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Abstract A new program, TALOS-N, is introduced for

predicting protein backbone torsion angles from NMR

chemical shifts. The program relies far more extensively on

the use of trained artificial neural networks than its pre-

decessor, TALOS?. Validation on an independent set of

proteins indicates that backbone torsion angles can be

predicted for a larger, C90 % fraction of the residues, with

an error rate smaller than ca 3.5 %, using an acceptance

criterion that is nearly two-fold tighter than that used pre-

viously, and a root mean square difference between pre-

dicted and crystallographically observed (/, w) torsion

angles of ca 128. TALOS-N also reports sidechain v1 ro-

tameric states for about 50 % of the residues, and a con-

sistency with reference structures of 89 %. The program

includes a neural network trained to identify secondary

structure from residue sequence and chemical shifts.

Keywords Heteronuclear chemical shift � Secondary

structure � Backbone and sidechain conformation �
Dynamics � TALOS � Order parameter � Protein structure �
SPARTA

Introduction

It has long been recognized that chemical shifts are domi-

nated by local protein structure (Saito 1986; Spera and Bax

1991; Wishart et al. 1991; de Dios et al. 1993). As a conse-

quence, much effort has been invested in establishing

quantitative relations between protein backbone chemical

shifts and local geometry, in particular the backbone torsion

angles / and w. The earliest work focused primarily on ring

current effects and 1H chemical shifts (Haigh and Mallion

1979; Williamson and Asakura 1993; Case 1995; Sahakyan

et al. 2011), but the introduction of triple resonance protein

NMR spectroscopy in the early 1990s stimulated the search

for quantitative approaches to take advantage of the wealth

of 13C and 15N chemical shift data that became readily

accessible in such studies. Two distinctly different avenues

have been taken to develop quantitative relations between

heteronuclear chemical shifts and protein structure: quantum

chemistry methods and database-derived empirical methods.

The quantum chemistry methods include density functional

theory (DFT) and Hartree–Fock (HF) calculations (de Dios

et al. 1993; Xu and Case 2001; Czinki and Csaszar 2007;

Moon and Case 2007; Vila et al. 2008; Villegas et al. 2007;

Vila et al. 2009, 2010). This approach has yielded quantita-

tive insight into the impact of individual local geometric

factors on both the anisotropic and isotropic chemical shifts,

but results also highlight the exquisite sensitivity of com-

puted chemical shifts to small structural imperfections (Vila

et al. 2009). The latter are unavoidable in practice, when an

intrinsically dynamic protein is represented by a single static

structure that approximates its time-averaged coordinates.

By contrast, empirical methods are largely ‘‘blind’’ to the

steep chemical shift gradients caused by steric clashes or

bond length and angle distortions, as the structural data used

as input by these methods are typically of insufficient
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accuracy to afford development of a quantitative account for

such effects. Inversely, when using an imperfect structural

representation to predict chemical shifts, empirical methods

therefore tend to predict chemical shifts at somewhat higher

accuracy than quantum chemical approaches, although the

latter clearly benefit from using an ensemble representation

of the protein structure (Vila et al. 2009; Li and Brüschweiler

2010; Li and Bruschweiler 2012).

A wide range of empirical methods to predict chemical

shifts from known protein structure has been developed over

the past two decades, including the popular SHIFTX (Neal

et al. 2003) and SHIFTX2 (Han et al. 2011), CamShift

(Kohlhoff et al. 2009), SPARTA and SPARTA? (Shen and

Bax 2007, 2010) programs, each with its own advantages and

limitations. For example, CamShift is based on empirically

derived relations between chemical shifts and distances of a

given nucleus to those of its surrounding atoms, allowing

calculation of the gradient of the chemical shift as a function of

the local coordinates, thereby enabling its use in molecular

dynamics and structure refinement protocols (Robustelli et al.

2010). SHIFTX2 provides extremely good predictions when

(remotely) homologous structures to that of the query protein

can be identified in the reference database. When no homol-

ogy data are available, the SPARTA? program appears to

yield the most accurate results (Li and Bruschweiler 2012).

SPARTA? relies on an artificial neural network that has been

trained to recognize backbone and side-chain torsion angles,

as well as H-bonding, electric field and ring current effects. A

very recently introduced program, shAIC, relies on the

Akaikes Information Criterion to generate a functional form

of the relationship between structure and chemical shift, and

has been reported to yield some further improvement over

SPARTA? (Nielsen et al. 2012), in particular when consid-

ering NMR-derived ensembles as the reference structure.

Although prediction of chemical shifts for a known local

geometry is a relatively straightforward procedure, the

inverse relation is generally under defined because the

chemical shift of a given nucleus is a multivariate function.

Nevertheless, by smoothing empirically derived (/, w)

chemical shift surfaces, which allows calculation of its

local derivatives, it was possible to use 13Ca and 13Cb

chemical shifts for protein structure refinement (Kuszewski

et al. 1995), and the more recent CamShift (Kohlhoff et al.

2009) and shAIC (Nielsen et al. 2012) programs generalize

this approach. The multiple minima encountered when

calculating the difference between observed and calculated

chemical shifts on the high-dimensional surface repre-

sented by the many structural variables in practice will

complicate the search for the best match, however.

Alternative approaches that take advantage of chemical

shifts in protein structure determination aim to generate

unique restraints for the various backbone and sidechain

torsion angles. These include the widely used programs

TALOS and TALOS? (Cornilescu et al. 1999; Shen et al.

2009a), PREDITOR (Berjanskii et al. 2006), DANGLE

(Cheung et al. 2010), and SimShiftDB (Ginzinger and Coles

2009). By using Bayesian statistics, an estimate for the

accuracy of the prediction can be derived by some of these

programs. TALOS and TALOS? use a more ad hoc

approach, and base the reliability of a prediction on the

consistency between fragments selected from a database that

best match the chemical shifts and sequence parameters of

the query peptide. Whereas the original TALOS program

simply searched a database of assigned proteins of known

structure for tripeptides with similar secondary chemical

shifts and sequence, TALOS? added an artificial neural

network (ANN) component to this procedure. This ANN

filters the output of TALOS to be compatible with the ANN-

derived prediction on whether a residue resides in the a, b, or

positive / region of the Ramachandran map. Together with

an expansion in database size, TALOS? then manages to

generate predictions for ca 88 % of the residues, with an

‘‘error’’ rate of\2.5 % (Shen et al. 2009a). Calculation of the

‘‘error’’ rate was based on validation of the program for a set

of proteins not used in training the program, and included a

substantial fraction where the difference between predicted

and reference structure was not necessarily an error, con-

sidering that many of the ‘‘erroneous’’ predictions matched

the backbone angles seen in X-ray structures closely

homologous to that of the reference protein. On the other

hand, the criteria used to assign an ‘‘error’’ to a prediction

were rather generous in terms of backbone angle tolerance,

and required differences in backbone torsion angles C608,
and even larger when considering the sum of / and w.

Here, we introduce the TALOS-N program, which is

based on the same general structure as TALOS?, but has a

far greater reliance on the use of ANN, thereby increasing

the coverage and reliability of its predictions. Even after

tightening the criteria for a valid prediction by nearly two-

fold, TALOS-N reports reliable predictions for the same

fraction of residues as TALOS?, without increasing the

error rate. For about one-third of the residues where TA-

LOS-N cannot generate a reliable prediction, it neverthe-

less produces a ‘‘generous’’ prediction, which in validation

tests matches the reference backbone angles for about

77 % of these predictions. Importantly, TALOS-N also

includes an ANN component to derive sidechain v1 angle

information. The v1 value is known to impact the backbone

chemical shifts (de Dios et al. 1993), in particular those of
15N and 13Ca. Unfortunately, automated analysis of X-ray

derived protein structures in terms of v1 angles is com-

plicated by the fact that many residues are subject to ro-

tameric averaging, with commonly only a single conformer

represented in the X-ray structures. Nevertheless, TALOS-

N can identify the chemical shift signature of a given v1

rotamer for about 50 % of the residues, all corresponding
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to cases where no extensive rotamer averaging is taking

place. When just considering b-branched residues (Ile, Val,

Thr) predictability increases to over 80 % but, conversely,

predictability of hydrophilic residues such as Lys, Arg,

Glu, Asn, His and Ser as well as the highly flexible Met

sidechain falls below 25 %, on average.

Methods

Before describing the overall design of TALOS-N and its

performance in validation tests, we briefly present the

various essential elements on which this software package

relies.

Preparation of the NMR and sequence database

TALOS-N utilizes a database of 580 proteins, originally

developed for the SPARTA? chemical shift prediction pro-

gram (Shen and Bax 2010). This database contains proteins

with nearly complete backbone NMR chemical shifts (d15N,

d13C’, d13Ca, d13Cb, d1Ha and d1HN) as well as atomic coor-

dinates, extracted from the BMRB (Markley et al. 2008) and

from high-resolution X-ray structures in the PDB (Berman

et al. 2012), respectively. Details regarding the preparation of

the database, including calibration of reference frequencies,

removal of outliers, etc., have been described previously

(Shen and Bax 2007). For the current application, if the

database contains two or less assigned chemical shifts for any

given residue, these chemical shift entries are removed. For

other residues with incomplete sets of chemical shifts (B5 for

non-Gly/Pro residues, B4 for Gly and B3 for Pro), a standard

TALOS database search (Cornilescu et al. 1999) was first

performed to find the 10 best-matched triplets. The average

(secondary) chemical shifts for the atoms of the center resi-

dues of these 10 best-matched triplets are then assigned to the

atom(s) with missing experimental chemical shifts. Therefore,

after this adjustment the database contains residues with either

complete 15N, 13C’, 13Ca, 13Cb, 1Ha and 1HN chemical shifts,

or no chemical shift values at all. Note that those predicted

chemical shifts are only used as input for training the artificial

neural networks and are not used to calculate the chemical

shift statistics or chemical shift matching score during the

second step of database searching.

TALOS-N also uses a second database of 9,523 pro-

teins, originally prepared for the CS-Rosetta program

(Shen et al. 2009b), to provide a large pool of high quality

protein structural elements. This database, referred to as

the protein structure database, contains proteins with PDB

coordinates from high-resolution X-ray structures but

without experimental chemical shift assignments. How-

ever, the 15N, 13C’, 13Ca, 13Cb, 1Ha and 1HN chemical

shifts are added to this database by using the prediction

program SPARTA? (Shen and Bax 2010). In addition, for

each residue in this database, the DSSP secondary structure

(Kabsch and Sander 1983) is determined from the X-ray

coordinates, and further regrouped into three states: H

(Helix; DSSP classification of H or G), E (Extended

strand; E or B) and L (Loop; comprising DSSP classifi-

cations I, S, T and C).

2D //w residue density map

The TALOS? program used a three-state backbone ‘‘//w
distribution’’ code (A for the a-region; P for the left-handed

helical region; and B for the remainder of the Ramachan-

dran map) to represent the backbone conformation of each

residue in the database, and used an ANN to correlate this

code in an optimal manner with the NMR chemical shifts

(Shen et al. 2009a). For TALOS-N, the 360� 9 360� Ra-

machandran map is binned into 18 9 18 square boxes, or

voxels, depicted in Supplementary Information (SI) Fig. S1.

A backbone ‘‘//w distribution’’ code with 324 states, D(/i,

wi)k, is then assigned to each residue (i) in the chemical shift

database according to their /i and wi torsion angles:

Dð/i;wiÞk ¼
X

/k ;wk

e�
ð/k�/iÞ2þðwk�wiÞ2

800 ð1Þ

where k (1, …, 324) is the voxel index number,

incremented from the bottom (w = -180�) to top

(w = 180�) and from left (/ = -180�) to right (/
= 180�) in the Ramachandran map according to:

kð/;wÞ ¼ 18� /þ 180

20

� �
þ wþ 180

20

� �
þ 1 ð2Þ

where /k and wk refer to the center of voxel k, i.e., /k ¼
20� ðmodðk � 1; 18Þ � 9Þ þ 10 and wk ¼ 20� ð ðk � 1Þ=b
18c � 9Þ þ 10, where xb c is a ‘‘floor’’ function, returning the

largest integer not greater than x, and mod(x) is the Modulo

function. Note that Eq. 1 uses a Gaussian function to distribute

residue density smoothly across bins neighboring the ‘native’

k(/i, wi)-th voxel in which residue i resides. The radius of the

Gaussian function (H800�) was adjusted empirically to yield

optimal results. Therefore, the calculated backbone ‘‘//w
distribution’’ code D(/i, wi)k, hereafter also referred as the

density map of residue i, contains 324 values, representing the

smoothened likelihood of residue i to reside in each of the 324

squared //w voxels (SI Fig. S1). The //w distribution of

residues is highly non-uniform across the Ramachandran map

and use of the density map D(/i, w i)k as input for training an

ANN tends to overemphasize these highly populated regions.

We therefore applied an empirically optimized normalization

of D(/i, w i)k by dividing its value by the square root of the

corresponding average residue density for any given voxel, k,

calculated over all residues in the database, hDki:
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hDki ¼
XN

i¼1

X

/k ;wk

e�
ð/k�/iÞ2þðwk�wiÞ2

800

 !,
N ð3Þ

where N is the total number of residues in the database. The

normalized values, Dð/i;wiÞk=
ffiffiffiffiffiffiffiffiffi
Dkh i

p
, are used below as a

representation of a residue’s backbone conformation (SI

Fig. S1 ‘a–d’) and will be correlated with the experimental

NMR chemical shifts by training of the ANN. Again, the

hDki exponent of 0.5 used for normalization was optimized

empirically, but its precise value was found to be not

particularly critical.

Neural network for //w distribution

Similar to the TALOS? program (Shen et al. 2009a),

TALOS-N uses a two-level feed-forward multilayer ANN,

referred as a (/, w)-ANN, to predict the //w distribution of

a residue from its NMR chemical shifts and residue type,

and those of its adjacent residues.

The input signals to the first layer of the neural

network (SI Fig. S2) consist of pentapeptide parameter

sets derived from the above described chemical shift

database. Each pentapeptide set has 160 nodes, repre-

senting six secondary chemical shift values, six ‘‘chem-

ical shift completeness flag’’ values and twenty amino

acid type similarity scores for each residue. In the hid-

den layer of the network, where each node receives a

weighted sum of the input layer nodes as a signal, 180

such nodes (or hidden neurons) are used. The output of

a hidden layer node is obtained through a nodal trans-

formation function; here a standard sigmoid function is

used (f1; Eq. 4).

For the purpose of predicting the //w torsion angle

distribution from NMR chemical shifts, the above descri-

bed 324-state residue density map, Dð/i;wiÞk=
ffiffiffiffiffiffiffiffiffi
Dkh i

p
, of

the center residue (i) of each pentapeptide in the database is

used as the training target of the first level network. Each

output value has one node with a linear activation function

(f2(x) = x, Eq. 4). This procedure is schematically shown

in SI Fig. S2. The empirical relationship between the //w
distribution and NMR chemical shift data received by the

first level network is given by

D1�324 ¼ f2 f1 X1�160 �W
ð1Þ
160�200 þ b

ð1Þ
1�200

� ��

�W
ð2Þ
200�324 þ b

ð2Þ
1�324

�
ð4Þ

with f1(x) = 1/(1 ? e-x), and f2(x) = x. X1�160 is the input

data vector consisting of 160 elements; W ð1Þ and bð1Þare the

weight matrix and bias, respectively, for the connection

between the nodes in the input and the hidden layer; W ð2Þ

and bð2Þare the weight matrix and bias, for the connection

between the nodes in the hidden and output layer; D1 � 324

is the training target or output vector.

The second level of the neural network functions to

smoothen the prediction by accounting for commonly

observed patterns in proteins. The two-level artificial

neural network, as shown in SI Fig. S2, uses the input

information from five sequential residues for both the first

level and the second level. The input layer for the second

level uses the parameter set of the 324-state //w torsion

angle distribution predicted by the first level of the network

for each available pentapeptide in the database, i.e., each

set has 1,620 nodes when the input of five sequential res-

idues is used. The hidden layer contains 360 nodes, and the

324-state //w torsion angle distribution of the center resi-

due of the corresponding pentapeptide in the database is

used again in the output layer and as the target of the neural

network. The empirical formula of the second level of the

neural network is similar to Eq. 4:

D1 � 324 ¼ f2 f1ðX1�1620 �W
ð1Þ
1620�360 þ b

ð1Þ
1�360Þ

�

�W
ð2Þ
360�324 þ b

ð2Þ
1�324

�
ð5Þ

where X1�1620 is the input vector containing the 1,620

nodes; the definitions of weights, biases, and activation

functions are the same as those in Eq. 4. Equations 4, 5 of

this two-level network, with the optimized weights and

biases obtained from the training dataset, are then used to

predict the 324-state //w distribution codes (residue den-

sity maps) for residues in any protein of unknown structure.

The Eq. 5 network output vector,D1�324, after applying the

reverse normalization by multiplication with the square

root of the average residue density of Eq. 3, denoted as

DANN
i;k ðk ¼ 1; . . .; 324Þ, represents the predicted probabili-

ties for the query (center) residue, to reside in each of the

324 //w voxels.

A slightly modified version of the above two-level

neural network has been trained to optimize application for

chemical shift data collected by solid-state NMR methods,

which typically lack 1H chemical shifts. This ANN, called

(/, w)ssNMR-ANN, uses in the input layer of the first level

network only four chemical shifts (Dd13Ca; Dd13Cb;

Dd13C’ and Dd15N) from pentapeptides, i.e., each penta-

peptide set has 5 9 28 = 140 nodes, representing four

secondary chemical shift values, four chemical shift com-

pleteness flags and 20 amino acid type similarity scores for

each residue.

Neural network for secondary structure

TALOS-N also includes an ANN to predict the three-state

secondary structure (helix or H, extended strand, or E, and

loop, L) from NMR chemical shifts. This SS-ANN utilizes
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again the same two-level neural network architecture, and

the three-state secondary structure classification of the

center residue of each corresponding pentapeptide in the

database is used in the output layer and as the training

target for both levels of the neural network. Analogous to

other well-known ANN-based bioinformatics programs,

such as PHD (Rost and Sander 1993) and PsiPred (Jones

1999), we developed an additional neural network, with the

same two-level architecture used above, that uses only the

sequence input from longer protein fragments to predict the

secondary structure classification of the center residue.

This so-called SSseq-ANN therefore can be used to predict

the secondary structure of proteins lacking chemical shift

data, but as described below it is particularly useful for

proteins with incomplete chemical shifts when used in a

‘‘hybrid’’ manner with the above SS-ANN.

Neural networks for v1 rotameric state

TALOS-N also includes 17 residue-specific single-level

ANNs, referred to as (v1)a-ANN (a denotes any residue

type, excepting Ala, Gly and Pro), for predicting the v1

rotameric state. These (v1)a-ANN networks are trained to

recognize the (/, w)-dependent impact of sidechain v1

torsion angles on the backbone chemical shifts. The fact

that the backbone chemical shifts are impacted by the v1

rotameric state has long been known (de Dios et al. 1993),

but has not been exploited widely in structural studies. The

impact of v1 on the chemical shifts of the backbone atoms

depends on the backbone torsion angles too (Fig. 1),

complicating the parameterization of its impact in terms of

empirical surfaces, which become three-dimensional (/, w,

and v1) and are residue-specific.

The dataset used to train each (v1)a-ANN was generated

by initially selecting, for each heptapeptide i in the

chemical shift database, the pool of 1,000 heptapeptide

fragments jk (k = 1, …, 1,000) from the structural database

that most closely match the //w angles predicted by TA-

LOS-N for i, while insisting that the center residues of jk
and query peptide i are of the same type, a. For subsequent

ANN training, only the center three residues of these

fragments are considered, but the use of heptapeptides

initially ensures that these tripeptides are located in simi-

larly structured regions. For Na residues of type a in the

chemical shift database, a corresponding collection of

1,000 9 Na tripeptides T(i,jk)a was then used to train the

(v1)a-ANN. The input signals to the (v1)a-ANN consist of

the tripeptide parameter sets derived from T(i,jk)a: 38 input

nodes, representing the 18 chemical shift differences

between the three residues of database tripeptide (j) and

query tripeptide (i), and the six or seven torsion angles for

each residue of database tripeptide (j). The torsion angles

are represented by a total of 20 input parameters: sin(/j?n),

cos(/j?n), sin(wj?n), cos(wj?n), sin(vj?n
1 ) and cos(vj?n

1 ) for

n = -1, 0, 1, as well as a Boolean flag (needed for Gly,

Ala, and Pro) to indicate whether a v1 angle is valid for the

first (n = -1) and the last (n = 1) residue in tripeptide j.

The secondary chemical shift matching score is calculated

from the difference between the observed (secondary)

chemical shift for the query residue (DdXobs
i ) and the

SPARTA? predicted (secondary) chemical shift for the

corresponding database residue (DdXcalc
i ) according to

DdXobs
i � DdXcalc

j

� �.
r dXcalc

j

� �
, where X = [15N, 13C’,

13Ca, 13Cb, 1Ha and 1HN], and r(DdXcalc
i ) is the chemical

shift prediction uncertainty generated by SPARTA? for

DdXcalc
i . The hidden layer contains 15 nodes. A binary

matching score S(i,j)v1, derived using the v1 rotameric state

of the center residue of the query tripeptide (vi
1) and the v1

rotameric state of the center residue of the database tri-

peptide (vj
1), is used in the output layer and as the target of

the neural network. The v1 matching score S(i,j)v1 is

assigned to 0 if vi
1 = vj

1, and to 1 otherwise. A summary of

all ANNs used in this work is listed in SI Table S1.

Neural network training

The weight and bias terms of each ANN were determined

by training of the network using a large dataset. Specifi-

cally, the chemical shift and sequence information of the

580-protein chemical shift database are used to train the (/,

w)-ANN and SS-ANN; the sequence profile of the 9,523-

protein structure database is used to train the SSseq-ANN;

and the chemical shifts of both databases together with the

torsion angles of the protein structure database are used to

train the v1-ANNs. To prevent over-training, a three-fold

training and validation procedure was performed for each

ANN by dividing the input training dataset into three

subsets, followed by separate training of the corresponding

neural networks. For each of these three network optimi-

zations, one input subset was excluded from the training

dataset but then used to evaluate the performance of the

neural network during the training. This subset, referred as

the validation dataset, was not used to calculate the weight

changes in this network. This procedure is referred as a

3-2-1 training and validation procedure, for which 3-2-1

refer to the number of the total subsets, the number of

training subsets, and of validation subsets, respectively. For

training of the SSseq-ANN, a 3-1-2 training and validation

procedure was used to prevent over training of the ANN.

Training of the network was terminated when its perfor-

mance on the validation dataset, represented by the mean

squared errors between predicted values and targets, began

to degrade.
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Neural network testing and validation

In addition to the above three-fold training and validation,

a second validation procedure was performed for a set of

34 additional proteins, which represent a wide range of

folds and have (1) complete or nearly complete chemical

shifts, (2) a good quality X-ray reference structure, and (3)

no homologous protein (B30 % sequence identity) in the

580-protein database. The neural network prediction used

for these 34 proteins was obtained by averaging over the

outputs from the three networks, separately trained above.

To evaluate the ANN prediction performance for the

324-state D(/i, w i)k distribution (k = 1, …, 324) or for a

given type of secondary structure (k = H, E, L), a sensi-

tivity score Qobs is used which reports the percentage of the

total number of observed states present in the database (NT)

that are correctly predicted (true-positive: NTP):

QobsðkÞ ¼
NTP;k

NT ;k

ð6Þ

Moreover, the overall network performance for all states

in a protein or dataset is measured by a Qoverall
obs score:

Qoverall
obs ¼

P
k

NTP;k

P
k

NT ;k

ð7Þ

Note that for the three-state secondary structure

prediction, the definition of this score is the same as the

Q3 score, commonly used in bioinformatics (Jones 1999).

For the SS-ANN and SSseq-ANN three-state secondary

structure prediction, a positively predicted state of a given

residue is assigned to the state (H, E or L) with the highest

prediction score. For the (/, w)-ANN and (/, w)ssNMR-ANN,

the positively predicted //w voxels are those with a

significantly elevated predicted score, i.e., those with pre-

dicted values that fall at least one standard deviation

½rðDANN
i Þ� above the average of the predicted scores over all

324 voxels, hDANN
i i. A true-positive (TP) prediction is

assigned if the true //w-box, k(/i, wi), in which the query

residue with observed /i/wi angles actually resides, is pre-

dicted as positive.

Cluster analysis

As exemplified for residue G9 in Fig. 2, the positive //w
voxels for any given residue can form multiple clusters in

the Ramachandran map, indicating that more than one

backbone conformation is potentially compatible with the

chemical shifts. Identification of such clusters is an

important component of TALOS-N (see Eqs. 8, 9) and

clustering algorithms are used to identify these regions.

Cluster analysis was carried out using the DBSCAN

algorithm (Ester et al. 1996), and clustering parameters

used by TALOS-N are 5 for the minimum number of

voxels of a cluster and 120� degrees for the minimum

distance between the centers of any two clusters. The

parameters of an identified cluster include (1) the cluster

center, which is the center of the //w voxel with the

highest predicted DANN value in this cluster, (2) the cluster

size, or the number of //w voxels in this cluster, and (3) the

cluster density, or the sum of the DANN
i;k in this cluster.

TALOS-N database search for predicting //w angles

Searching a large protein database for closely matching

fragments was at the heart of the earlier TALOS and TA-

LOS? programs for predicting backbone //w angles, and

Fig. 1 Average (/, w)-dependence of the Dd13Ca chemical shift in

Thr for three different v1 rotameric states: (a) g? ; (b) g-; and (c) t,

displayed as Ramachandran maps. Only regions with a residue

density (for definition see (Spera and Bax 1991)) larger than one are

color coded. The residue density is marked by gray contour lines,

increasing from 1 with an increment factor of 3.2. The average

secondary chemical shifts for residues in the a regions are 0.6 ± 2.0,

3.9 ± 1.7 and 2.0 ± 2.4 ppm, for v1 rotameric states of g? , g- and t,

respectively, and -2.2 ± 1.2, -0.2 ± 1.4, and -2.2 ± 1.5 ppm,

respectively, for residues in the b region
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provides a robust quality control step by eliminating local

geometries that are sterically not feasible (Cornilescu et al.

1999; Shen et al. 2009a). TALOS-N relies on the same type

of database search procedure, but with two key differences.

First, TALOS-N searches the protein structure database, to

which predicted chemical shifts have been added by

SPARTA? (Shen and Bax 2010), rather than the much

smaller database of structures with experimentally deter-

mined chemical shifts (Fig. 3). Second, use of the much

larger protein structural database permits the search for

longer, heptapeptide fragments, instead of the short trip-

eptides used by the TALOS and TALOS? programs.

For a given query heptapeptide [i-3,…,i,…,i?3] (refer-

red as heptapeptide i), TALOS-N first searches the protein

structure database for a pool of 1,000 heptapeptides [j-

3,…,j,…,j?3]m (m = 1–1,000) (referred as heptapeptide jm)

with backbone //w torsion angles (/j/wj) that are best-mat-

ched to the ANN-predicted //w torsion angle distributions

(DANN
i;k ) of the query heptapeptide. This matching is based on

comparing the 324-state //w DANN
iþn;k vectors predicted for

residues i ? n (n = -3 to 3) in query heptapeptide i with the

corresponding //w torsion angles of residue jm ? n in

database heptapeptide jm. For this purpose, the ANN-pre-

dicted 324-state //w torsion angle distribution DANN
iþn;k vectors

are converted to 324 penalty scores Piþn;k (k = 1, …, 324).

These penalty scores are defined while taking into account

the clustering status of the positively predicted //w regions.

When a single cluster is formed in the Ramachandran map, or

when multiple clusters are observed and the cluster density

of the largest cluster is at least 70 % of the total density from

all clusters, the penalty score is defined as:

Piþn;k ¼ f
DANN

iþn;k � hDANN
iþn i

rðDANN
iþn Þ

 !
ð8Þ

where hDANN
i i and rðDANN

i Þ are the average value and the

standard deviation of the 324 predicted scores, i.e.,

hDANN
i i =

P
k

DANN
i;k =324, and f is a standard sigmoid

function f(x) = 1/(1 ? ex). However, when multiple

clusters are observed for the positively predicted //w
voxels and the largest cluster has no dominantly high

density (i.e., \70 %), the penalty score is assigned a

uniform value for all //w voxels observed in all clusters:

Piþn;k ¼ f
hDANN

iþn;clusteredi � hDANN
iþn i

rðDANN
iþn Þ

 !
; ð9Þ

Fig. 2 (/, w)-ANN predicted (/, w) likelihood distributions pre-

sented as Ramachandran maps for residues 7 to 10 of protein GB3.

Only 208 9 208 voxels with predicted likelihoods that fall at least one

standard deviation above the average population (1/324) are color

coded. The //w angles observed in the reference structure (first

conformer of PDB entry 2OED) is marked with a white circle; the //

w angles of the center residue of the 25 best matched database

fragments are displayed as green dots. The horizontal axis of each

plot corresponds to / (ranging from -1808 to 1808) with the vertical

axis being w (ranging from -1808 to 1808, bottom to top). Residue G9

shows two clusters; one centered near (/, w) = (-100�, 1808) and

one at (120�, 1608)

Predefined

Structure
Database (DB)

(j-3..,j..j+3)
{chemical shifts Δδdb, 

sequence, φ/ψ /χ1 angles}
from 9600 proteins

25 matched 7-mers
(j-3,..,j,..,j+3)n

5-mer
(i-2,i-1,i,i+1,i+2)

searching for
1000 matched 
7-mers from DB

Chemical Shifts
13Cα,13Cβ,13C’.1Hα,1HN,15N

(Δδobs)

Predicted 
(φi,ψi) 

(φ j, ψ j)n

average (φ,ψ) 
& std .dev. 

(φ,ψ)-ANN prediction

clustered?

yes

1,Δ(Δδobs,Δδdb)
of 3 center residues

(j-1,j,j+1)m

χ1-ANN calculation

<S(i, j)χ1,c> &
χ1 probability pc

predicted χ1 matching 
score S(i, j)χ1,c,n

(c= g-,g+,t)

max(pc)
> cutoff?

Predicted χ1

yes

predicted /
distribution Di,k

chemical shift 
matching score

calculation

searching for 1000 
matched 7-mers 

from DB with Ai=Aj

no

no

No 
prediction 

ψφ

φ ψ 

Fig. 3 Flow diagram for the TALOS-N program, with the left branch

corresponding to prediction of backbone torsion angles, and the right

branch dedicated to v1
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and set to 1 for all other //w voxels, where hDANN
iþn;clusteredi is

the average predicted residue density for all clustered //w
voxels.

A similarity score is then used to match the query

heptapeptide i and database heptapeptide j:

Sði; jÞ ¼
Xþ3

n¼�3

cn � PANN
iþn;kðjþnÞ þ r

ResType
iþn;jþn

� �
ð10Þ

where k(x) is the index number of the //w voxel in which

database residue x resides, or k(/x, wx) (see Eq. 2),rResType
p;q

is the residue type matching constraint between query

residue p and database residue q, and cn are the position-

specific weights, equal to 1.0, 0.81, 0.64 and 0.49 for residues

at position n = 0, ±1, ±2 and ±3, respectively. rResType
iþn;jþn is

defined in a binary manner so that only the database residues

with similar characteristics (as defined by the BLOSUM62

matrix (Koonin and Galperin 2003); see http://www.ncbi.

nlm.nih.gov/books/bv.fcgi?rid=sef.figgrp.194) to the query

residue are used when searching for matched fragments: (1)

for the center residue (n = 0), the database residue j must

have identical residue type (Aj) to that of the query residue i

(Ai), if Ai is Gly or Pro, and the database residue j ? 1 must

be a Pro (Aj?1 = Pro) if residue i precedes Pro (i.e.,

Ai?1 = Pro); (2) a second requirement is that for all posi-

tions in the heptapeptide, the BLOSUM62 matrix value

[B(Ai?n, Aj?n)], which relates similarities of query residue

Ai?n and database residue Aj?n, must be non-negative:

rResType ¼

0 n ¼ 0 & Ai ¼ Gly=Pro & Aj ¼ Ai

0 n ¼ 0 & Aiþ1 ¼ Pro & Ajþ1 ¼ Aiþ1

0 BðAiþn;AjþnÞ� 0

999 else

8
>><

>>:

ð11Þ

The 1,000 database heptapeptides [j-3,…,j,…,j?3]m

(m = 1, …, 1,000) with the lowest S(i,j) scores selected in

this first round of the TALOS-N program subsequently are

evaluated further in terms of the fitness of their secondary

chemical shifts (DdXdb), calculated by SPARTA?, with

respect to the experimental chemical shifts (DdXobs) of the

corresponding query residues:

v2
csði; jÞ ¼

X

X

Xþ3

n¼�3

cn � DdXobs
iþn � DdXdb

jþnÞ=rXdb
jþn

� �h i2

;

ð12Þ

where X = [13Ca, 13Cb, 13C’, 15N, 1Ha, 1HN], rXdb is the

uncertainty of the SPARTA? predicted chemical shift

DdXdb, and cn is the position-specific weight which equals

1.0, 0.64, 0.36 and 0.25 for residues at position n = 0, ±1,

±2 and ±3, respectively. The 25 heptapeptides with best-

matched v2
cs score are kept as the final matched fragments.

When all 25 [/j/wj]n cluster in the same region of the Ra-

machandran map, the TALOS-N program makes a //w
prediction for residue i from the average values of the / and

w angles observed for the center residues of these 25 hep-

tapeptides, which is then classified as a ‘‘Strong’’ predic-

tion. If only the top 10 [/j/wj]k values cluster in the same

region of the Ramachandran map, the TALOS-N program

still makes a //w prediction, but with the classification

‘‘Generous’’. This latter group is of considerably lower

accuracy (see Results and discussion) but offers likely

backbone torsion angles in loop and turn regions that often

are most difficult to analyze by conventional methods.

TALOS-N v1 rotamer prediction

For v1 rotamer prediction, TALOS-N relies on the output of

the above described (v1)a-ANN. As was done for the training

of this network, TALOS-N searches the structural database

for the 1,000 database heptapeptides that best match the /
and w angles and residue types of the query peptide, while

insisting that the center residue of the query and database

peptide are of the same type (Fig. 3). For each database

heptapeptide, the trained (v1)a-ANN then returns a v1

matching score, Sði; jÞANN
v1 , reflecting the likelihood of the

center residue of query peptide i having the same rotameric

state as the center residue of the database peptide j. At the

next step, TALOS-N divides the set of 1,000 database pep-

tides into three groups, corresponding to their rotamer type c

(c = g?, g- and t), and the 10 database peptides with the

lowest Sði; jÞANN
v1 score are retained from each group, and

denoted as Sði; jÞANN
v1;c;n [n = 1,…,10]. For each rotamer type,

c, the average value of the 10 lowest Sði; jÞANN
v1;c;nscores,

hSðiÞANN
v1;c i, is then converted to a likelihood P(hS(i)v1,ci) that

the center residue of the query fragment has a v1 rotamer state

c. This conversion relies on the empirically derived relation

between the Sði; jÞANN
v1 score and P(Sv1) (see SI Fig. S6). The

P S ið Þv1;c

D E� �
score, after normalization such that the sum of

the likelihoods over all three v1 rotameric states
P

c

PðhSðiÞv1;ciÞequals one is denoted p S ið Þv1;c

D E� �
. It cor-

responds to the predicted probability for center residue i to

adopt v1 rotameric state c. The final v1 rotamer prediction to

rotamer state c is accepted if p S ið Þv1;c

D E� �
C 0.6.

Results and discussion

The //w-ANN network used by TALOS-N has been

trained to predict the 324-state //w angle distribution, i.e.,
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where the //w angle of a given residue falls in the Ra-

machandran map, on the basis of the backbone NMR

chemical shifts and residue type of the residue itself and its

neighbors in the sequence. The 580-protein database used

for training the neural network comprised a total of 63,266

residues with three or more experimentally assigned

chemical shifts.

The ability of the trained //w-ANN to reproduce the

correct //w angle distribution is then evaluated by using a

validation dataset. This validation procedure shows that the

//w angles in the validation dataset are generally identified

with high probability by the //w-ANN and (//w)ssNMR-

ANN models, as reflected in high sensitivity scores Qobs of

96.5 and 95.8 % found for the //w-ANN and (//w)ssNMR-

ANN, respectively (SI Table S1). It is also important to

inspect the prediction score Qpred, which reports the per-

centage of the total number of predictions (NP) that are

correct (NTP), i.e., Qpred = NTP/NP. Evaluation of the Qpred

score for a 324-state //w-ANN prediction is more com-

plicated, however, as multiple positively predicted states

(k) exist, which occasionally are not even clustered when

represented on a Ramachandran map. Moreover, consid-

ering that the predicted 324-state //w-distribution is only

used as the input for a subsequent database search in the

TALOS-N protocol, a complete, quantitative evaluation of

the //w-ANN and (//w)ssNMR-ANN models is not included

here. However, a good qualitative impression of the reli-

ability of the ANN can be obtained by inspection of Fig. 2

and SI Fig. S3, which compare the //w-ANN predictions

with the crystallographically observed //w angles for GB3,

a protein excluded from both the training and validation

sets used by the ANN.

TALOS-N backbone //w torsion angle prediction

The TALOS-N user interface is very similar to that of the

TALOS? program (Fig. 4). New features include filled

semi-transparent 20� 9 20� voxels on the Ramachandran

map, depicting the ANN-predicted probability to find any

given residue in the //w regions defined by those voxels,

and a panel displaying the ANN-predicted sidechain v1

rotamers. For the Ramachandran map, the color of a voxel

corresponds to the ANN-predicted relative probability

(DANN
i;k ) that a residue (i) resides in that voxel. For the v1

rotamer panel, the length of the ovals marks the probability

of a residue to adopt the indicated v1 rotameric state. In the

sequence display panel, unambiguous predictions are

marked in green (light and dark green for the ‘‘Strong’’ and

‘‘Generous’’ predictions, respectively), ambiguous results

in yellow, and residues predicted to be dynamically dis-

ordered, as judged by their chemical shift derived order

parameter (Berjanskii and Wishart 2008), are shown in

blue. As with the original TALOS and TALOS? programs,

separate output files containing the details of each predic-

tion are also generated.

Backbone torsion angles were predicted by both the

TALOS? and the new TALOS-N programs for all 580

database proteins, as well as the separate 34-protein vali-

dation set of SI Table S3. With the improved performance

of TALOS-N, we have changed the acceptance criteria for

‘‘good’’ predictions to fall within a 60� radius of its target

value, [(/pred-/Xray)2 ? (wpred-wXray)2]1/2 \60�, cover-

ing a region of the Ramachandran map that is 49 % smaller

than in the original evaluation (Shen et al. 2009a). The 60�
radius cut-off value was derived by inspecting a search of

the structural database for the first fifty 7-residue peptide

fragments that match the heavy atom backbone coordinates

of each 7-residue fragment extracted from the ubiquitin

X-ray structure (1UBQ) to better than 0.8 Å coordinate

rmsd. More than 99 % of these matching fragments have

//w angles for the center residue that fall within the 60�
radius from the corresponding ubiquitin fragment (SI Fig.

S9).

Using the tighter 60� limit, the fraction of residues

assigned a ‘‘bad’’ prediction by TALOS? would nearly

double compared to the original, more generous criterion,

and to counteract this high error rate, for comparison

purposes with TALOS-N, the TALOS? acceptance crite-

rion was tightened to require / and w standard deviations

B35� for the 10 best matched triplets. This lowers the

fraction of ‘‘predictable’’ residues from *88 to *85 %,

but limits the increase in bad predictions to ca 60 % instead

of doubling it.

Predictions were made using the cross-validation

‘‘leave-one-out’’ manner, i.e., for predicting the backbone

angles of any given protein, it was removed from the

database prior to the search. As summarized in Table 1, the

TALOS? method, on average, makes ‘‘unambiguous’’

predictions for about 84.5 % of the residues when applied

to our larger 580-residue database, with 4.1 % of the pre-

dicted //w torsion angles failing the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D/2 þ Dw2

q
B608

criterion relative to the reference X-ray structure values

(Table 1). With TALOS-N, the number of ‘‘unambiguous’’

predictions (‘‘Strong’’ ? ‘‘Generous’’) increases to 90.7 %

(86.6 and 4.1 % for ‘‘Strong’’ and ‘‘Generous’’ predictions,

respectively), with a total error rate of 3.5 % (2.9 and

21 %, respectively for ‘‘Strong’’ and ‘‘Generous’’ predic-

tions, see Table 1).

The root-mean-square differences (rmsd) between the

TALOS-N predicted and crystallographically observed //w
angles are *5–10 % lower compared to TALOS?

(Table 1). TALOS-N includes considerably more predic-

tions outside regions of regular secondary structure than

TALOS?, and when restricting the rmsd between
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predicted and crystallographically observed //w angles to

residues that could also be predicted by TALOS?, the

decrease in rmsd obtained with TALOS-N is larger,

10–15 % (Table 1). When inspecting the ‘‘Generous’’

TALOS-N predictions, which are mostly for residues in

loops and turns, the observed //w angles are still quite

accurate, with rmsds of ca 148 between predicted and

crystallographically observed //w angles (Table 1). How-

ever, this rmsd excludes the relatively high fraction (21 %)

in this category that fall outside the 608 cutoff radius.

The performance of TALOS-N was also validated for a

set of 34 proteins with various folds (SI Table S3), which

lack significant homology to any of the proteins in the

chemical shift database used for training the ANN. The

statistics for the TALOS-N predictions on this independent

set of proteins are essentially the same as those observed

for the 580-protein database (Table 1), indicating that the

fact that the ANN component was trained on the 580

protein database does not skew the leave-one-out valida-

tion procedure described above. It is also interesting to note

that the TALOS-N performance remains good when

backbone chemical shifts are incomplete, as exemplified by

predictions for proteins that lack 1H chemical shifts

(emulating typical input from solid-state NMR). The //w
prediction performance is then only *1 % lower in terms

of the fraction of residues that is identified with ‘‘unam-

biguous’’ //w angles, while the increase in error rate is

only ca 0.1 % (SI Table S2). Moreover, when TALOS-N is

operated in the ‘‘solids-mode’’, using the (/, w)ssNMR-

ANN, the prediction performance for proteins lacking 1H

chemical shifts can be slightly improved (SI Table S2).

As was noted for TALOS? (Shen et al. 2009a), our

reported error rate in all likelihood significantly overesti-

mates the true error rate, as many of the predictions marked

Fig. 4 TALOS-N graphic user interface, displaying results for

residue L8 of query protein ubiquitin. The left panel shows a plot

of the //w angles of the 25 closest database matches (green symbols),

superimposed on a Ramachandran map depicting in gray the standard

most favorable backbone torsion angles for Leu. The 324 (/, w)-ANN

predicted scores for L8 are shown as colored voxels, but only for

those that are at least one standard deviation above the average

predicted voxel density. The top right panel is identical to that of the

TALOS? graphic user interface, and displays the sequence of the

protein with residues marked according to their (/, w) prediction

classification, i.e., no prediction in light grey, consistent predictions in

light or dark green (for ‘‘Strong’’ and ‘‘Generous’’ predictions,

respectively), ambiguous predictions in yellow, and dynamic residues

in blue. Three other panels correspond to the RCI-S2 value (Berjanskii

and Wishart 2008), the predicted secondary structure (red, helix;

aqua, b-sheet), with the height of the bars reflecting the probability

assigned by the SS-ANN secondary structure prediction. The bottom

right panel depicts the v1 rotamer prediction (red oval: g-; green:

g? ; yellow: t), with the height of the ovals corresponding to the

probability assigned by the v1 rotamer prediction. Note that in the top

right panel, only two predictions (D52, G53) are deemed ambiguous.

Both of these exhibit chemical exchange broadening in the NMR

spectra, and adopt different type turns in different X-ray structures

(type I in 1UBQ; type II in 3ONS) (Vijay-Kumar et al. 1987; Huang

et al. 2012)
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as ‘‘erroneous’’ occur in loop regions, where the X-ray and

solution structures may actually differ from one another.

Taking the protein FluA as an example, for which three

different X-ray structures of closely homologous sequences

are available, not a single one of the ‘‘erroneous’’ TALOS-

N predictions consistently disagrees with all three refer-

ence X-ray structures (SI Fig. S8).

v1 rotamer prediction

The sidechains of many protein residues are known to

rapidly average between multiple rotameric states, in par-

ticular for residues residing on the protein surface but also

for interior non-b-branched hydrophobic residues such as

Met and Leu. The presence of such rotamer averaging

significantly complicates accurate prediction of v1 angles,

in particular since the presence of conformational averag-

ing is often not evident in the X-ray crystal structures used

as input for our empirically derived relation between

structure and chemical shift. A positive indication of

sidechain rotameric averaging in such structures is only

available when multiple independently derived X-ray

structures are present in the database, or for proteins solved

at exceptionally high resolution where multiple sidechain

conformers have been identified (Butterfoss et al. 2005).

Taking ubiquitin as an example, where four high-resolution

X-ray structures are available, only 42 residues (67 % of 63

non-Gly/Ala/Pro residues with ordered backbone torsion

angles) exhibit the same v1 rotamer in all four structures

(Fig. 5). For the vast majority of proteins in our structural

database, no positive evidence on sidechain rotameric

averaging is available, however. By solution NMR, v1

torsion angles in principle can be determined from NOE,

RDC, and a variety of J coupling experiments, but such

experiments tend to be quite laborious (Dzakula et al.

1992a, b; Chou and Bax 2001; Miclet et al. 2005; Schmidt

2012). Earlier studies also indicate that typically the v1

rotameric state can be identified for less than 70 % of the

residues, and among those only 70–80 % agree with crystal

structure data (Mittermaier and Kay 2001). It is clear,

therefore, that the absence of quantitative knowledge

regarding the degree of sidechain rotameric averaging in

the protein structural database poses a serious challenge

when linking the backbone chemical shifts to sidechain v1

rotameric states by empirical methods.

The chemical shift patterns of the 17 residue types (excl.

Gly, Ala, and Pro) exhibit differential dependence on the v1

rotameric state. In particular, the b-branched residues (Ile,

Val, and Thr) and the aromatic residues (Phe, Trp, and

Tyr), show the most pronounced v1 dependence of chem-

ical shifts (SI Fig. S4). For example, the average DdCa for

Thr in the a region are 0.6 ± 2.0, 3.9 ± 1.7 and

2.0 ± 2.4 ppm, for v1 rotamers of g?, g- and t, respec-

tively, and -2.2 ± 1.2, -0.2 ± 1.4, and -2.2 ± 1.5 ppm,

respectively, for the b region (Fig. 1). By contrast, for most

of the linear-chain, hydrophilic amino acids (e.g. Glu, Lys,

Gln, Arg, and Ser), the v1 dependence of the chemical

shifts is relative weak (SI Fig. S4), and the performance of

Table 1 Comparison of TALOS? and TALOS-N predictions

Consistent Ambiguous sdh i a (//w) Rmsdb (//w)

Total Bad Warning

For chemical shift database

TALOS? 84.5 %c 4.1 %d 15.5 %c 12.4/11.9 13.6/12.5

TALOS-N 90.7 %c

[86.6 %/4.1 %]

3.5 %d

[2.9 %/21 %]

9.3 %c 8.7/8.5 12.3/12.1

(11.7/11.4)

For 34-protein validation dataset

TALOS? 84.7 %c 4.2 %d 15.3 %c 12.5/12.0 13.7/12.7

TALOS-N 91.4 %c

[87.5 %/3.9 %]

3.5 %d

[2.8 %/23 %]

8.6 %c 8.5/8.3 12.2/12.1

(11.7/11.5)

TALOS? and TALOS-N predictions were performed for the 580-protein chemical shift database and for a separate 34-protein validation dataset
a Average standard deviation of //w torsion angles among the 10 or 25 best matched tripeptides/heptapeptides for ‘‘Good’’ TALOS?/TALOS-N

predictions, representing the average precision of the predictions. See footnote d for the definition of a good/bad prediction
b Rmsd values between TALOS?/TALOS-N predicted //w angles (‘‘Good’’ predictions only) and //w angles observed in the reference

structures, representing the average accuracy of the predictions; values in parenthesis correspond to residues for which both TALOS? and

TALOS-N reported ‘‘Good’’ predictions
c Fraction of ‘‘consistently’’ predicted residues relative to the total number of residues for which predictions are calculated. Percentages for the

‘‘Strong’’ and ‘‘Generous’’ TALOS-N predictions are given in square brackets
d Percentage relative to the total number of ‘‘consistently’’ predicted residues (‘‘Good’’ ? ‘‘Bad’’). A ‘‘bad’’ prediction is defined based on the

criterion sqrt[(/obs-/pred)2 ? (wobs-wpred)2] [608; otherwise the prediction is defined as ‘‘good’’. Percentages for the ‘‘Strong’’ and ‘‘Gener-

ous’’ TALOS-N predictions are given in square brackets
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chemical shift based v1 prediction is therefore expected to

be lower.

When inspecting the performance of the trained v1-

ANNs to predict a match between the v1 rotamer of data-

base fragments and v1 of the query fragment, best results

are obtained for the above mentioned residue types with the

most pronounced v1-rotamer dependence of their chemical

shifts. However, when comparing the quality of predictions

made by the v1-ANN at a given cut-off score, S(i,j)v1, the

reliability of the prediction becomes comparable for the

different residue types (SI Fig. S6a-e). For example, when

using Sði; jÞANN
v1 B 0.1, the fraction of correctly identified v1

rotamers falls between 80 and 96 %. By contrast, when

evaluating the population of the predictions with low

Sði; jÞANN
v1 scores for matching v1 rotamers, or the popula-

tions with large Sði; jÞANN
v1 scores for the ‘‘mismatched’’

rotamers (for which the observed S(i,j)v1 = 1), consider-

able variation with residue type is observed (SI Fig. S6a’-

e’): While a large fraction of Ile, Val, Phe, Trp, Tyr, and

Thr residues yields low Sði; jÞANN
v1 values when v1 matches,

and high values for mismatched rotamers (SI Fig. S6 ‘a–

b’), for other residue types the predicted Sði; jÞANN
v1 values

are more clustered around 0.5 (SI Fig. S6 ‘b–e’). Interest-

ingly, when comparing predictions for Asn and Asp, a

considerably larger fraction of Asp residues has a pre-

dictable v1 rotamer, while the intrinsic sensitivity of their

chemical shifts on v1 appears comparable (SI Fig. S4).

The separate database searching step for v1 rotamer

prediction in TALOS-N (Fig. 3) provides a robust proce-

dure to find a pool of 1,000 database fragments for which

the backbone conformation and residue types are similar to

those of the query fragment. This step proved important for

identifying database fragments with similar backbone

conformations without an explicit restriction on the v1 ro-

tameric states. Such sets of 1,000 fragments therefore

present good training sets for the v1-ANN, allowing it to

learn the relation between v1 and deviations from average

chemical shifts. It is worth mentioning again that in this

step the protein structure database with SPARTA? pre-

dicted chemical shifts, rather than the experimentally

determined chemical shift database, is used to search for

fragments. The reason that this works well lies in the

observation that the chemical shifts predicted by

SPARTA? have the v1 rotamer information already well

encoded (SI Fig. S5).

TALOS-N uses the output of the (v1)a-ANN to derive a

probability score, p S ið Þv1;c

D E� �
, that a given residue has a

v1 rotamer prediction of type c (see Methods). Although for

each residue, the p S ið Þv1;c

D E� �
values are reported sepa-

rately, for comparison with other programs it is useful to

define a cut-off score, above which the prediction is

accepted. This then permits quantitative evaluation of the

fraction of residues for which v1 rotamers can be predicted,

as well as the fraction for which the prediction is correct.

Below, we use a cut-off value of pcutoff = 0.6. Using this

cut-off, ca 50 % of the residues in the 34-protein validation

set yield a v1 rotamer assignment, with 89 % of these being

consistent with the X-ray reference structure. Use of a

pcutoff = 0.7 increases the agreement with reference struc-

tures to 91.5 %, but lowers the fraction of predictable v1

rotamers to *30 %. Conversely, pcutoff = 0.5 decreases

the agreement with the X-ray structures to 81.6 %, while

increasing the fraction of predictable v1 rotamers to

*73 %. The fraction of residues that have predictable v1

rotamers at pcutoff = 0.6 varies considerably with residue

type, while the agreement with reference structure v1 val-

ues is relatively independent of residue type (Fig. 6).

Effectively, the (v1)a-ANN assigns the rotamer for a

fragment of known backbone torsion angles. Considering

that the v1 rotameric state is closely coupled with the

backbone torsion angles / and w (Dunbrack and Karplus

1994; Bower et al. 1997), it is therefore important to

evaluate how much chemical shifts improve the v1 pre-

diction over the use of only backbone angles as input for

Fig. 5 TALOS-N v1 rotamer prediction for ubiquitin. The TALOS-N

predicted v1 rotamer is displayed as a solid blue triangle. The v1

rotamers observed in four high resolution X-ray structure of ubiquitin,

1UBQ (1.8 Å, black circle), 1YJ1 (1.3 Å, red circle), 3A9 J (1.18 Å,

green circle) and 4HK2 (1.18 Å, blue circle) are also shown in the top

panel. The lower panel shows solvent accessibility, reported as the

ACC parameter by the DSSP program (Kabsch and Sander 1983) (for

ACC definition see http://swift.cmbi.ru.nl/gv/dssp/), as a function of

residue number and averaged over the four X-ray structures
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the prediction. The latter prediction can be made using the

2,010 backbone-dependent rotamer library of Shapovalov

and Dunbrack (2011), using as input the / and w values of

any given residue obtained from TALOS-N. For each

residue i (non-Gly/Ala/Pro) in the 34-protein validation

dataset, the backbone-dependent rotamer library based

method then reports a probability score pi(c) for the query

residue i to adopt v1 rotamer c. Again, for quantitative

evaluation we have to define a threshold value for

pi(c) above which the prediction is accepted. At a given

pi(c), the rotamer library based protocol yields v1 predic-

tions for considerably more residues than the (v1)a-ANN

protocol (SI Fig. S7). For example, when using pi(c) = 0.6

as a threshold, *65 % of the residues have predictable v1

angles, but the correctness ratio is only 73.3 %. If the

pi(c) threshold is raised to 0.66, yielding the same *50 %

fraction of v1-predictable residues as the (v1)a-ANN, the

correctness ratio increases to 76 %, but remains much

lower than the 89 % obtained with TALOS-N. If the

pi(c) threshold is raised to 0.85, where the correctness

increases to 89 %, only *20 % of the residues have pre-

dictable v1 rotamers. This comparison therefore indicates

that chemical shift information adds a very substantial

improvement over the use of the backbone-dependent rot-

amer library.

TALOS-N secondary structure prediction

TALOS-N also includes a neural network, SS-ANN, spe-

cifically trained to predict secondary structure. Training of

the SS-ANN relies on the same input data from penta-

peptides as was used above for predicting the 324-state (/,

w)-distribution. With a Q3 score (Jones 1999) of 88.6 %

when evaluated over the 34-protein validation set, the

performance of TALOS-N is virtually identical to that of

TALOS? (Shen et al. 2009a), and approaches the limit of

what is achievable when considering that even for proteins

of known structure different programs typically show

agreement no better than 90 % (Wishart 2011).

TALOS-N also includes a network, SSseq-ANN, that is

trained to predict secondary structure from the amino acid

sequence alone. It yields a Q3 score of 81.2 % for the 91

target proteins used for CASP9 (SI Table S1) (Kryshtafo-

vych et al. 2011), and is comparable in performance with

the upper limit of 80–82 % Q3 scores reported by other

popular bioinformatics programs such as PsiPred and PHD

(Rost and Sander 1993; Jones 1999). Importantly, this

SSseq-ANN is seamlessly implemented in TALOS-N as a

complement to the chemical shift based SS-ANN module

and can bridge stretches in proteins that lack chemical

shifts. It operates in a ‘‘hybrid’’ mode, where the second

level of the SSseq-ANN uses as input the output of the

second level of the SS-ANN, supplemented by SSseq-ANN

first level outputs for residues where chemical shifts were

unavailable. Thus, the 15 three-state probability inputs (for

residues i-7 to i?7) to the second level SSseq-ANN net-

work are taken from (1) the output of the SS-ANN network

if it is ‘‘SS-ANN predictable’’ or (2) the output of the first

level SSseq-ANN network if it cannot be predicted by the

first level of the SS-ANN. In the case of incomplete

chemical shifts, the performance of this hybrid SS-ANN

falls in between that obtained by SSseq-ANN and the

88.6 % obtained when full chemical shift assignments are

available.

Concluding remarks

TALOS-N offers a powerful new method for predicting pro-

tein backbone torsion angles from chemical shifts, as well as a

new extension for predicting protein sidechain v1 angles from

chemical shifts. Compared to the popular TALOS? program,

the fraction of residues whose backbone angles cannot be

predicted unambiguously is reduced by about one-third. The

additional residues whose torsion angles now can be predicted

by TALOS-N are all located outside regions of regular sec-

ondary structure, where typically such restraints are most

needed. The improved performance of TALOS-N over TA-

LOS? in predicting protein backbone torsion angles is pri-

marily the result of its far greater reliance on neural network

algorithms. By defining the Ramachandran map in terms of

324 voxels, rather than the three groupings used by TALOS?,

and the use of 5-residue rather than 3-residue fragments for its

input, more optimal use is made of the input information by

TALOS-N. In contrast to the TALOS? program, TALOS-N

relies on the large database of high quality X-ray structures to

which chemical shift assignments were added by SPARTA?

(Shen and Bax 2010). In this respect, it is important to note that

the ANN-based SPARTA? program correctly accounts for

both backbone and v1 torsion angles, while not including the

Fig. 6 Summary of TALOS-N v1 rotamer prediction results for

different residue types over the 34-protein validation set. The fraction

of ‘‘Predictable’’ v1 rotamers (using a pcutoff = 0.6 threshold) are

marked as gray bars. Green bars depict the fraction of these rotamers

whose prediction is consistent with the X-ray reference structure
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effects of local steric clashes, bond angle and bond length

distortions. DFT calculations indicate that such deviations

from ideality, which occur in nature but are not easily captured

by standard X-ray or NMR structure determination proce-

dures, can significantly impact chemical shifts (Vila et al.

2008). Considering that these subtle local distortions are not

adequately reflected in the reference structures, their impact

on chemical shifts appears as ‘‘noise’’ when using experi-

mentally assigned proteins as input for a program such as

TALOS. As a result, the computationally ‘‘assigned’’ chemi-

cal shift values are therefore more closely correlated to

backbone and v1 sidechain torsion angles than are experi-

mental chemical shifts.

For the ca 10 % fraction of residues whose backbone

torsion angles cannot be predicted uniquely by TALOS-N,

but whose backbone is not dynamically disordered as judged

by RCI-derived order parameters (Berjanskii and Wishart

2008), the (/, w)-ANN predicted 324-state (/, w) distribu-

tion frequently strongly limits the chemical shift compatible

//w values to two small, discrete regions of the Ramachan-

dran map, which may prove useful in structure determination

efforts. Many of these ‘‘unpredictable’’ but ordered residues

are located in turns, where the chemical shift signature of

structure can be ambiguous. For these residues, training of an

ANN to recognize specific turns as well as helical capping

motifs forms the basis of the MICS program, which assigns

probabilities that they are part of a specific turn or capping

motif (Shen and Bax 2012). The MICS program therefore

provides an important complement to TALOS-N, and when

used jointly there remain very few ordered residues in a

protein structure for which no specific structural information

is available from the analysis of chemical shifts.

Software availability

The TALOS-N software package can be downloaded from

http://spin.niddk.nih.gov/bax/software/TALOS-N and can

be accessed in webserver mode from the same site.
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