large data sets, the method is

robust and demonstrated for sparsities down to ca 1%, and

final all-real spectral sizes as large as 300 Gb. Comparison

between fully sampled, conventionally processed spectra

and randomly selected NUS subsets of this data shows that

the reconstruction quality approaches the theoretical limit

in terms of peak position fidelity and intensity. SMILE

essentially removes the noise-like appearance associated

with the point-spread function of signals that are a default

of five-fold above the noise level, but impacts the actual

thermal noise in the NMR spectra only minimally. There-

fore, the appearance and interpretation of SMILE-recon-

structed spectra is very similar to that of fully sampled

spectra generated by Fourier transformation.
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Introduction

With the introduction of ever stronger magnetic fields and

high sensitivity cryogenic probes, the minimum time nee-

ded for recording multi-dimensional NMR data is often

dictated by the number of time increments in the indirect

dimensions required for reaching adequate spectral reso-

lution. In fact, with increased field strengths it becomes

more demanding, in terms of the number of time steps

needed, to take full advantage of the higher spectral reso-

lution intrinsically available. Although this problem can be

mitigated by replacing the many phase cycling steps

commonly used to reduce spectral artifacts by pulsed field

gradients (Bax and Pochapsky 1992), even at a single scan

per increment the total measurement time required for

recording three- and four-dimensional NMR spectra at the

highest possible resolution, limited only by transverse

relaxation rates, often is unreasonably long.
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A widely used solution to this problem takes advantage

of the fact that NMR spectra consist of discrete resonances

and are often quite sparse, i.e., the number of spectral

components is many orders of magnitude smaller than the

total number of data points in the final multi-dimensional

spectrum. In this case, instead of relying on simple discrete

Fourier transformation (FT), the frequency domain spec-

trum can be reconstructed from a much smaller number of

time domain data points by using iterative or other non-

linear methods that include a regularizing term, as the

relation between time and frequency domain data is no

longer unique. A large variety of reconstruction algorithms

and protocols, largely adapted from different scientific

disciplines, have become widely used in the NMR com-

munity. The most popular and broadly used procedures are

those that record a randomly or pseudo-randomly chosen

subset of the very large number of increments required for

a complete, on-grid, fully sampled multi-dimensional

NMR spectrum. This approach is an extension of the pro-

posal to use exponential sampling in the indirect dimen-

sion, first introduced in the NMR community some

30 years ago (Barna et al. 1987) to obtain enhanced reso-

lution in the indirect frequency dimension.

The main problem with generating a full frequency

domain spectrum from an incomplete set of time domain

data is that it simply is not possible to uniquely generate N*

frequency domain points from fewer than N* time domain

data. Moreover, a simple discrete Fourier transformation

(FT) requires a discrete equi-spaced time domain signal as

input. However, a range of sensible regularizers can be

used to find the ‘‘most reasonable’’ solution for trans-

forming the time domain data into a frequency domain

spectrum. These include the use of maximum entropy

algorithms (Barna et al. 1987; Delsuc and Tramesel 2006;

Mobli et al. 2007; Balsgart and Vosegaard 2012; Hoch

et al. 2014), compressed sensing techniques such as itera-

tive soft thresholding methods (Hyberts et al. 2012, 2013)

and others (Holland et al. 2011; Kazimierczuk and Ore-

khov 2011; Bostock et al. 2012). The aim of these, and a

host of other algorithms that have been demonstrated for

NMR applications, is to minimize either the l1, l2 or

Gaussian l0 norm of the frequency domain (Stern et al.

2007; Stern and Hoch 2015; Sun et al. 2015). Other intu-

itively appealing methods are based on an iterative algo-

rithm to stepwise remove the point-spread function (PSF)

artifacts caused when a regular FT is applied to a matrix

where the not-sampled, on-grid data points have simply

been replaced by zeros, one effective example being the

Signal Separation Algorithm (SSA) (Stanek and Kozminski

2010). Alternatively, removal of PSF artifacts in the fre-

quency domain can be accomplished by iterative algo-

rithms such as FFT-CLEAN (Coggins and Zhou 2008;

Werner-Allen et al. 2010) and SCRUB (Coggins et al.

2012), the latter being particularly effective for highly

sparse data. The above methods and a range of ingenious

related methods have been extensively discussed in a host

of recent reviews (Coggins et al. 2010; Kazimierczuk et al.

2010; Orekhov and Jaravine 2011; Hoch et al. 2014; Mobli

and Hoch 2014). We note that, from a practical perspec-

tive, these methods are rather different from ideas such as

projection methods (Eghbalnia et al. 2005), GFT (Kim and

Szyperski 2003), or the powerful multi-dimensional

decomposition method (Orekhov et al. 2003), which aim to

extract the information most relevant to the spectroscopist

from cleverly chosen combinations of time domain data,

thereby providing practical access to higher-dimensional

([4) NMR spectroscopy methods (Bermel et al. 2013; Piai

et al. 2014) such as 6D APSY (Fiorito et al. 2006).

The non-linear aspect of processing NUS NMR data has

given rise to much confusion regarding the intrinsic signal-

to-noise (S/N) merits of non-uniform sampling (NUS), and

despite clear warnings to the contrary (Yoon et al. 2006), the

improved visual display of non-linearly processed data is

often interpreted as improved sensitivity. Without lack of

generality,when assuming a single signal to be on resonance,

its intensity can simply be calculated from the sum of its

exponentially decaying time domain signal. Data points

closest to the origin have the highest time domain S/N;

however, the signal frequency is encoded in the phase of the

free induction decay (FID), which increases linearly with

twhile its amplitude decays with exp(-t/T2). The derivative

of this function with respect to t is zero for t = T2, meaning

that the phase (i.e., frequency) information is optimally

sampled at t = T2. Another important consideration is that,

in the presence of noise, resolving two signals that differ in

frequency by less than ca 1/(2Tacq), whereTacq is the duration

of the acquisition time, is generally not feasible by any of the

above analysis methods. In practice it even can be chal-

lenging to separate components separated by as much as

1/Tacq. Therefore, the discussion of sensitivity and resolution

attainable with different sampling protocols and different

reconstruction methods is quite complex (Rovnyak et al.

2004; Hyberts et al. 2010; Bostock et al. 2012). One common

misconception, that NUS allows more transients per incre-

ment and thereby improves the S/N of the reconstructed

spectrum, is analogous to the idea that narrowing the spectral

window in an indirect dimension allows more averaging per

increment, which was clearly refuted over 30 years ago

(Levitt et al. 1984). Although, at least in principle, it is

possible to gain a modest amount in S/N by sampling the

decaying signal in the indirect time dimensionsmore densely

at earlier time points, results shown below indicate that such

sampling protocols may result in decreased accuracy of peak

positions and widths.

The present study describes implementation of SMILE,

a NUS reconstruction method that can be used directly as a
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plug-in to the popular NMRPipe program. One aim is to

provide a simple and robust method for processing NUS

data, while allowing the user flexibility to deviate from

default settings for less common applications, such as

resolution enhancement (Stern et al. 2007), extreme

dynamic range data, limited computational resources, etc.

A second aim is to provide output data that remain visually

as close as possible to the appearance of regular fully

sampled FT data, without non-linear treatment of noise. In

spirit, SMILE is closest to the SSA algorithm (Stanek and

Kozminski 2010), but the actual implementation is rather

different in terms of peak detection and reconstruction, and

takes advantage of the fact that NMR spectra can be phased

to become purely absorptive. Taking advantage of this

phase information has been used previously to enhance the

results of linear prediction algorithms (Zhu and Bax 1990),

and for constructing a ‘‘virtual echo’’ which was shown to

benefit a range of sparse data reconstruction methods

(Mayzel et al. 2014). A noteworthy feature of SMILE,

which simultaneously benefits spectral resolution and

sensitivity, is the automatic extension of the time domain

by non-sampled data, which are treated just like the ran-

domly non-sampled data during SMILE reconstruction.

This mode of processing removes truncation artifacts

without requiring undue apodization of actual experimental

data at the end of the sampled time domain, an idea first

introduced in spectral processing by Stern et al. (2007).

Note that this mode of processing is equally beneficial to

both conventional fully sampled data and NUS data.

Description of the computational approach

Expansion, conversion, and processing prior

to the reconstruction

The SMILE algorithm has been implemented as a new

processing function of the widely used NMRPipe program

(Delaglio et al. 1995). In the usual workflow, non-uni-

formly sampled multidimensional time-domain data is first

sorted and subsequently expanded to fill the not-sampled

points with zeros using utilities in NMRPipe. This is a

particular convenience, because the sorted and expanded

NUS data can then first be treated by ordinary Fourier

processing schemes. These generally yield results which

are sufficient to establish and confirm processing details

such as phase correction prior to performing a more time-

consuming NUS reconstruction. In the case of SMILE,

knowledge of the phase correction values for the indirect

dimensions is used during the reconstruction.

The input for SMILE processing is the sorted and

expanded NUS data, with the directly detected dimension

processed in the usual way, with apodization, zero fill, and

phase correction, and with the imaginary part then dis-

carded. A subset range of the directly detected dimension

may be extracted, as is commonly done for amide-detected

data. The NMRPipe pipeline data format is sequential, and

multidimensional processing proceeds by way of matrix

transpositions. Prior to processing with SMILE, data are

transposed so that the directly detected dimension becomes

the final (slowest varying) dimension. The output of

SMILE is a new fully sampled interferogram. This output

can then be processed and analyzed by the same schemes

used for conventional uniformly sampled data.

It is important to note that, unlike many other NUS

reconstruction programs, SMILE reconstructs the data as

one single spectrum rather than by treating each cross

section orthogonal to the detected axis separately and

independently. While the whole-spectrum approach

increases the computational burden and memory space

requirements, it critically helps to preserve the line shape in

the directly detected dimension, particularly for weak res-

onances. In the faster, commonly used slice-wise approa-

ches, reconstruction of the weaker signals in slices taken

adjacent to the center of the peak in the detected dimension

is suboptimal and can cause line shape distortion. Note that

in a chunk-wise approach, described below in more detail,

we can reduce memory demand for 4D reconstructions by

reducing the chunk size to as little as three adjacent cubes

in the F4 dimension, and still perform a whole-spectrum

reconstruction.

Initiation of SMILE processing

A SMILE reconstruction uses data sorted and expanded as

described above, with zeros inserted for the not-sampled

points. As with other NMRPipe processing functions,

SMILE extracts its parameters from command line argu-

ments, prepares its workspace, and then reads one complex

vector at a time from the sequential pipeline stream of

input data. In the case of SMILE, the entire spectral data

matrix is initially read this way prior to further

reconstruction.

The various steps of the SMILE reconstruction proce-

dure are schematically illustrated in Fig. 1. Each iteration

starts with an interferogram already transformed in the

direct dimension, and with all the not-sampled points set to

zero. During each iteration, the data are fully Fourier

transformed, the strongest peaks are identified, and the

peak information is filtered according to selection criteria.

The parameters of the peaks selected are used to simulate

corresponding time-domain signals, which are then sub-

tracted from the interferogram used as input for the start of

the iteration. The process is repeated, and iteration stops

when the highest point in the Fourier transformed residual

falls below a target value. The accumulated synthetic time-
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domain signal and final time domain residual are used to

generate a fully sampled interferogram as output.

Before iteration begins, SMILE performs any time

domain manipulations for the indirect dimensions which

only need to be performed once, rather than repeated

during each iteration. This includes apodization, zero order

phase correction (which can be applied in the time

domain), and sign manipulations such as negation of an

imaginary component of the data, which is sometimes

required to reverse the direction of a dimension in the

frequency domain. If first order phase correction of a given

dimension is required, this is instead performed in the

frequency domain during each iteration, rather than as part

of this once-only time domain processing, since it is dif-

ficult to perform the equivalent of a frequency domain

linear phase correction in the time domain. The special

exception to this case is for first order phase correction that

is an exact integral multiple of 360�, i.e., a shift by an

integral number of time points. In these special cases, we

can optionally shift the sampling schedule in the

corresponding dimension by one or more points during the

NUS data expansion and the SMILE reconstruction, as an

alternative to applying the corresponding first order phase

correction. Once all preliminary data manipulation has

been completed, SMILE internally retains only the exper-

imentally sampled points in order to reduce memory space

requirements, removing the points filled with zeros during

the NUS expansion.

Converting observed line widths to time domain

decay factors

A key aspect of SMILE is the interpretation of observed

frequency domain line widths from a Fourier-processed

spectrum in terms that allow generation of corresponding

synthetic time domain signals that are a good match for the

measured data. SMILE assumes that the underlying time

domain signals are exponentially decaying sinusoids that

after FT can be phased to be uniformly absorptive, whereas

glitches, noise spikes and the like generally do not have these

Fig. 1 Flow chart of the

SMILE NUS reconstruction

procedure. The input data read

by SMILE must be already

sorted and expanded by tools in

NMRPipe (e.g. nusExpand.tcl,

and vdExpand.tcl) and the direct

dimension must be processed

first in the usual way. Prior to

reconstruction iterations,

SMILE performs once-only

time domain operations as

needed to the indirect

dimensions, such apodization,

negation of imaginaries, sign

alternation, and zero order

phase correction. Details

regarding the other steps are

provided in the main text
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features, partially suppressing their reconstruction.Apparent

peakwidth depends on the apodization functions used aswell

as on the sampling schedule, particularly when the sampling

is not random but exponentially weighted. The various fac-

tors affecting observed line width in the frequency domain

make it challenging to use the apparent line width to extract

an accurate estimate of the transverse relaxation rate, R2, for

the corresponding time domain exponential decay, exp(-R2

t). Even if good estimates for the transverse relaxation rates

in each dimension are available, in practice, residuals

remaining after a given SMILE iterationmay appear as sharp

or broad lines, requiring a range of different R2 rates to

closely match the overall signals.

To address the issue of relating apparent frequency

domain signal parameters to the time domain, SMILE

establishes a calibration between observed peak width in the

apodized Fourier spectrum and the exponential decay of a

corresponding synthetic signal in the time domain. To

accomplish this, SMILE simulates a series of time-domain

data sets by using a range of input R2 values, with default

values of R2 stepping from 1/(4Tacq) to 3/Tacq, where Tacq is

the acquisition time in that dimension. For example, in the

case of the three indirect dimensions of a 4D data set using

default settings, SMILE creates 30 3D cubes with each cube

containing one peak, and with the R2 for the peak in all 3

dimensions increasing linearly from the first to the last cube.

As a result, for each of the three indirect dimensions, there

are 30 apparent line widths corresponding to the 30 different

input R2 values. In addition, to calibrate line widths in the

direct dimension, 30 1D spectra are generated, with each

spectrum containing one peak of increasing width, yielding

30 R2-linewidth pairs. The acquisition times and spectral

widths in the simulated cubes and the 1D spectra are identical

to the experimental values in each dimension, and the data

are apodized using the same set of window functions used on

the measured data. To include the potential effect of the

sampling pattern on the peak shape, SMILE applies the same

NUS sampling schedule to each simulated indirect cube prior

to FT. In the end, a relation table between the R2 values used

in the simulation and the apparent peakwidths is established.

This R2-linewidth relation table is used to correct the

apparent peak width before each signal is reconstructed,

thereby significantly improving the accuracy of the recon-

struction at each iteration.

Processing and analysis of the indirect dimensions

After the preliminary processing and analysis of the input

NUS data as described above has been completed, a

SMILE iteration begins by resetting the not-sampled points

of the NUS interferogram to zero, performing requisite

zero filling, FT, and any first order phase correction in each

indirect dimension, with imaginary components discarded

after phasing. The FT of the indirect dimensions is gen-

erally the slowest step of a SMILE iteration. Optimization

of this step is therefore important. In SMILE, Fourier

processing is parallelized using the openMP multithreading

library (OpenMP Architecture Review Board 2011), pro-

viding strong performance enhancement on multi-core

CPUs, which are now ubiquitous, as well as on multi-CPU

clusters.

Although only the all-real spectrum is eventually used

for signal analysis, during the processing the intermediate

frequency domain data remains hypercomplex. In the case

of 4D data, this requires eight times (not 16, because the

direct dimension is real only) more space than the final all-

real spectrum, which can be prohibitively large. To address

this issue, we implement the above mentioned chunk-wise

strategy, which allows SMILE to run with a minimal array

space sufficient for only one chunk, consisting of N C 3

hypercomplex indirect cubes. These cubes correspond to

adjacent cross sections orthogonal to the Fourier trans-

formed F4 axis of the 4D data set, and N is chosen by the

program to be as large as possible for the user-specified

memory size. The 4D data are then analyzed in overlapping

groups of N sequential cubes, where each group overlaps

by one cube with the previous group. Local maxima within

each cube are tallied, and the results from each overlapping

group of adjacent cubes are collated to identify points

which are greater than all of their immediate neighbors in

all dimensions. If these points meet the selection criteria,

they are classified as peaks. This overlapping chunk-wise

approach allows SMILE to run with no significant adverse

impact on speed or performance when memory space is

limited, since only N cubes need to be held in memory at

any one time. More importantly, the entire 4D data set is

still reconstructed seamlessly as one single spectrum rather

than as individual planes or cubes, resulting in an improved

lineshape in the direct dimension.

Peak detection and selection

Peak detection and filtering is a key step during the itera-

tive NUS reconstruction process. Criteria used will impact

not only the speed of the reconstruction, but also the

quality of the final reconstructed spectrum. Failure to

identify strong to moderate peaks will result in incomplete

reconstruction and lead to larger residual NUS artifacts,

while picking false peaks or noise slows down the recon-

struction and can artificially lower the apparent noise level.

Accepting too few peaks for reconstruction at each itera-

tion increases the total number of iterations and therefore

the time of the reconstruction, while accepting too many

peaks for each iteration decreases the overall accuracy of

the reconstruction. Ideally, only the most intense peaks

remaining above a certain threshold should be
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reconstructed in each iteration. However, recognizing that

peaks of comparable height that are separated by more than

one line width in the direct dimension do not interfere

substantially with one another, SMILE selects for recon-

struction a set of peaks that are the strongest locally, i.e.,

within a small number of adjacent indirect cubes whose

frequency span is at least equal to the direct dimension line

width. This approach maximizes the number of peaks that

can be reliably reconstructed in each iteration.

The process by which SMILE selects the peaks used for

full time domain reconstruction is now described. Although

the discussion below focuses on the case of a 4D spectrum,

treatment of lower dimensional spectra is fully analogous,

and simply requires substitution of ‘‘cube’’ by ‘‘two- or

one-dimensional cross section orthogonal to the detected

axis’’ for 3D and 2D spectra, respectively, unless otherwise

noted.

First, the maximum number of peaks that can be

simultaneously reconstructed in each cube is estimated

using the following empirical equation:

M ¼ 1þ sqrt K=10ð Þ;

where M is the maximum number of peaks allowed for

each cube, and K the total number of experimentally

sampled 1D FIDs (i.e., 8 and 4 times the number of

selected points on the indirect sampling grid for 4D and

3D, respectively). For 2D data, M is always set to 1.

At each iteration, peaks are identified and selected

according to these criteria:

(a) A point can only be classified as a peak if it is a local

maximum, i.e., it is greater than all immediately

neighboring points in all dimensions.

(b) Peaks weaker than intensity threshold f * Imax are

excluded for the current iteration. Here, f is a user

adjustable parameter with the default value of 0.80,

and Imax is the largest intensity in the cube.

(c) The intensity of the highest point and all its

immediately neighboring points in all dimensions

for a peak also must be higher than at least s times

the thermal noise level of the spectrum. Here, s is a

user adjustable parameter with a default value of 5,

and an automated noise estimate is used unless a

value is supplied by the user.

(d) Selected peaks must be separated from each other by

at least 2/Tacq in at least one dimension. For pairs of

peaks separated by less than 2/Tacq, the stronger one

is selected.

Peak analysis

Although conceptually the SMILE algorithm is analogous

to the SSA method (Stanek and Kozminski 2010; Stanek

et al. 2012), the actual implementation is quite different

and represents a compromise between processing speed

and optimal reconstruction. For example, SSA defines a

sophisticated multidimensional peak boundary and then

performs a least squares nonlinear fitting or, for overlap-

ping peaks, a Hilbert Transform followed by an inverse FT

to obtain the corresponding time-domain signal. In con-

trast, SMILE simply estimates the peak’s position, width,

and height from the highest data point and its immediate

neighbors in all dimensions. When the SMILE calibration

scheme for relating observed frequency domain parameters

to time-domain parameters is employed, the observed peak

height, position, and width provide a good approximation

of the amplitude, frequency, and R2 of the corresponding

time domain signal. We find that this approach is fast and

generally quite robust. Importantly, as our analytical

method only uses the three highest data points in each

dimension for each peak, these most intense points are

fractionally least impacted by the point spread function of

other, not yet reconstructed signals in the spectrum. If

reconstruction of a given peak is incomplete because

height, position, or R2 contain small errors, the effect of

this ‘‘imperfection’’ is corrected in later iterations, where

the difference between the true time domain signal and the

reconstructed signal is treated as a new, independent time

domain signal. In practice, a very intense peak may be

reconstructed as several overlapping peaks, spaced very

closely in the frequency domain, but typically with

amplitudes that differ by about an order of magnitude from

one another.

Signal reconstruction

To reconstruct the hypercomplex time/frequency domain

signals for the selected peaks, SMILE generates a complex

1D FID for each dimension corresponding to an expo-

nentially decaying sinusoid function with the extracted

frequency, signal amplitude, and R2. If a particular indirect

dimension was recorded using constant- or mixed-time

(Ying et al. 2007), the exponential function exp(-R2 t) is

either not applied to its FID, or only after the point where

non-constant-time incrementation starts. These FIDs are

subsequently apodized and their first points are scaled,

depending on the linear phase in the corresponding

dimension (Otting et al. 1986; Zhu et al. 1993). The

complex vector for the directly detected dimension is then

zero-filled and Fourier transformed to match the details of

the measured data, and its imaginary component is dis-

carded. For computational efficiency, the 4D time domain

signal for any signal component is generated by first cal-

culating 2D hypercomplex planes, consisting of vector

outer products between the synthetic 1D FIDs for the first

two dimensions, and between the FID for the third
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dimension and the 1D spectrum for the direct dimension.

The 4D hypercomplex matrix is then reconstructed from

the matrix outer product between each pair of the above 2D

planes. The 4D signal for each peak is finally added to the

matrix already constructed for the other peaks in the cur-

rent and previous iterations. This step is highly paral-

lelized, and the matrix reconstruction time for up to

hundreds of peaks per iteration is generally small compared

to the time needed for FT.

Calculation of the residuals and iteration of steps

4–8

For the data points selected on the NUS sampling schedule,

the reconstructed value for each peak is subtracted from the

experimentally sampled data, while the not-sampled points

remain set to zero prior to the FT of the next iteration. The

resulting difference matrix then represents the residuals

obtained after the strongest peaks are removed. As a result,

the artifacts associated with the point spread functions of

these strong peaks are also suppressed, which allows the

weaker peaks or residuals to be reconstructed in the new

iteration starting from step 4 above. SMILE iterations

continue until there are no peaks remaining above the

threshold (the default threshold being five times the noise)

or the maximum number of iterations defined by the user is

reached.

Downscaling of the reconstructed signals

After completion of the above iterative process, SMILE

down-scales the sum of the reconstructed signals by a value

that is close to the sparsity of the sampled data before

adding the reconstructed signals to the residual experi-

mental data. The actual scaling factor used depends on the

sampling protocol and the decay rate of the time domain

signals, and is calculated from an on-resonance simulated

time-domain signal of unit amplitude, having an R2 esti-

mated from the average line width of the peaks selected in

the first iteration, with each dimension apodized using the

same window function that was applied to the experimental

data. The scaling factor is then determined as the sum of

the intensities for only the sampled data points divided by

the corresponding sum of all the points. This factor is very

close to the sampling sparsity, if the sampling is random.

For an exponentially weighted sampling list, with more

data points sampled at the beginning of the time domain

signal, the scaling factor can be noticeably higher than the

sparsity. Conversely, the default extension of the recon-

structed signals in each indirect dimension can significantly

decrease the scaling factor, because the sum of all points

becomes larger while the sum of the sampled points

remains unchanged. Note that the choice of the apodization

functions also impacts this scaling factor somewhat. For

this reason, the reconstructed data SMILE outputs remain

apodized. Note that an error in the scaling factor only

changes the amplitude of all reconstructed signals relative

to those of the below-threshold signals and the thermal

noise. In practice, such errors are well below 10%.

The residual experimental data, again with its not-sam-

pled points set to zeros, is added to the downscaled

reconstructed time-domain signal. Downscaling of the

reconstructed signals maintains the linearity of peak

intensities in the reconstructed NUS spectrum. As a result,

even if weak peaks are not included in the SMILE recon-

struction, their heights remain perfectly valid when com-

pared to those of the reconstructed peaks. Moreover, the

noise in the final reconstructed spectrum is simply that of

the originally Fourier transformed time domain matrix

(with zeros for the not-sampled data points), but with the

‘‘noise-like’’ point-spread functions of the intense signals

removed. Unless the user explicitly instructs SMILE not to

make extensions, the output data is of larger size than the

expanded input NUS data, but with its not-sampled points

including the extended ones replenished by the scaled

reconstructed values and the sampled points replaced by

the sum of the residual and the scaled reconstructed time

domain signal. This approach insures continuity of the time

domain signals used to replace the not-sampled points, and

also captures all of the signal originally present in the

measured data. After SMILE is applied, the indirect

dimensions can be finally processed by the same schemes

used for conventional data, but no longer require

apodization which is already included in the SMILE step.

Results and discussion

Illustration of a 1D reconstruction

Although SMILE can only be applied to multi-dimensional

data, we demonstrate its operation by selecting a one-di-

mensional cross section through a synthetic 2D data set,

generated to approximately mimic an F1 cross section

through a 2D NOESY spectrum. Figure 2A1, A2 show the

fully sampled time domain cross section and its FT, and

similarly, A3 and A4 show its reconstructed 10% sampled

time domain and FT, displayed on a vertical scale that is

expanded by a factor of 10 to yield intensities comparable

to the fully sampled FID.

Clearly, the not-sampled points, set to zero before

applying the FT, give rise to noise-like characteristics in

the frequency domain (Fig. 2B1). In the first iteration,

SMILE detects the strongest peak after FT, parametrically

estimates its height, frequency and width from the spectral

data point of largest amplitude and its two immediate
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Fig. 2 An illustration of SMILE reconstruction. A 94.8-ms FID with

ten signal components at randomly selected frequencies (within the

spectral window of 10,803 Hz) was generated using the simTimeND

program in the NMRPipe software suite, with random T2 values

(ranging from 67 to 172 ms). Amplitudes of the signals differed

stepwise by factors of 1.63, yielding a ratio of 80:1 between the

intensities of the strongest and weakest signals. The fully sampled

time domain consists of 1024 complex data points and Gaussian noise

was added such that the weakest peak in the fully sampled spectrum

has a signal-to-noise ratio of 25:1. The fully sampled data were

processed conventionally in NMRPipe and a randomly selected 10%

fraction of the time domain data was reconstructed using SMILE. A1
The original fully sampled simulated FID. A2 The regular FT

spectrum, obtained by processing the data of A1. A3 The final

reconstructed FID generated by SMILE, including the default 50%

extension of the time domain. A4 The reconstructed spectrum

obtained by processing the FID of A3. B1 Fourier transform of the

sparse FID. B2 FT of the reconstructed time domain after the first

iteration (using the default 50% extension of the time domain); B3 the

residual FID after the reconstructed time domain signal (FT shown in

B2) is subtracted from the original sparse FID (sampled points only,

and the 50% extension is therefore not shown). B4 Fourier transform

of the sparse FID of B3. B5 FT of the reconstructed time domain after

the second iteration and B6 residual FID after the reconstructed time

domain (FT shown in B5) is subtracted from the original sparse FID.

B7–B9 Analogous to B4–B6, but after the 13th iteration, where no

signal above the noise threshold is detected. Note that data from

different iterations are shown on expanded Y scales. The Fourier

transform of B9, summed with the scaled synthetic spectrum of B8,

yields the final NUS spectrum of A4. The NMRPipe processing script

is included as Supplementary Material, and the entire simulated and

processed data set can be downloaded at http://spin.niddk.nih.gov/

bax/software/SMILE/
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neighbors. It then calculates for an on-resonance signal

what amplitude of the time domain signal, with known

decay constant, is needed to yield the amplitude observed

in panel B1, and generates the (fully sampled) time domain

data, for which the corresponding synthetic resonance is

shown in Fig. 2B2. Note that only the time domain data is

calculated by SMILE, and its FT is shown here only to

illustrate the successive steps in the program. SMILE then

subtracts the synthetic time domain data from the original

sampled time domain data (Fig. 2B3). FT of this residual

time domain data, from which the most intense spectral

component has been removed, yields a spectrum with

reduced PSF ‘‘noise’’, which allows reliable parameteri-

zation of the second strongest resonance (Fig. 2B4). After

removal of the time domain component of this second

resonance, the procedure is applied to the next strongest

resonance, and then repeated until no resonance stronger

than five (default) times the root-mean-square noise

remains (Fig. 2B9). The final reconstructed time domain

then is generated by co-adding all the synthetic time

domain data generated during the various iterative steps to

the residual of the last iteration, where no peak above the

noise threshold was detected. Note that the synthetic time

domain signals need to be downscaled prior to co-adding

them, to account for the sparsity of the time domain and the

distribution of the time domain points (see step 9 in the

above description of the computational approach for how

this scaling factor is generated; 0.0898 for the example of

Fig. 2).

As can be seen from the vertical scale in Fig. 2A4, the

signal intensity in the 10% sampled spectrum is approxi-

mately 10-fold lower than in the fully sampled spectrum

(A2), and the noise is lower by about a factor of 3 (note the

difference in vertical scale axis), meaning that the apparent

S/N of the NUS-processed spectrum is more than threefold

lower compared to the fully sampled spectrum. Although

some studies have suggested dramatically improved S/N

for NUS data, this is largely a result of non-linear pro-

cessing. As an example, for the case of random sampling,

points in a fully sampled FID could be separated into 10

independent NUS FIDs, so that each one is sampled at 10%

density and contains independent thermal noise. This

allows reconstruction of 10 NUS-spectra with uncorrelated

thermal noise, and their co-addition cannot improve the

S/N over that of the regular FT spectrum. This means that

each of the NUS spectra must have a S/N that is at least

H10 lower than in the fully sampled spectrum. Modest

gains can be made by using non-random selection of the

sampling points, e.g. exponential sampling (Barna et al.

1987), but any intrinsic gain from such a choice is com-

peting with residual ‘‘noise’’ from imperfect NUS recon-

struction, i.e., imperfect removal of the PSF noise.

Moreover, non-random sampling schedules that enhance

S/N can have an adverse impact on the accuracy at which

frequencies can be extracted, alter the peak line shapes in

the sparsely sampled indirect dimensions prior to the

reconstruction, and introduce a level of coherence in the

PSF noise distribution. The SMILE line shape simulation

routine largely accounts for these effects, allowing rea-

sonably accurate reconstruction regardless of the sampling

schedule.

Amplitude, line width and frequency fidelity

of simulated data

We demonstrate the fidelity of amplitudes, line widths and

frequencies of SMILE-reconstructed NUS data for both

simulated and experimental data.

For the simulations, we generated ten separate 2D data

sets that each contain 100 well separated columns with ten

cross peaks whose intensities varied exponentially by fac-

tors of 1.63, to yield a dynamic range of 80:1 between the

most intense and weakest signal at any given F2 frequency.

Essentially, the reconstruction of each spectrum corre-

sponds to the reconstruction of 100 of the spectra used for

the example of Fig. 2. For the 10 simulated data sets, the

full t1 time domain had a 94.8 ms duration and a spectral

width of 10,803 Hz corresponding to 1024 complex data

points, from which 10% were chosen following different

variations on the random sampling protocols. T2 values of

the F1 frequency components ranged from 60 to 127 ms

and frequencies in the F1 dimension were chosen ran-

domly, but with separations of at least 200 Hz, except for

the most intense and third weakest peaks, whose separation

was fixed at 23 Hz in order to evaluate how well the

algorithm can reconstruct a weak peak in the immediate

vicinity of a much more intense peak. The noise level of

the fully sampled spectrum is adjusted to yield a S/N of 21

for the weakest peak after cosine bell (0�–86�) apodization
and zero filling to 8192 data points. Different 10% random

NUS sampling schedules are generated for each of the ten

2D data sets, using five different schemes, including fully

random sampling, T2 weighted sampling (generated using

the exponential sampling scheme in MddNMR (Orekhov

and Jaravine 2011)), three different Poisson gap sampling

schemes described by Hyberts et al. (2010) with no weight

or with a weight of sin(h), where the angle h ranges from 0

to p/2 and from 0 to p. The intrinsic S/N of these 10%

sampled spectra is H10 lower than for the fully sampled

data set, but to allow quantitative comparison we also

generated a fully sampled data set with all signals attenu-

ated by H10, i.e., a S/N of *7 for the weakest peaks. Both

reconstructions by SMILE and istHMS extend the indirect

time domain from 94.8 to 142.2 ms, and the reference peak

position, line width and peak height are extracted from the

noise-free fully sampled simulated data with the t1 time
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domain matching the extended NUS data, which is critical

particularly for the calculation of the NUS line width RMS

deviations.

It is important to note that in all non-linearly processed

NMR data sets, including SMILE, the definition of S/N

becomes invalid, even if the noise retains its regular noise-

like appearance. Rather than reporting the apparent S/N,

we therefore evaluate the quality of spectral reconstruc-

tions in a manner that corresponds to what a user typically

may wish to do: peak picking each of the 2D spectra at an

intensity threshold level where 20–25% of the detected

signals are spurious. For the detected true signals, com-

parison to the frequency, line width, and intensity param-

eters from the noise-free spectra shows the quality of the

reconstructed data, while the number of missing signals

shows the fraction that was not recognized at the intensity

cutoff used during peak picking. Results obtained with

SMILE are summarized in Table 1, and can be compared

to results of the unextended fully sampled data set, simu-

lated with the H10 weaker signals. All errors in heights,

frequencies, and widths are reported relative to those of the

noise free, fully sampled data set.

As can be seen in Table 1, even though an exponentially

weighted random sampling scheme yields a slightly lower

fraction of missing peaks (0.5 vs 0.7%), exponential sam-

pling yields about 20% larger errors in peak position and

line width compared to random sampling. It is particularly

noteworthy that random sampling significantly outperforms

the other sampling methods in more accurately determining

the peak position and line width of the partially overlap-

ping peak (i.e., the third weakest peak placed only 23 Hz

away from the most intense peak). None of the Poisson gap

sampling schemes are found beneficial for SMILE recon-

struction, with all of them yielding a larger fraction of

missing peaks, and larger errors in peak position and peak

height than fully randomized sampling schemes (Table 1).

In this respect, SMILE reconstruction differs from istHMS

reconstruction, for which the previously reported benefits

of Poisson gap sampling over random sampling are

reproduced when the above test is applied to the same test

data sets, with the best performance obtained for the 0 to

p/2 sinusoidally weighted Poisson gap sampling

(Table S1). However, even with this sampling scheme that

strongly favors the earlier data points, the fraction of

missing peaks does not improve significantly over the

SMILE reconstruction of fully randomly sampled data, and

comes at the expense of increased uncertainty in peak

position and line width (Table S1).

Although random sampling with SMILE reconstruction

performs well in the above described test, it does not quite

reach the theoretical limit: comparison with the fully

sampled data set, using the same noise level but H10

weaker signals shows that only 13 out of totally 1000

weakest peaks are missed when peak picking the 10 fully

sampled data sets (Table 1). Only when further lowering

the signals by an additional factor of 1.14 does the peak

picking performance become comparable to those of the

random NUS SMILE data set, suggesting that SMILE is

able to reduce the PSF noise to add not more than about

14% over the thermal noise. It should be noted, however,

that the magnitude of this residual PSF noise depends

strongly on the sampling density and the complexity and

dynamic range of the spectral components, i.e., it will vary

for different spectra.

When comparing the fractional peak height errors

obtained with SMILE for the 10 peaks, they scale

approximately inversely with the intensity of the reso-

nances, analogous to what is seen for fully sampled data.

The root mean square error is found to be much larger than

the average error (Table 1), indicating that the systematic

underestimate seen in nearly all NUS reconstruction

methods is very small (compare, for example, Table S1).

SMILE uses the assumption that the NMR resonances

decay exponentially during its iterative approach. Even

though this assumption often applies for solution NMR

data, unresolved multiplets can have a more Gaussian

decay profile, making the fitting procedure used by SMILE

suboptimal. In principle, an option to fit the data to signals

with a Gaussian decay profile could be used to optimize

SMILE performance for such cases, but this option has not

been implemented because its benefit is small and its need

is relatively rare. Note that SMILE, and most other NUS

reconstruction programs, perform poorly when applied to

signals of very complex shapes, such as solid state NMR

chemical shift anisotropy powder patterns, or time domain

data collected for magnetic resonance imaging purposes.

Evaluation of SMILE reconstruction

on experimental data

Next, we test the performance of SMILE on experimental

data by comparing the results obtained for a quite large,

fully sampled 3D (H)N(COCO)NH spectrum of a-synu-
clein with those of a randomly chosen 2.6% subset of that

time domain matrix. The (H)N(COCO)NH spectrum links

sequential amides by transfer through the 3JC0C0 coupling

between their adjacent carbonyl resonances (Hu and Bax

1996; Li et al. 2015). The intensity of the weak cross peaks

relative to the intense diagonal resonances provides a direct

measure for the absolute value of 3JC0C0. This type of

spectrum therefore provides a sensitive test for the accu-

racy at which cross peak intensities can be detected in the

NUS data sets. Figure 3 shows a small region of the pro-

jection of the 3D spectrum on the 15N–15N plane, illus-

trating the high quality of both the fully sampled and NUS

SMILE-reconstructed data set. With 3JC0C0 values of ca
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Table 1 RMSD in SMILE peak position, width, and height, as well as the average height deviation relative to the noise-free, fully sampled

reference dataa

Peak Relative

height

Fully

sampledb
Randomc T2

weightedc
Sine-weigthed poisson gapc

h: 0–p/2 h: 0–p no wt

RMSD in peak position (Hz)

1 1.0 0.720 0.753 0.984 2.236 1.051 0.809

2 1.6 0.418 0.488 0.615 1.798 0.613 0.542

3d 2.7 2.491 0.535 1.059 2.083 1.233 0.891

4 4.3 0.163 0.203 0.306 0.868 0.263 0.252

5 7.0 0.109 0.140 0.200 0.558 0.171 0.166

6 11.4 0.074 0.095 0.128 0.325 0.117 0.112

7 18.6 0.052 0.067 0.090 0.223 0.069 0.084

8 30.2 0.048 0.054 0.072 0.166 0.053 0.058

9 49.2 0.043 0.049 0.065 0.134 0.040 0.051

10 80.0 0.008 0.032 0.061 0.102 0.029 0.037

RMSD in peak width (Hz)

1 1.0 0.915 1.024 1.096 1.162 0.940 1.091

2 1.6 0.534 0.742 0.876 1.129 0.664 0.801

3d 2.7 1.378 0.737 1.856 2.519 2.110 1.125

4 4.3 0.197 0.418 0.531 0.879 0.310 0.468

5 7.0 0.128 0.311 0.420 0.717 0.209 0.341

6 11.4 0.075 0.227 0.313 0.506 0.140 0.253

7 18.6 0.046 0.159 0.235 0.409 0.093 0.178

8 30.2 0.029 0.123 0.165 0.300 0.074 0.126

9 49.2 0.018 0.100 0.145 0.216 0.052 0.118

10 80.0 0.011 0.089 0.159 0.176 0.048 0.109

RMSD in peak height relative to reference height (%)

1 1.0 14.0 16.9 18.7 33.1 18.2 17.5

2 1.6 9.1 13.6 14.2 26.1 14.3 14.0

3d 2.7 5.3 7.2 7.5 12.3 11.4 6.8

4 4.3 3.5 5.8 7.0 15.4 7.4 6.3

5 7.0 2.1 3.8 5.1 11.7 4.9 4.0

6 11.4 1.3 2.5 3.5 8.2 3.1 2.9

7 18.6 0.8 1.6 2.5 6.3 2.2 1.7

8 30.2 0.5 1.2 1.9 4.6 1.5 1.2

9 49.2 0.5 0.9 1.6 3.2 1.1 1.1

10 80.0 0.2 0.6 1.1 2.0 0.6 0.7

Average deviation in peak height relative to reference height (%)

1 1.0 2.5 -3.3 -1.1 17.0 -1.3 -4.0

2 1.6 0.3 -4.5 -3.7 6.8 -3.9 -4.8

3d 2.7 -0.3 -1.1 -1.9 -3.9 -6.1 -1.7

4 4.3 -0.2 -2.0 -2.1 -2.4 -3.0 -2.1

5 7.0 0.1 -1.5 -1.7 -3.8 -2.4 -1.1

6 11.4 0.1 -1.0 -1.1 -3.7 -1.5 -0.8

7 18.6 -0.2 -0.6 -0.7 -3.0 -1.1 -0.3

8 30.2 0.0 -0.2 -0.3 -1.7 -0.8 -0.1

9 49.2 -0.4 -0.0 0.0 -0.8 -0.5 0.1

10 80.0 0.0 -0.0 0.0 -0.0 -0.0 0.0
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0.8 Hz (Lee et al. 2015), and 3JC0C0 de- and re-phasing

delays of 125 ms, the typical ratio between diagonal and

cross peaks is ca 10:1. As can be seen by comparing the

fully sampled and SMILE-reconstructed spectra, in par-

ticular when viewing the expanded insets, spectral resolu-

tion obtained by the SMILE reconstruction is somewhat

higher than for the fully sampled spectrum. This enhanced

resolution results from the default 50% extension of the

truncated 15N time domains with zeros, which are treated

just like other non-sampled data points during SMILE

reconstruction (see also Fig. 2A1, A3). In principle, a much

longer extension, e.g. three-fold, could be used. However,

we note that even though this would result in further nar-

rowing of resolved resonances, it will not resolve reso-

nances for which the actual time domain length is shorter

than about (1.5d)-1, where d is their frequency difference.

Extending much beyond 1.5-fold gradually will also

adversely impact the accuracy of the resonance intensities,

and extensions by a factor larger than two is not recom-

mended for quantitative analysis.

Comparison of the diagonal intensities of the fully

sampled and SMILE-reconstructed spectra (Fig. 4A) shows

excellent fidelity, with a Pearson’s correlation coefficient

RP = 0.997, as expected for these high S/N resonances.

However, even intensities of the much weaker cross peaks

correlate closely between the two spectra (RP = 0.967;

Fig. 4B), and the extracted 3JC0C0 couplings correspond-

ingly are very similar (RP = 0.976; Fig. 4C) for the two

data sets. Relative to a number of other powerful NUS

reconstruction programs, we note that only SCRUB yielded

intensity, and thereby 3JC0C0 coupling fidelity, as high as

SMILE for this very sparse, moderate S/N data set (Sup-

porting Information Fig. S1). Parenthetically we note that

the RMSD between 3JC0C0 couplings derived from the

SMILE-reconstructed and fully sampled spectra is about

25% lower when using NMRPipe for peak picking than

Sparky, as the latter tends to underestimate the intensity of

very weak resonances in our hands. For intense resonances,

results of the two programs are essentially indistinguish-

able. The accuracy of the 3JC0C0 couplings obtained from

the 2.6% randomly sampled NUS-reconstructed spectrum

is limited by the thermal S/N, which is intrinsically about

six-fold lower for the NUS data set, owing to the 38-fold

smaller number of input data. The RMSD in 3JC0C0 derived

from the NUS and the fully sampled data is 0.029 Hz for

both SMILE and SCRUB, indicating excellent agreement

between the small couplings derived from the recon-

structed and fully sampled spectra.

At moderate S/N levels, typically below 100:1, the

uncertainty of peak positions is approximately given by

0.5 9 LW/(S/N) (Kontaxis et al. 2000), where LW is the

line width. This prediction is consistent with the repro-

ducibility of the peak pick results when plotting the dif-

ference in frequencies observed between the fully sampled

and NUS-reconstructed spectra against the intensity of the

resonances (Fig. 5; Fig. S2). Indeed, the reproducibility of

the peak positions scales with the inverse of its intensity.

On average, the line width in the 1H dimension is about

19 Hz, versus ca 11 Hz for 15N, and the accuracy (in Hz) at

which the peak positions are reproduced correspondingly is

about two-fold better for 15N than for 1H. Interestingly,

whereas the amplitude fidelity for weak resonances

obtained by SMILE and SCRUB was somewhat better than

for other methods (Supporting Information Fig. S1), the

crosspeak frequency reproducibility was more comparable

(RMSDs of 0.32/0.75, 0.44/1.10, 0.46/0.96, and 0.66/

1.05 Hz for the 15N/1H position by SMILE, SCRUB,

istHMS, and SSA, respectively).

Application to fully sampled constant-time data

It has previously been shown that the same principles used

for reconstructing non-sampled data points during an FID

can also be used to extend the duration of a partially or

fully sampled time domain, providing an alternative to

Table 1 continued

Peak Relative

height

Fully

sampledb
Randomc T2

weightedc
Sine-weigthed poisson gapc

h: 0–p/2 h: 0–p no wt

Missing peaks 0.1% 0.7% 0.5% 1.4% 0.9% 1.0%

a The time domain input data can be downloaded from http://spin.niddk.nih.gov/bax/software/SMILE, and all the scripts used for the simulation

and reconstructions are included as Supplementary Material
b Simulated fully sampled data set (t1 = 94.8 ms) with the peak intensity scaled down by H10 and the deviations calculated from the data sets

with and without the RMS noise added
c Compared to the 142.2 ms (50% longer t1) fully sampled noise-free data to match the 50% extended acquisition time in the F1 dimension of

the final SMILE spectra. Poisson gap sampling schemes as defined by (Hyberts et al. 2010). T2-weighted exponential sampling scheme using the

NUS sampler provided in MddNMR (Orekhov and Jaravine 2011)
d This peak was always placed 23 Hz away from the strongest peak (#10)
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extending data via linear prediction (Zhu and Bax 1990;

Led and Gesmar 1991; Stern et al. 2002). In particular,

when using the minimum l1 norm as a regularizer during

iterative soft thresholding, impressive enhancements in

resolution can be obtained relative to a simple FT (Stern

et al. 2007). Here we demonstrate the use of SMILE for the

same purpose. As already discussed above for default

SMILE processing, the length of the time domain is by

default extended by 50% with non-sampled data as part of

the reconstruction. The reason we do not recommend fur-

ther extension of the data is that, even though resolved

resonances will appear narrower, their peak positions do

not improve, and resonances that remain unresolved after a

1.5-fold extension typically will not reliably resolve upon

Fig. 3 Comparison of spectra obtained from a fully sampled matrix

with that of a NUS-processed, randomly chosen 2.6% subset of that

matrix. Shown are sections of the projection of a 600-MHz 3D

(H)N(COCO)NH spectrum of a-synuclein on the 2D 15N–15N plane

for A the fully sampled data set and B the SMILE-reconstructed data

set. The indirect 15N dimensions in the fully sampled and SMILE

reconstructed spectra were apodized using a cosine window ending at

86.4�. The default 50% extension in the indirect time domains, by

adding zeros for the non-sampled time domain, makes the effective

sparsity 1.15%, and improves spectral resolution as highlighted for

the peaks in the insets shown at the top right of each panel. Final

matrix size for the absorptive, real component of the spectrum is

928 9 928 9 464 points, i.e., 1.5 Gb; reconstruction time 14.6 min,

using 4 Intel Xeon E5-2650 CPU cores, 1 Gb total memory, 300

SMILE iterations. The NMRPipe processing script is included as

Supplementary Material

Fig. 4 Comparison of parameters extracted from the 2.6%-sampled

(1.15% after time domain extension) NUS-reconstructed 3D

(H)N(COCO)NH spectrum with those of the fully sampled spectrum.

A Correlations between the strong diagonal peak intensities of the

NUS-reconstructed and fully sampled spectra (RP = 0.997). B Same

as A but for the weaker crosspeaks (RP = 0.967). C The 3JC0C0

couplings of the NUS spectrum versus those extracted from the fully

sampled spectrum (RP = 0.976; RMSD = 0.029 Hz). 3JC0C0 cou-

plings were calculated from the cross peak to diagonal peak intensity

ratios
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further extension of the time domain data. Nevertheless, for

fully sampled time domain data, particularly when the data

is recorded in a constant-time manner, useful spectral

resolution enhancement can be obtained when extending

the time domain somewhat further, up to about two-fold.

Figure 6 shows an example, where SMILE reconstruc-

tion was used to double the length of the 13C 28-ms con-

stant-time domain of a standard CT-HSQC spectrum

without 1H decoupling during 13C evolution. The spectrum,

recorded at 700 MHz for uniformly 13C-labeled toxin

TA1A, shows the correlations for its six Ala residues. For

the regularly processed spectrum (Fig. 6A), cosine-bell

apodization was used to minimize truncation artifacts.

Applying a cosine-bell that runs from 0 to 45�, i.e., an
apodization that attenuates the last acquired t1 data point by

H2/2, leaves large truncation artifacts in the frequency

domain (Fig. 6B). However, extending the time domain

two-fold, using SMILE NUS reconstruction followed by

cosine-bell apodization, yields a much improved spectrum

(Fig. 6C) that is comparable in quality to a separate CT-

HSQC spectrum, recorded with a double constant-time

duration of 2/1JCC (Fig. 6D). The accuracy of peak posi-

tions can be judged by comparing the separations between

the multiplet components of an individual methyl quartets,

as indicated for Ala-45 and Ala-31, which should all be

identical [ignoring small dynamic frequency shift effects

(Tjandra et al. 1996)]. As can be seen from the values

shown in Fig. 6, the peak position accuracy of the SMILE-

enhanced spectrum is far better than that obtained with

conventional processing (Fig. 6A), and nearly as good as

that seen for the spectrum recorded with the double con-

stant-time duration.

Application to 4D NOESY

Non-uniform sampling is particularly useful for collecting

4D NMR spectra, where for practical reasons it is rarely

feasible to collect fully sampled data at a resolution that is

allowed by the transverse relaxation times. In particular the

full resolution potential of high-field NMR spectrometers

cannot typically be realized because data acquisition must

be truncated long before the signal has decayed. Of the

many 4D pulse schemes in use, 4D NOESY measurements

are arguably the most critical to structural studies, as they

can dramatically reduce the spectral crowding of 2D and

3D NOESY spectra (Kay et al. 1990; Clore et al. 1991;

Zuiderweg et al. 1991). 4D NOESY of methyl–methyl

interactions is particularly useful for deriving distance

restraints in larger proteins, which often require

perdeuteration with ILV-protonation of methyl groups

(Tugarinov et al. 2005; Hiller et al. 2009; Sheppard et al.

2009; Coggins et al. 2012; Linser et al. 2014; Xiao et al.

2015). Here, we therefore include an example of the use of

SMILE for processing of such a spectrum.

Even for smaller proteins, collection of 4D NOESY

spectra on ILV-labeled proteins can be quite useful, and we

previously applied this method to the structural study of the

196-residue extracellular domain of the cytomegalovirus

m04 protein (Sgourakis et al. 2014), which had proven

recalcitrant to conventional structural analysis due to its

limited stability and tendency to dimerize. The CH3-CH3

region of the projection of the fully sampled spectrum onto

the 13C–13C plane (Fig. 7A) illustrates the presence of

numerous cross peaks between the 64 13CH3 groups, many

of which can be resolved when inspecting individual

planes, even while considerable resonance overlap also

remains (Fig. 7C). Much higher spectral resolution is

obtained when using fourfold longer acquisition times in

all three indirect dimensions, corresponding to a sparsity of

Fig. 5 Reproducibility of cross peak positions between NUS and

fully sampled spectra. A Differences between 15N frequencies

measured in the SMILE-reconstructed spectrum of Fig. 3B and the

reference spectrum (Fig. 3A), recorded with full sampling. The

difference is plotted against the intensity of the resonance in the

SMILE-reconstructed spectrum. B Differences between 1H frequen-

cies in the fully sampled and SMILE-reconstructed spectrum. The

average line widths in the SMILE-reconstructed spectrum are ca

11 Hz (15N), and 19 Hz (1H). See Fig. S2 for analogous comparison

obtained with SCRUB
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1.56%, or 0.46% after the default 50% extension of the

time domain data.

The SMILE-reconstructed NOESY spectrum is free of

spectral artifacts but of lower S/N than the fully sampled

spectrum, acquired in approximately the same amount of

time. The reason for the lower S/N lies in the long acquisition

times (40 ms for 13C, 47 ms for the indirect 1H dimension)

which were longer than the actual transverse relaxation

times. Because a fully random sampling schedule was used

to record these data, many of the time domain data points

carried considerably lower signal strength than the data in the

fully sampled spectrum, resulting in decreased sensitivity of

the final spectrum. As is well known, this S/N loss can be

mitigated by weighting the random sampling scheme to

include more time domain data for shorter evolution times

(Barna et al. 1987; Mobli and Hoch 2014). We note that

modest extension of the truncated time domains by SMILE

can actually enhance the S/N in the final spectrum, both for

fully and sparsely sampled data sets, because this procedure

prevents the scaling of valuable acquired data at the end of

the time domain to near-zero values, normally needed to

avoid truncation artifacts after FT.

Concluding remarks

Over the past three decades, a large number of valuable

programs have been introduced that are capable of recon-

structing sparsely sampled data, and many of these have

been reviewed in recent years (Hoch et al. 2014; Mobli and

Hoch 2014; Nowakowski et al. 2015). However, use of

most of these programs has remained restricted to labora-

tories in which they were originally developed, a logical

consequence of the complexity in optimal parameterization

of the procedure and preparing input and output formats.

The goal of developing SMILE was to create a routine that

seamlessly interfaces with the widely used NMRPipe

program, while minimizing the requirement for user

expertise of its operation and optimization while delivering

robust reconstruction. SMILE differs from most other NUS

reconstruction procedures in that it does not include a non-

linear procedure to remove the noise from the spectrum,

and as a result the final spectra have an appearance very

familiar to the spectroscopist, and give a realistic feeling

for the reliability and accuracy of extracted spectral

features.

Fig. 6 Example of spectral enhancement by SMILE time domain

extension. Small sections of the methyl region of a 700-MHz 2D
1H–13C CT–HSQC spectrum of insecticidal toxin Ta1a (Undheim

et al. 2015) are shown, recorded without 1H decoupling in the 13C

dimension, and displaying correlations for its six Ala residues. All

spectra were recorded with full, uniform sampling. A Spectrum

recorded with a 13C constant-time duration of 1/1JCC, apodized in the
13C dimension with a cosine-bell window, extending from 0� to 90�,
prior to four-fold zero-filling and FT. B Same data, processed using

apodization with a cosine-bell window, extending from 0� to 45�,

C Same data, using SMILE to double the length of the time domain

data in concert with cosine bell (0�–90�) apodization, followed by

zero filling, and FT. D Data recorded with a double CT 13C evolution

period of 2/1JCC and the same total time domain length as the SMILE

extended data, apodized and zero-filled as for (C). 1JCH splittings, as

measured from the frequency differences between adjacent multiplet

components of each quartet by NMRDraw peak picking, are marked

for Ala-31 and Ala-45. Dashed contours (bottom right) correspond to

the upfield quartet component of Thr-12. The NMRPipe processing

script is included as Supplementary Material
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Even though the SMILE program includes many user-

adjustable parameters that can be used to optimize per-

formance of the program, such as the length of time

domain extension, signal fraction to be removed each

iteration, or noise-cutoff level, the program generally

works perfectly fine without specifying any of these, in

which case the program resorts to its default parameters. As

described in the SMILE manual, fine tuning of the per-

formance by using non-default parameters can increase the

speed of the program or treat more optimally special types

of data sets, such as mixed-time or constant-time input

data, but is generally not needed.

Conceptually, SMILE is closest to the SSA method of

Kozminski and co-workers (Stanek and Kozminski 2010;

Stanek et al. 2012). However, many of the details of the

computational procedure differ substantially. Importantly,

for optimal operation, SMILE requires that the spectrum

has been recorded with absorptive phases for all signals, or

that these phase parameters are provided by the user as

regular NMRPipe phase parameters. Although this can be

Fig. 7 Example of SMILE reconstruction of a 1.56%-sampled 4D

methyl HMQC-NOESY-HMQC spectrum collected at 600 MHz 1H

frequency, 200 ms NOE mixing time, for a 0.5 mM sample of the

ILV methyl-labeled m04 protein of cytomegalovirus (Sgourakis et al.

2014). The acquisition time in the direct dimension is 128 ms, and

default extension of the acquisition times by 50% in all three indirect

dimensions, to 70 ms (1H, t2) and 60 ms (13C, both t1 and t3), during

SMILE reconstruction makes the effective sampling sparsity 0.46%.

Approximately quadrupling the time domain durations by zero filling,

followed by FT, yielded a final all-real matrix size of 512 (F1,
13C) 9 512 (F2,

1H) 9 512 (F3,
13C) 9 646 (F4,

1H), i.e., 323 GB for

the processed 4D spectrum. The processing completed in ca 11 h

using 16 Intel Xeon E5-2650 CPUs using 40 Gb memory (minimum

required size 36 Gb). A 13CH3 containing region of the projection on

the 13C–13C plane of a separately recorded and processed conven-

tional, fully sampled 4D spectrum with four-fold shorter acquisition

times (relative to the NUS acquisition times prior to the 50%

extension by SMILE) in all dimensions. B The corresponding

projection of the SMILE-reconstructed spectrum. C , D Comparison

of (1H/13C) cross sections taken through C the fully sampled and

D the NUS 4D NOESY spectrum, taken orthogonal to the location of

the I31-Cd/Hd (F3, F4), labeled on the diagonal in B. The NMRPipe

processing script is included as Supplementary Material
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considered a drawback, in practice it enhances the quality

of the reconstruction considerably in terms of accuracy of

both peak position and intensity as well as lowering of PSF

noise. The reason for the better performance of the algo-

rithm using phased data relates to the fact that each reso-

nance attains its maximum amplitude when phased

absorptive, optimizing its detection against a noisy back-

ground. Moreover, one degree of freedom is removed for

each dimension when describing the signal, allowing a

more robust and rapid analytic parameterization in terms of

intensity, frequency and peak width. Furthermore, this can

be achieved using just the three most intense points of the

observed line shapes in each dimension. Note that even

though SMILE makes use of a very basic peak picking

algorithm during its iterative signal reconstruction proce-

dure, it is distinctly different from sophisticated peak

analysis programs such as CRAFT, which relies on a

Bayesian engine to analyze one-dimensional line shapes in

an optimal manner (Krishnamurthy 2013).

SMILE is computationally rather demanding because it

reconstructs each resonance as a multi-dimensional line

shape, rather than treating cross sections through it in lower

dimensional space. Nevertheless, by taking advantage of

more efficient very fast FT algorithms, in conjunction with

fast methods for generating time domain data for a col-

lection of resonances that are parameterized in the fre-

quency domain, SMILE reconstruction times remain

comparable to or faster than other programs currently

available, making it applicable to even the largest 4D

reconstructions performed to date.
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