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Abstract We present an empirical method for identifi-

cation of distinct structural motifs in proteins on the basis

of experimentally determined backbone and 13Cb chemical

shifts. Elements identified include the N-terminal and

C-terminal helix capping motifs and five types of b-turns: I,

II, I0, II0 and VIII. Using a database of proteins of known

structure, the NMR chemical shifts, together with the PDB-

extracted amino acid preference of the helix capping and

b-turn motifs are used as input data for training an artificial

neural network algorithm, which outputs the statistical

probability of finding each motif at any given position in

the protein. The trained neural networks, contained in the

MICS (motif identification from chemical shifts) program,

also provide a confidence level for each of their predic-

tions, and values ranging from ca 0.7–0.9 for the Matthews

correlation coefficient of its predictions far exceed those

attainable by sequence analysis. MICS is anticipated to be

useful both in the conventional NMR structure determi-

nation process and for enhancing on-going efforts to

determine protein structures solely on the basis of chemical

shift information, where it can aid in identifying protein

database fragments suitable for use in building such

structures.

Keywords Artificial neural network � Backbone chemical

shift � Helix capping � b-turn � CS-Rosetta � MCC score �
Protein structure prediction � Rosetta � Secondary structure

prediction

Introduction

The most common elements of secondary structure in

proteins include b-sheet, a-helix and 310 helix. However,

many other small structural motifs exist and in particular

N-terminal and C-terminal helix capping motifs have long

been identified (Presta and Rose 1988; Richardson and

Richardson 1988; Harper and Rose 1993; Aurora et al.

1994), as has a wide range of different turn types (Rich-

ardson 1981; Rose et al. 1985; Sibanda et al. 1989;

Hutchinson and Thornton 1994). It is well recognized that

such structural motifs, mostly containing specific H-bond

patterns, play a key role in stabilizing protein structure and

are likely to be important in the protein folding process

(Dyson et al. 1988; Becker and Karplus 1997; Baldwin and

Rose 1999). Extensive efforts have focused on identifica-

tion of such motifs from the protein’s amino acid sequence

(Bystroff and Baker 1998; Chou 2000; Kaur and Raghava

2003; Fuchs and Alix 2005; Petersen et al. 2010), but

considering the enormous variety of sequences that can

form such motifs, the success rate of even the most

advanced programs remains very limited beyond identifi-

cation of b-sheet and a-helix.

Reliable prediction of structural motifs holds strong

potential for enhancing protein structure prediction pro-

grams such as Rosetta (Rohl et al. 2004; Das and Baker

2008), which assembles structures of low empirical energy

from small fragments taken from a large structural data-

base. These fragments are selected to mimic the secondary
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structure prediction probabilities for each small segment of

the query protein. When NMR chemical shifts are available

for the query protein, this allows selection of database

fragments that are much more likely to match the structure

of the segment in the query protein than would be possible

on the basis of amino acid sequence only. Indeed,

improved fragment selection provides much of the basis for

improved performance of the chemical-shift Rosetta

(CS-Rosetta) program over the regular Rosetta method

(Shen et al. 2008, 2009a, b; Sgourakis et al. 2011).

An empirical relation between protein backbone struc-

ture and deviations of chemical shifts from random coil

values, so-called secondary shifts Dd, has long been rec-

ognized (Saito 1986; Pastore and Saudek 1990; Williamson

1990; Spera and Bax 1991; Asakura et al. 1995; Iwadate

et al. 1999). Most significantly, upfield 1Ha and downfield

secondary 13Ca secondary chemical shifts are commonly

associated with a-helix, whereas negative Dd13Ca together

with positive Dd1Ha values point to b-sheet (Wishart et al.

1991; Wishart and Sykes 1994). However, both computa-

tional and empirical analyses indicate that this correlation

is mostly an indirect consequence of the local secondary

structure, and that these secondary shifts relate more

directly to the backbone torsion angles (Spera and Bax

1991; Pearson et al. 1997; Case 1998; Cornilescu et al.

1999; Vila et al. 2007, 2008). Thus, the correlation applies

equally to residues with a given local backbone confor-

mation, regardless of whether they are engaged in the

H-bond pattern associated with helix or sheet. For nuclei

other than 13Ca, the relation between chemical shift and

local structure tends to be more complex. For example, for
15N the chemical shift is known to be a function not only of

local backbone torsion angles, but also is impacted by

H-bonding, electric field effects, and sidechain torsion

angles (de Dios et al. 1993). Similarly, the amide 1HN

chemical shift can be strongly impacted by ring current,

susceptibility, electrostatic, and H-bonding effects (Asak-

ura et al. 1995; Moon and Case 2007). Several computa-

tional approaches have been put forward in recent years

which capitalize on these known relations to predict

chemical shifts for proteins of known structure (Wishart

et al. 1997; Meiler 2003; Neal et al. 2003; Shen and Bax

2007, 2010a, b; Han et al. 2011). Inversely, other programs

aim to predict local backbone geometry for proteins of

unknown structure but with experimentally determined

chemical shifts. Such methods include purely empirical

approaches such as the popular program TALOS

(Cornilescu et al. 1999), which simply searches a database

of previously assigned proteins of known structure for

tripeptides fragments with similar backbone chemical shift

and residue type, and its recent successor TALOS?, which

adds an artificial neural network component to filter

TALOS results, while at the same time identifying a-helix

and b-sheet secondary structures (Shen et al. 2009a, b).

Whereas TALOS and TALOS? only focus on very short

fragments, other programs such as PREDITOR (Berjanskii

et al. 2006) additionally are able to take advantage of sequence

homology with proteins of known structure, yielding both

accurate backbone and sidechain torsion angles.

Numerous methods exist for secondary structure pre-

diction aided by chemical shifts. The most popular method

is known as CSI, or chemical shift index, which makes a

‘‘consensus estimate’’ based on appropriately weighted
13Ca, 13Cb, 1Ha, and 13C0 secondary shift values (Wishart

and Sykes 1994). Wang and Jardetzky’s PSSI method

additionally takes 1HN chemical shifts and nearest neighbor

effects into account (Wang and Jardetzky 2002), whereas

Hung and Sumudrala included an artificial neural network

analysis, potentially taking better advantage of correlated

changes in secondary shifts to predict secondary structure

(Hung and Samudrala 2003). Other, more recent programs

such as PECAN (Eghbalnia et al. 2005), 2DCSI (Wang

et al. 2007), and TALOS? (Shen et al. 2009a, b) also

simultaneously consider the chemical shifts of adjacent

residues for predicting a-helices and b-strands, reaching

prediction accuracies that approach the uncertainty limit

associated with identification of secondary structure in

proteins with known atomic coordinates.

Apart from a-helix and b-sheet, very few programs have

focused on identification of other distinct elements in

protein structures, although the potential of chemical shifts

to reveal such motifs has been long recognized. For

example, Gronenborn and Clore showed that the helical

N-cap box motif can be recognized on the basis of a neg-

ative Dd13Ca (ca -1 to -2 ppm) together with a positive,

ca 1–4 ppm, Dd13Cb secondary shift for the N-cap residue,

followed by a string of residues with an a-helical chemical

shift signature (Gronenborn and Clore 1994). Other struc-

tural motifs, including helical C-caps, and the various types

of b-turns have proven to be more difficult to identify on

the basis of chemical shifts. This is due in part to less

distinct chemical shift patterns for such motifs, but also to

the fact that the database of proteins of accurately known

structure and fully assigned chemical shifts remains rela-

tively small. The latter makes it difficult to draw statisti-

cally warranted conclusions, in particular when considering

that a wide range of different amino acid types is often

found in such motifs, and it remains uncertain whether the

backbone atoms of all residue types are subject to the same

secondary chemical shift perturbation when located at any

given position in such a motif.

Here, we describe an empirical approach, based on

trained artificial neural network algorithms, to identify

small secondary structure elements, including the N-cap

and C-cap motifs, and the various types of b-turns. Our

method takes advantage a carefully pruned NMR chemical
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shift database of proteins with accurately known structures

and chemical shifts, recently enlarged for the program

PROMEGA which aims to predict the cis or trans nature of

peptide bonds preceding Pro residues (Shen and Bax

2010a, b). This 580-protein database derives from the

much larger collection of assigned chemical shift data,

contained in the BMRB database (Doreleijers et al. 2005).

Analogous to our recent programs TALOS? and

SPARTA?, our new method for structural motif identifi-

cation from chemical shifts, named MICS, is based on an

artificial neural network or ANN algorithm. The advantage

of a properly trained ANN over other, more direct proba-

bilistic methods, is that it can combine in an optimally

weighted manner the wide range of input parameters,

including the residue types at the different positions in the

motif and the secondary chemical shifts from six different

types of nuclei. MICS yields good results for identification

of both N-caps and C-caps, as well as the most common

types of b-turns, including I, I0, II, II0 and VIII. It has been

implemented as a webserver program and can be accessed

at http://spin.niddk.nih.gov/bax/nmrserver/mics/.

Methods

Preparation of the protein database

The chemical shift patterns of the different helix capping

motifs and b-turns in proteins were explored using the

protein database recently developed for the Promega pro-

gram (Shen and Bax 2010a, b). This database, referred to as

the chemical shift database, contains 580 proteins for

which both a high-resolution X-ray structure and (nearly)

complete backbone chemical shifts (d15N, d13C0, d13Ca,

d13Cb, d1Ha and d1HN) are available. The preparation of

this chemical shift database, including the calculation of

the secondary chemical shifts, the chemical shift re-refer-

encing, exclusion of residues with large B-factors in the

X-ray reference structure, exclusion of chemical shift

outliers, and 2H isotope effect correction, followed the

same procedure as that used for precursors of this database,

originally developed for the program TALOS (Cornilescu

et al. 1999).

A second database, referred to as the structure database

and containing 9,446 proteins (2,468,258 residues) for

which a high-resolution (B2.5 Å) X-ray structure was

available, was constructed and used to explore the

sequence and structure-related patterns of different helix

capping motifs and different types of b-turns. This database

was originally used by the CS-Rosetta program for its

hybrid protocol (Shen et al. 2008, 2009a, b). For each

residue in the above two databases, a three-state second-

ary structure classification was assigned according to its

DSSP-identified secondary structure (Kabsch and Sander

1983), determined from the X-ray atomic coordinates: H

(Helix; DSSP classification of H or G), E (Extended strand;

E or B) and L (Loop; I, S, T or C).

Classification of helix capping motifs

At a first stage, the helix capping motifs are identified

based on their original definitions (Harper and Rose 1993;

Aurora et al. 1994; Aurora and Rose 1998). As discussed

below, the original definitions are not well suited as

training input for an artificial neural network, and will be

modified to identify essentially the same sets of residues,

but associate a score with each such motif that indicates

how closely it resembles the idealized motifs.

For capped helices extending from residues N1 through

C1, which make canonical backbone H-bonds and have

regular helical backbone torsion angles, the flanking resi-

dues are labeled as follows:

. . .� N00 � N0 � Ncap� Nl� N2� N3� N4. . .� C3

� C2� C1� Ccap� C0 � C00 � . . .

Thus, the Ncap and Ccap residues are always located

immediately adjacent to the helix. They make H-bonds

with the helical residues but have backbone torsion angles

that deviate significantly from ideal helical values.

Residues N00, N0, C0 and C00 do not participate in the

helix hydrogen bonding network and/or do not have regular

helical backbone torsion angles. An ideal N-terminal helix

capping box (often referred as an Ncap box motif) contains

two reciprocal backbone to side-chain H-bonds between

the Ncap and the N3 residues: bb(i) ? sc(i ? 3) and

sc(i) / bb(i ? 3), where sc refers to sidechain and bb to

backbone, and residue i is the Ncap residue, with the arrow

denoting the donor to acceptor direction. In this study, a

more generous definition for the N-cap is used, where only

one of the two H-bonds is required. In our sequence

database, which includes 57,413 helices with a length of at

least 7 residues, 2,808 Ncap motifs are observed with a

single bb(i) ? sc(i ? 3) H-bond, and 17,255 N-caps with

a single sc(i) / bb(i ? 3) H-bond. For 6,017 helices,

11%, an ideal Ncap box with both reciprocal H-bonds is

present. The distributions of the backbone //w torsion

angles for each of the six residues are listed in Table 1 and

shown in Fig. 1 and Supplementary Information (SI) Fig.

S1. In the 580-protein chemical shift database, 223 ideal

Ncap boxes, 411 sc(i) / bb(i ? 3) Ncaps, and 66

bb(i) ? sc(i ? 3) Ncaps are present. Amino acid

sequence preferences for each position in the N-motif (SI

Table S1) show a preference for Ser, Thr, Asp and Asn for

the Ncap residue, allowing it to accept an H-bond from the

backbone amide of residue N3. The N-cap motif also

shows an elevated presence of hydrophobic residues in
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positions N0 and N4, enabling hydrophobic interactions

between the sidechains of these residues.

A Schellman C-terminal capping motif, or Schellman

Ccap motif, is defined as a six-residue fragment (from

residues C3 [i] to C00 [i ? 5]) which locates at the end of an

a-helix and exhibits a double H-bond pattern: bb(i) /
bb(i ? 5) between the N–H of C00 (i ? 5) and C=O of C3

(i), and bb(i ? 1) / bb(i ? 4) between the N–H of C0 and

C=O of C2. The aL C-terminal capping motif (aL Ccap

motif) contains a single bb(i) / bb(i ? 4) H-bond

between the N–H of residue C0 and the C=O of C3. For

both the Schellman and aL Ccap motifs the backbone /
angle of the C0 residue (residue i ? 4) has a positive sign.

A total of 15,173 and 11,453 helices in the protein

sequence database are observed to be ended with a

Schellman motif and aL motif, respectively. Interestingly,

2,455 (16.2%) of those ending with a Schellman motif also

exhibit a aL-like bb(i) / bb(i ? 4) H-bond, and 6,813

(59.5%) of the helices ending with an aL motif also

contain one of the Schellman-like bb(i) / bb(i ? 5) or

bb(i ? 1) / bb(i ? 4) H-bonds. This mixed character of

the H-bonding patterns and the high similarity in backbone

angles makes it difficult to unambiguously distinguish the

Schellman and aL motifs by empirical methods. For 12,718

(83.8%) of the helices in the structure database ending with

a Schellman C-cap and 4,640 (40.5%) helices capped by an

aL motif, no such mixed H-bonding pattern is observed,

and these are referred to as ideal Schellman and ideal aL

Ccap motifs, respectively. The //w torsion angle distribu-

tions of these ideal Ccap motifs observed in the structure

database are presented in Fig. 1 and Table 1. The number

of helix capping motifs in the chemical shift database is far

smaller than in the structure database (totals of 355 [310

ideal] Schellman Ccaps and 253 [129 ideal] aL Ccaps) but

follows the same distribution. Amino acid sequence pref-

erences in C-cap motifs (SI Table S1) show a strong

preference for Gly in the C0 position of C-cap motifs, as

expected on the basis of its required positive backbone

angle, /.

Classification of turn motifs

A b-turn is formed by four consecutive residues which are

not part of an a-helix and where the Ca distance between

Table 1 Average backbone //w torsion angles and H-bond energies for residues in helix capping motifs

Torsion anglesa Nb H-bond Energy

(kcal/mol)c

i - 1 i i ? 1 i ? 2 i ? 3 i ? 4

N0 Ncap N1 N2 N3 N4

Ncap box

h/i – -92 ± 24 -59 ± 5 -64 ± 5 -64 ± 5 -64 ± 5 6,017 E1: -2.0 ± 0.7

hwi – 167 ± 8 -39 ± 6 -41 ± 5 -41 ± 5 -42 ± 6 E2: -2.0 ± 0.6

i i ? 1 i ? 2 i ? 3 i ? 4

C3 C2 C1 Ccap C0

Ccap (Schellman)

h/i -62 ± 6 -65 ± 6 -62 ± 6 -90 ± 11 73 ± 19 – 12,718 E1: -2.4 ± 0.6

hwi -42 ± 7 -43 ± 7 -31 ± 9 5 ± 10 25 ± 18 – E2: -1.6 ± 0.5

Ccap (aL)

h/i -64 ± 6 -65 ± 7 -79 ± 12 -99 ± 21 75 ± 22 – 4,640 E3: -1.9 ± 0.7

hwi -42 ± 7 -39 ± 9 -38 ± 11 -19 ± 16 – –

Ccap (Schellman ? aL)d

h/i -63 ± 6 -64 ± 6 -65 ± 11 -91 ± 14 74 ± 19 98 ± 13e 15,793

hwi -42 ± 7 -43 ± 7 -32 ± 10 -1 ± 14 24 ± 20

a The positional mean / and w torsion angles for each of the residues in all hexapeptides in the structure database forming an Ncap box motif, an

(ideal) Schellman Ccap motif or an (ideal) aL Ccap motif (see ‘‘Methods’’)
b The numbers of the hexapeptides in the sequence database forming an Ncap box motif, an ideal Schellman Ccap or an ideal aL Ccap motif
c The electrostatic interaction energy (Kabsch and Sander 1983) of the characteristic H-bonds in the Ncap box and two Ccap motifs. For all

hexapeptides forming an Ncap box motif, the average energy of bb(i) ? sc(i ? 3) and sc(i) / bb(i ? 3) H-bonds is referred to as E1 and E2,

respectively. For all Schellman Ccaps, the average energy of bb(i) / bb(i ? 5) H-bond [E1] and bb(i ? 1) / bb(i ? 4) H-bond [E2] is

provided. For aL Ccaps, the average energy of bb(i ? 1) / bb(i ? 5) H-bond [E3] is listed
d The combined ideal Schellman Ccap and ideal aL Ccap torsion angle information, excluding aL motifs with a w angle of the C0 residue falling

outside ±80�
e The average value of / ? w for the C0 residue
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the first (i) and the last (i ? 3) residue, referred to as the

Ca(i,i ? 3) distance, is shorter than 7 Å (Richardson 1981;

Rose et al. 1985). The backbone //w torsion angles of the

two center residues (i ? 1 and i ? 2) are then used to

define five different types of b-turns (Wilmot and Thornton

1990; Hutchinson and Thornton 1994), i.e., type I, II, I0, II0

and VIII. The standard definition for distinguishing these

turn types requires that at least three of the four backbone

torsion angles for the center two residues must fall within

30� of their ideal value, whereas one torsion angle is

allowed to deviate by up to 45�. When using these defi-

nitions, ideal torsion angles for each of these turns, as

defined by Hutchinson and Thornton (1994), agree closely

with the average values observed in our structure database

(Table 2). Besides the above five types of b-turns, there are

four other types, including VIa1, VIa2 and VIb, for which

the third position must be a cis-Proline, and a miscella-

neous type IV, which includes all other b-turns with a

Ca(i,i ? 3) \ 7 Å, but backbone //w torsion angles for the

two center residues that fall outside the ranges specified for

the other turns (Richardson 1981; Hutchinson and Thorn-

ton 1994). Due to the rarity of the types VIa/b and the wide

structural variety of type IV, these are not evaluated in our

study. Moreover, only isolated b-turns, which have no

overlapped residues with other b-turns, are considered first

and used to derive their structural (Table 2) and chemical

shift (Table S3) patterns. In total, 34,337, 15,690, 5,238,

3,522 and 14,879 isolated b-turns with type I, II, I0, II0 and

VIII, respectively, are observed in the sequence database.

The distributions of their //w torsion angles, Ca(i,i ? 3)

distances, and bb(i) / bb(i ? 3) intra-turn H-bond

energy, as well as the positional amino acid preference

(Table 2, S2; Figs. 2, S1, S2, S3) closely match values

expected for these five types of turns. For the chemical

shift database, the numbers of isolated b-turns observed for

type I, II, I0, II0 and VIII are 914 (out of in total 1,235 with

at least three chemical shifts for each of four residues), 432

(460), 175 (198), 107 (110) and 309 (354), respectively.

In our study, we aim to train an artificial neural network

algorithm to recognize the various types of helix capping

and b-turn motifs on the basis of the experimental chemical

shifts. In principle, this can be done by assigning a value of

1 to elements in the database that meet the criteria for a

given motif, and the remainder a value of 0. However, such

Fig. 1 //w torsion angle distributions for residues in three helix

capping motifs. Plots of the backbone torsion angle w versus / are

shown for two of the six residues in a all N-terminal helix capping

box (Ncap box) motifs, and b Schellman and c aL helix capping

motifs in our structural database. Only ideal Schellman and aL helix

capping motifs are considered (see ‘‘Methods’’). //w angles of the

Ncap residue are in black, and angles for the N1 residue in red. For

the Ccaps, the Ccap residue angles are in red, and the C0 residue in

black. All //w torsion angle plots cover a range of -180� to 180� for

both / and w. The typical backbone conformation for each motif is

shown below their respective //w plot. For simplicity, only CO atoms

(red balls) and amide protons (small light gray balls) involved in the

characteristic intra-motif H-bonds (marked by arrows; Table 1) are

shown, and Ala is used for all residues, except for a Ser for the Ncap/

N3 residues in the Ncap box, and Gly for the C0 residue of the two

Ccap motifs
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a binary distinction is not optimal for purposes of training

an artificial neural network because for motifs that bor-

derline fall within or outside the cut-off limits the differ-

ence in chemical shifts will be small. Moreover, as can be

seen in Fig. 2 and SI Fig. S1, the original definitions for the

various turn types result in angular ranges for the backbone

torsion angles of turn types I, II, and VIII that show

‘‘truncation’’ behavior, meaning that turns which are geo-

metrically very similar to e.g. a turn type I but fall just

outside the allowed //w limits are assigned a 0, while other

turns that are just within the tolerance limits are assigned a

1. A better approach therefore assigns a numerical value

between 1 and 0 to the motif, depending on how closely it

mimics ideal values in terms of backbone angles. It turns

out that the backbone–backbone H-bonding patterns

observed in b-turns, as well as the Ca(i,i ? 3) distances,

are closely correlated with the backbone torsion angle

values. Indeed we show below that a scoring function can

be developed based only on backbone torsion angles which

results in virtually the same classifications as those

obtained from the original definitions.

Scoring of helix capping motifs

For helix capping, we find that the characteristic backbone

angles associated with ideal Ncap and Ccap motifs can be

stabilized by a substantial array of different H-bond pair-

ings (see ‘‘Results’’), with virtually indistinguishable

chemical shift patterns. For the helix capping motifs, we

therefore remove the requirements for specific H-bonds

from the definition, and simply aim to identify motifs with

backbone angles that overlap with those of the classic

motifs.

The implementation of a scoring function is first illus-

trated for the case of the helical N-cap. For any given

hexapeptide i, containing residues i - 1 to i ? 4, the Ncap

score, SNcap, is defined as a function of its backbone angles

according to:

SNcap ¼ 1� 1=ð1þ e�3�ðv/;w�2:5ÞÞ ð1Þ

which is derived from a sigmoid normalization of the v2

distribution of deviations of the //w torsion angles of five

residues, i to i ? 4, from the mean //w torsion angles of

the five residues, Ncap to N4, respectively, in an Ncap box

motif:

v2
/;w ¼

X

j¼i;...;iþ4

/j � /j

� �

r
j;/

 !2

þ
wj � wj

� �

r
j;w

 !2
2

4

3

5
,

10

ð2Þ

where the average Ncap box values for /j and wj together

with their standard deviations, r, are listed in Table 1, and

the value for r is set to 10� for cases where the experi-

mental distribution is less than 10�. Note that the //w
angles of the i - 1 residue, N0, are not considered as they

vary widely among different Ncaps. The Ncap score SNcap

is calculated for all available hexapeptides in the structure

database, and this process is repeated for different values of

the constants in the exponent of Eq. 1 (final values shown

are 3 and 2.5), in order to find an SNcap scoring function

Fig. 2 //w torsion angle distribution for the two center residues

(residue i ? 1 in black; residue i ? 2 in red) in five types of isolated

b-turns in our structural database. All turns are identified using the

original literature definitions (see ‘‘Methods’’). All plots have a range

of -180� to 180� for both / (horizontal) and w angles. A typical

conformation of each type of b-turn is shown as a ball-stick cartoon

below their respective //w plot. Only backbone heavy atoms (N: blue
balls; Ca/C0: gray; CO: red) and amide protons (small light gray balls)

are shown, and Ala is used for all four residues of each b-turn, and

idealized //w values for these five turn types are used (Table 2). The

Ca atoms are numbered according to their position in the b-turn; the

potential intra-turn H-bond from the HN of the last residue to the CO

of the first residue is marked by an arrow. Note that for type VIII

b-turns the long HN–O=C distance and often unfavorable H-bond

angles usually result in vanishing H-bond energy
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that most effectively allows discrimination of Ncap motifs

from other structural elements. Using the scoring function

of Eq. 1, all hexapeptides corresponding to an Ncap box,

with its characteristic pair of H-bonds, and Ncaps with a

single sc(i) / bb(i ? 3) or bb(i) ? sc(i ? 3) H-bonds,

yield an SNcap score [ 0.3 (Fig. 3a). The hexapeptides with

an Ncap box motif yield the highest Ncap scores,

mostly [ 0.95, while nearly all other (non-Ncap) hexa-

peptides yield SNcap scores B 0.1. A modest number of

hexapeptides with Ncap-like backbone torsion angles but

lacking the characteristic sc(i) / bb(i ? 3) or

bb(i) ? sc(i ? 3) H-bonds show high scores too (Fig. 3a),

most of which are stabilized by different H-bonds (see

‘‘Results’’ section), but which are also included as Ncaps in

this study.

Considering the very similar backbone //w angles in

Schellman and aL Ccap motifs (Table 1; Figs. 1, S1) and

backbone chemical shifts (Fig. 4b), as well as their mixed

patterns of hydrogen bonds, we combine them into a single

category, hereafter simply referred to as the Ccap motif. A

single Ccap score, SCcap, is then defined for any hexapep-

tide i (residues i to i ? 5) to report its similarity to a Ccap

motif in terms of its backbone torsion angles:

SCcap ¼ 1� 1
.

1þ e�3�ðv/;w�1:5Þ
� �

ð3Þ

which again is derived from the v2 distribution of the

deviation of the /, w, and / ? w angles of the first five

residues, C3 to C0 (or i to i ? 4) from their mean //w
angles in a Ccap box motif (Table 1):

v2
/;w ¼

(
X

j¼i;...;iþ4

/j � /j

� �

r
j;/

 !2

þ
wj � wj

� �

r
j;w

 !2
2

4

3

5

þ
ð/þ wÞiþ4 � ð/þ wÞiþ4

� �

r
jþ4;/þw

" #2),
11 ð4Þ

Note that this v2 function includes an additional term

related to the sum (/ ? w) of the C0 residue. As can be

seen from the distribution of the C0 //w angles in Ccaps,

these values are strongly correlated and the variance in

their sum is considerably smaller than in their individual

values.

Evaluation of the Ccap score, SCcap, over the chemical

shift database (Fig. 3b), indicates that nearly all Schellman

and aL Ccap motifs have SCcap [ 0.3. A number of hexa-

peptides lacking the Schellman or aL H-bonding pattern

Fig. 3 Histograms of empirical

helix capping and b-turn scores.

a Ncap score (SNcap, Eq. 1)

calculated for all hexapeptides

in the chemical shift database.

Green, blue and yellow colors,

respectively, correspond to the

Ncap box motif, the sc(i) /
bb(i ? 3) Ncap motif and the

bb(i) ? sc(i ? 3) Ncap motif.

All other hexapeptides (incl.

non-Ncap) are shown in gray.

b Histogram of Ccap scores

(SCcap, Eq. 3) calculated for all

hexapeptides in the chemical

shift database, with Schellman

Ccap motifs in green, aL in

blue, and all others in gray
(c–g) Histograms of b-turn

scores (Sk, Eq. 5) calculated for

all tetrapeptides in the chemical

shift database. For each type of

b-turn, the number of b-turns

[(type I (c), II (d), I0 (e), II0

(f) and VIII (g)] identified by

using the original definitions

(see ‘‘Methods’’) are shown in

blue, the number of b-turns for

which the original definition

assigns a miscellaneous type IV

are in red, and the number of all

other tetrapeptides in gray
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have a high score too, however. Nearly all of these show at

least one of two Schellman H-bonds, i.e., bb(i) /
bb(i ? 5) or bb(i ? 1) / bb(i ? 4) H-bonds (see

‘‘Results’’), and we therefore include this group as mem-

bers of the generic Ccap class.

Scoring of b-turn motifs

Analogous to the helix capping motifs, we introduce a

score of b-turn motifs, Sk (k = I, II, I0, II0, and VIII), for

tetrapeptides simply on the basis of the backbone //w
angles of their two center residues. The requirement of a

short Ca(i,i ? 3) distance (B7 Å) and a frequently

observed intra-turn H-bond between the first and the last

residue is not included in the scoring functions as they are

closely correlated with the //w torsion angles of the two

center residues (see ‘‘Results’’). The scoring functions for

b-turns are of the form

Sk ¼
Ya¼/;w;/þw

j¼iþ1;iþ2

1� ha;j;k
� �

� 1� fhelical;j

� �
ð5Þ

where ha,j,k is a penalty function which evaluates whether a

given backbone torsion angle a (a = /, w or / ? w) of

residue j (j = i ? 1, i ? 2) in the query tetrapeptide has

backbone torsion angles characteristic of a type k b-turn.

The term fhelical,j is a Boolean number which accounts for

the b-turn requirement that the two center residues (i ? 1

and i ? 2) are not part of a regular helix (as defined by the

DSSP program (Kabsch and Sander 1983)), i.e.,

fhelical,j = 0 if residue j (j = i ? 1, i ? 2) is not helical,

and 1 otherwise. Analogous to Eqs. 1–4, the terms ha,j,k are

sigmoid functions of the v2 distribution of the deviation of

the /, w and / ? w angles (aj,k) from the mean //w// ? w
angles (haj,ki) in a type k b-turn (Table 2):

ha;j;k ¼ 1=ð1þ e�wa;j;k�ðva;j;k�ca;j;kÞÞ ð6Þ

v2
a;j;k ¼

aj;k � aj;k

� �

ra;j;k

� 	2

ð7Þ

where ra,j,k is the database standard deviation for torsion

angle a of residue j in b-turn type k, with wa,j,k and ca,j,k

being constants that define the steepness and the center of

the sigmoid normalization function. With a typical value of

2 and 3, respectively, for wa,j,k and ca,j,k, the sigmoid

function of Eq. 6 corresponds to a 50% penalty when the

angle a deviates by 3ra,j,k from the corresponding ideal

angle, 88% for 4ra,j,k, and 98% for 5ra,j,k. The wa,j,k and

ca,j,k constants are adjusted for the different turn types, k, to

best match the original b-turn definitions (Table S4; see

Fig. 4 Chemical shift patterns

of helix capping motifs. a The

average secondary 1HN, 15N,
1Ha, 13C0, 13Ca and 13Cb

chemical shifts are plotted for

each of the six consecutive

residues (N0, Ncap, N1, N2, N3

and N4, respectively, with the

Ncap box motif in black, the

bb(i) ? sc(i ? 3) Ncap motif

in dark gray, and the sc(i) /
bb(i ? 3) Ncap motif in light
gray. b Average secondary

chemical shifts for each of the

six consecutive residues (C3,

C2, C1, Ccap, C0, and C0 0,
respectively) involved in a

Schellman (dark gray) or aL

(light gray) C-terminal helix

capping motif
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‘‘Results’’). For type I b-turns, the summed angle term of

wi?1 ? /i?2 (see footnote to Table 2) is also included in

Eq. 5, and serves to minimize the inclusion of ‘‘open’’ type

I b-turns (with Ca(i,i ? 3) distance [ 7 Å).

The b-turn score Sk is calculated for all available tetra-

peptides in the chemical shift database, and the distribution

of b-turn scores for the five types of b-turn studied in this

work, I, II, I0 and II0 and VIII, shows that they can be

accurately distinguished by their Sk value (Fig. 3c–g). For

b-turns of type I, II, I0 and II0, a b-turn score Sk cutoff of

0.2–0.3 ensures that all these tetrapeptides are recognized

as type k b-turns. However, a small fraction of tetrapep-

tides is found to yield a high score Sk, despite not being a

type k b-turn. Closer inspection of those tetrapeptides

shows that all of these either are type IV b-turns, repre-

sented by red bars in Fig. 3c–g, a miscellaneous category

that contains all b-turns which are not of type I, II, I0, II0 or

VIII (or three minor types VIa1, VIa2 and VIb, which are

not considered in this work) according to the //w angles of

the two center residues, or they correspond to b-turn like

structures with a Ca(i,i ? 3) distance slightly above the

7 Å cut-off (gray bars in Fig. 3c–g, or black bars in Fig

S2). The type IV b-turns with a high score Sk actually have

//w angles close to those of a b-turn type k for the two

center residues but cannot be classified as b-turn type k due

to the hard cutoff (30�/45�, see above) of the //w angles in

the original definitions. For type VIII b-turns (Fig. 3g), a b-

turn score SVIII [ 0.5 is observed for all type VIII b-turns,

while a considerably number of the ‘‘non-b-turns’’ (as

defined by Ca(i,i ? 3) distance of C 7 Å) have a high SVIII

score too. Inspection indicates that those ‘‘non-b-turns’’

with a high SVIII score have slightly larger Ca(i,i ? 3)

distances, ranging up to *8.5 Å (Fig. S2, Table S6), and

can be classified as slightly more ‘‘open’’ b-turns. Con-

sidering that those open type VIII b-turns have backbone

//w torsion angle patterns very similar to the standard type

VIII b-turns, they here are included in the type VIII b-turn

classification. In other words, the Ca(i,i ? 3) distance

requirement of B 7 Å for a type VIII b-turn is now relaxed

to B 8.5 Å when considering a SVIII score ([*0.25).

Neural network architecture and training

We use two-level feed-forward multi-layer artificial neural

networks (ANN) to correlate the backbone chemical shifts

and amino acid sequence patterns with the various helix

capping and b-turn motifs (SI Table S5). The trained net-

works are then used to predict these motifs on the basis of

their amino acid sequence and experimental chemical

shifts.

The architecture of the two-level artificial neural net-

work will first be illustrated for the Ncap motif, but is very

similar for the other motifs. The input signals (aqua circles,

Fig. 5) to the first layer of the Ncap ANN consist of hex-

apeptide parameter sets derived from the above chemical

shift database. Each hexapeptide i (denoted as 6-mer i in

Fig. 5), comprising residues i - 1 to i ? 4, has 192 nodes,

representing the six secondary chemical shift values Ddx,j

(x = 15N, 13C0, 13Ca, 13Cb, 1Ha and 1HN), six Boolean

numbers bx,j and twenty amino acid type similarity scores,

taken from the BLOSUM62 matrix (Henikoff and Henikoff

1992), for each residue j (j = i - 1,…,i ? 4). The Bool-

ean number bx,j is set to 1 if the chemical shift Ddx,j exists,

otherwise, bx,j is set to 0 and an average (near zero)

chemical shift hDdxi in the database is assigned to Ddx,j.

Only residues with at least three available experimental

chemical shift assignments are used for ANN training

purposes. In the hidden layer of the network, where each

node receives the weighted sum of the input layer nodes as

a signal, 60 such nodes (or hidden neurons; grey, Fig. 5)

are used. The output of the hidden layer is obtained through

a nodal transformation function; here a standard sigmoid

function is used (see Eq. 8).

The TALOS? program (Shen et al. 2009b) uses a three-

state secondary structure classification: helix (H), strand

(E) and loop (L). An ANN similar to the one used in the

present study predicted the secondary structure with an

overall correctness of *89% on the basis of inputs from

tripeptides. In the present study, the Ncap ANN uses the

input from hexapeptides, and an additional ANN target/

output number representing the Ncap structure motif is

used to complement the conventional three-state secondary

structure identifiers (H, E and L). Thus, a four-state

structure classification of the second residue of each hex-

apeptide i in the database will be assigned as the target/

output of the first level network: [1 0 0 0]i for helix (H), [0

1 0 0]i for strand (E) and [0 0 1-SNcap SNcap]i for those

identified as loop (L) by the DSSP secondary structure

classification of residue i. The 1-SNcap and SNcap terms in

the target vector indicates whether the second residue (i) is

the Ncap residue in an Ncap motif, where SNcap is the Ncap

score of Eq. 1. Below, we will refer to the fourth element of

the P194 output vector simply as P4. Each output value has

one node with a linear activation function [f2(x) = x] (see

Eq. 8). The same procedure previously was used for the

TALOS? and SPARTA? programs (Shen et al. 2009a, b;

Shen and Bax 2010a, b). The empirical relationship

between the four-state structure classification and NMR

chemical shift data received by the first level network is

given by:

p1�4 ¼ f2 f1 X1�192 �W
ð1Þ
192�60 þ b

ð1Þ
1�60

� �
�W

ð2Þ
60�4 þ b

ð2Þ
1�4

� �

ð8Þ

with f1(x) = 1/(1 ? e-x), and f2(x) = x. X1�192 is the input

data vector consisting of 192 elements; W ð1Þ and bð1Þare the
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weight matrix and bias, respectively, for the connection

between the nodes in the input and the hidden layer; W ð2Þ

and bð2Þare the weight matrix and bias, for the connection

between the nodes in the hidden and output layer; p1�4 is

the training target or the output vector of the first level of

the neural network (yellow circles, Fig. 5), indicating the

four-state structure classification (H, E, L and Ncap) of the

second residue (residue i) in a given hexapeptide i.

The second level of the Ncap neural network is used to

smoothen the prediction by accounting for commonly

observed patterns in proteins, and follows its use in the

TALOS? program and several widely used sequence-

based secondary structure prediction programs (Rost and

Sander 1993; Jones 1999). The two-level artificial neural

network, referred as a 6–6 ANN model, uses the input

information from six sequential residues (from i - 1 to

i ? 4) for both the first and the second level. The input

layer for the second level comprises the parameter set of

the four-state structure classification predicted by the first

level of the network for each available hexapeptide in the

database, i.e., each hexapeptide set i (or 6-mer i, Fig. 5) of

the input layer for the second level has 24 nodes, con-

taining the four-state structure classification of each residue

(from residues i - 1 to i ? 4) predicted by the first level

network (for hexapeptide sets i - 1 to i ? 4, respectively).

The hidden layer contains 6 nodes, and the four-state

structure classification of the second residue (i) of the

corresponding hexapeptide in the database is used in the

output layer and as the target of the neural network.

The equation used for the second level of the neural net-

work is similar to Eq. 8:

P1�4 ¼ f2 f1 p1�24 �W
ð1Þ
24�6 þ b

ð1Þ
1�6

� �
�W

ð2Þ
6�4 þ b

ð2Þ
1�4

� �

ð9Þ

where p1�24 is the input vector containing the 24 nodes and

the definitions of weights, biases, and activation functions

are the same as those in Eq. 8. Equations 8 and 9 of this two-

level network, with their optimized weights and biases

obtained from the training dataset, are then used to predict

the four-state structure classification for residues in any

protein of unknown structure. The Eq. 9 network output

vector, P194, represents the ANN scores for the query residue

i, or the second residue of the query hexapeptide i, to be

within each of the four states: helix, strand, loop and Ncap.

Similarly, a two-level artificial neural network with a

6–6 ANN model, referred as Ccap ANN, is used to predict

the probability for a hexapeptide to adopt a Ccap motif

6-mer i
(i-1,i,..,i+4)

6-mer i-1
(i-2,i-1,..,i+3)

6-mer i+2 
(i+1,i+2,..,i+6)

H
E
C

1st level 2nd level

Output

4-state prediction 
of the 2nd residue 
of 6-mer i

Input

For each residue of a 
6-mer i (i-1,i,.., i+4)

6 chemical shifts 
(Δδ15N, Δδ13C', Δδ13Cα, 
Δδ13Cβ, Δδ1Hα and Δδ1HN)

6 Boolean numbers

20 residue type 
similarity scores 

6-mer i+4
(i+3,i+4,..,i+8)

6-mer i+3 
(i+2,i+3,..,i+7)

Capping

6-mer i+1 
(i,i+1,...,i+5)

Fig. 5 Architecture of the two-level feed-forward artificial neural

network used to predict the presence of an Ncap motif (Ncap ANN).

The Ncap ANN calculates the probability for each hexapeptide in a

protein to be an Ncap motif with the second residue in the Ncap

position. The Ncap ANN uses as input for the first level feed-forward

prediction the known parameters characterizing each of the six

residues. The ANN is trained on the 580-protein chemical shift

database to predict the known output state. Besides the six chemical

shifts and six Boolean numbers representing the chemical shifts, input

parameters for each residue of the hexapeptide also include a

20-dimensional vector, consisting of the coefficients of its row in the

BLOSUM62 matrix. A total of 192 input parameters (aqua) per

hexapeptide are used to predict the probability for it to be an Ncap

(yellow), which is then used as input for the second level of the ANN.

60 hidden nodes (grey) are used for the first level of the ANN. The

ANN output of the first level for six overlapped hexapeptides is used

to refine the final prediction of the four elements of the output vector

(red), using a hidden level consisting of six nodes (grey)
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(Schellman or aL motif). The input signals to the first layer

again consist of hexapeptide parameter sets derived from

the chemical shift database. Each hexapeptide set i (or

6-mer i, SI Fig. S4a), now consists of residues i - 3 to

i ? 2, and again has 192 nodes, analogous to the Ncap

ANN. In the output layer, a four-state structure classification

of the fourth residue of each hexapeptide i in the database is

assigned as the target/output of the first level network, i.e., [1

0 0 0]i for helix (H), [0 1 0 0]i for strand (E), and [0 0 1-SCcap

SCcap]i, for those identified as loop (L) by DSSP, where the

1-SCcap and SCcap terms in the target vector are taken from the

SCcap score of Eq. 3. The architecture and implementation of

the second level of the Ccap ANN (SI Fig. S4a) are the same

as for the Ncap ANN.

For each of the five types of b-turns (I, II, I0, II0 and VIII)

considered in our study, again a two-level ANN, referred to

as a b-turn ANN, is used to predict the probability of a

four-residue fragment to adopt a specific type b-turn. For

the first level, the two-level b-turn ANN uses input infor-

mation from four sequential residues, and for the second

level it uses the input from ten sequential residues. It

therefore is referred to as a 4–10 ANN model (SI Fig. S4b).

The input signals to the first layer of the first level ANN

comprise the tetrapeptide parameter sets derived from the

chemical shift database. Each tetrapeptide set i (or 4-mer i),

consisting of residues i - 1 to i ? 2, has 128 nodes, rep-

resenting the six secondary chemical shift values Ddx,j

(x = 15N, 13C0, 13Ca, 13Cb, 1Ha and 1HN), six Boolean

numbers bx,j (which have the same definition as for Ncap

and Ccap ANNs) and twenty amino acid type similarity

scores for each residue j (j = i - 1,…,i ? 2). The first

level b-turn ANN contains 40 nodes in its hidden layer, and

four nodes in its output layer. In the output layer of the first

level network, a four-state structure classification of the

second residue of each tetrapeptide i is used as the target/

output, i.e., [1 0 0 0]i for helix (H), [0 1 0 0]i for strand (E)

and [0 0 1-Sk Sk]i for those identified as loop (L) by DSSP,

where the 1-Sk and Sk terms in the target vector are taken

from the Sk score of Eq. 5, and Sk (k = I, II, I0, II0 and VIII)

is the b-turn score of residue i. The input layer for the

second level uses the output of the four-state structure

classification predicted by the first level of the network, but

uses this information from 10 sequential residues, such that

the ANN can take advantage of the fact that b-turns are

commonly found in between elements of regular secondary

structure. Thus, the input layer for the second level has 40

nodes, containing the four-state structure classification of

each of the 10 residues (i - 4 to i ? 5) predicted by the

first level network (for tetrapeptide sets i - 4 to i ? 5,

respectively. The hidden layer contains 10 nodes, and the

four-state structure classification of residue i is used as the

target of the neural network. The connections between

the three layers of the two levels of the network

(SI Fig. S4) are to the same as those in the Ncap/Ccap

ANN. The empirical formulas of the first and second levels

of neural network are:

p1�4 ¼ f2 f1 X1�128 �W
ð1Þ
128�30 þ b

ð1Þ
1�30

� �
�W

ð2Þ
30�4 þ b

ð2Þ
1�4

� �

ð10Þ

P1�4 ¼ f2 f1 p1�40 �W
ð1Þ
40�10 þ b

ð1Þ
1�10

� �
�W

ð2Þ
10�4 þ b

ð2Þ
1�4

� �

ð11Þ

Neural network training

The weights and bias terms of each of the Ncap/Ccap/

b-turn ANNs were determined by training of the network,

using the chemical shift and sequence information of the

580-protein chemical shift database, described above. To

prevent over-training, a three-fold training and validation

procedure was performed for each neural network model

by dividing the input training dataset into three input

subsets followed by separate training of the corresponding

neural networks. For each of these three network optimi-

zations, one input subset was excluded from the training

dataset but then used to evaluate the performance of the

neural network during the training. Thus, this validation

subset was not used to calculate the weight changes in this

network. Training of the network was terminated when the

performance of the network on the validation dataset,

represented by the mean squared errors (MSE) between the

predicted values and targets, began to degrade. This pro-

cedure was repeated three times for each network, each

time with a different one-third of the database entries

assigned to the validation set, and the average of the three

P194 output vectors generated by each of the three sepa-

rately trained networks is used by MICS to generate the

final prediction.

Neural network testing and validation

The predicted Ncap/Ccap score SNcap/SCcap, as represented

by the fourth number P4 of the output vector P194 (Eq. 9)

of the Ncap/Ccap ANN, is used to decide if a given residue

i is predicted to be an Ncap/Ccap residue in an Ncap/Cap

motif. Similarly, the predicted b-turn score P4
k, corre-

sponding to the fourth element of the P194 output vector

(Eq. 11) of the ANN for predicting b-turn k (k = I, II, I0, II0

and VIII), is used to decide if a given tetrapeptide i is a type

k b-turn or not. The actual probability of a hexapeptide to

represent an Ncap/Ccap motif, or of a tetrapeptide to be a

type k b-turn, subsequently will be derived from these P4
k

scores by establishing an empirical relation between the P4
k

and the accuracy of the prediction (see ‘‘Results’’).

To inspect the network prediction performance, an

accuracy score Qpred is used to report the percentage of the
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total number of positive Ncap/Ccap/b-turn predictions (NP)

that are correct (true positives; NTP):

Qpred ¼ NTP=NP ð12Þ

A sensitivity score Qobs is used to report the percentage

of the total number of Ncaps/Ccaps/b-turns present in the

database (NT) that are correctly predicted:

Qobs ¼ NTP=NT ð13Þ

Finally, a Matthews correlation coefficient MCC is used

as a measure of the overall quality of prediction:

MCC ¼ ðNTP � NTN � NFP � NFNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNTP þ NFPÞðNTP þ NFNÞðNTN þ NFPÞðNTN þ NFNÞ

p ð14Þ

where NTP, NFP, NTN and NFN are the number of true

positives, false positives, true negatives and false nega-

tives, respectively (Matthews 1975; Baldi et al. 2000). The

MCC score is generally recognized as a balanced measure

for prediction accuracy as it takes into account both true

and false positives and negatives. Therefore, it can be used

even if the classes are of very different sizes, as for

example applies in our study of the b-turn/non-b-turn

classification. A MCC value of ?1 indicates a perfect

prediction, 0 an average random prediction, and -1 an

inverse prediction; MCC values \*0.4 were obtained for

the early b-turn/non-b-turn predictions performed by

various bioinformatics methods, with the best empirical

programs now approaching MCC values of 0.5 but being

unable to accurately predict the type of b-turn (Kirschner

and Frishman 2008; Petersen et al. 2010).

In order to estimate the true probability of a prediction

from its predicted Ncaps/Ccaps/b-turns score, P4, a distri-

bution of the prediction accuracy Qpred is generated as a

function of its predicted Ncap/Ccap/b-turn score P4 (Table

S5; Fig. 6).

In addition to the above three-fold training and validation

procedure, a second validation was carried out for a set of

eleven proteins not contained in the database. This set of

eleven proteins also has nearly complete chemical shifts,

high quality reference structures, and no homologous pro-

teins (\30% sequence identity) in the 580-protein database.

This same set of eleven proteins previously also was used to

validate the SPARTA? method (Shen and Bax 2010a, b).

Results and discussion

Neural network prediction of Ncap motifs

In its original definition, the Ncap motif, comprising resi-

dues N0-Ncap-Nl-N2-N3-N4 and numbered i - 1,…,i ? 4,

Fig. 6 MICS prediction accuracy for Ncap (a and a’) and Ccap

(b and b’) helix capping motifs, as calculated for all available

hexapeptides in the validation datasets when using the trained ANN

parameter sets (see ‘‘Methods’’). a, b Matthews correlation coefficient

(MCC, red), Qpred (green) and Qobs (blue), as a function of the

threshold value P4 for a positive prediction of a Ncap or Ccap motif.

These scores are used to select a best threshold (see SI Table S5) for a

positive Ncap/Ccap prediction. (a’, b’) Numbers of hexapeptides with

a positively predicted Ncap or Ccap motif (small open squares; right

y-axis) as a function of the (binned) P4
Ncap (a’) or P4

Ccap (b’) value. The

fraction of true Ncaps or Ccaps (i.e., with an SNcap or SCcap [ 0.3)

over the number of Ncap/Ccap predictions as a function of the P4
Ncap

(a’) or P4
Ccap (b’) value (left y-axis, bold line with filled circle). This

fraction corresponds to the actual probability that a hexapeptide with

a given P4
Ncap (P4

Ccap) score is an actual Ncap (Ccap) motif, from

which fitted polynomial equations (Eqs. S1, S2) are derived (red solid
lines) and used by MICS to calculate the actual probability for any

given prediction from the P4 score
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is characterized by backbone-sidechain H-bonds between

the Ncap residue, i, and the third residue (N3, i ? 3) of the

a-helix, with the ideal N-cap box showing both sc(i) /
bb(i ? 3) and bb(i) ? sc(i ? 3) H-bonds (Harper and

Rose 1993). The polypeptide backbone torsion angles of

the Ncap residue then cluster around distinct values of /
= -92 ± 24� and w = 167 ± 8� (Table 1; Fig. 1; SI Fig.

S1). The calculated electrostatic interaction energy (Ka-

bsch and Sander 1983), averaged over all Ncap motifs in

our database, suggests that the sc(i) / bb(i ? 3) H-bond is

slightly more stable than the bb(i) ? sc(i ? 3) H-bond

(Table 1). This difference is also reflected in the observa-

tion that we find more than twice as many sc(i) /
bb(i ? 3) than bb(i) ? sc(i ? 3) H-bonds in the database

Ncap motifs. The sidechains of Ser, Thr, Asp and Asn

residues can easily accept a H-bond from a backbone

amide, and hence are favored at the Ncap position, whereas

the sidechains of Glu, Asp and Gln are preferred at the N3

position (Table S1). Moreover, the juxtaposition of resi-

dues N0 and N4 in an Ncap motif favors hydrophobic

residues, such as Ile, Leu, Met, Val and Ala at these two

positions (SI Table S1) (Aurora and Rose 1998).

The average secondary chemical shift, Ddx;j
cap

D E
, and its

standard deviation, rx;j
cap, for each backbone atom

x (x = 15N, 13C0, 13Ca, 13Cb, 1Ha and 1HN) at each position

j within the Ncap hexapeptide are shown in Fig. 4 and SI

Table S3. The chemical shift patterns of the Ncap box, the

sc(i) / bb(i ? 3) Ncap, and the bb(i) ? sc(i ? 3) Ncap

motifs are observed to be very similar (Fig. 4a), making it

impossible to distinguish these three motifs from their

backbone chemical shifts. All three types of Ncaps show

the expected large positive Dd13Ca and Dd13C0 values

expected for the helical residues N1–N4, and the distinct

negative Dd13Ca and positive Dd13Cb values highlighted

previously by Gronenborn and Clore as being characteristic

of the N-cap residue (Gronenborn and Clore 1994). A

modest upfield Dd1HN shift for the N3 residue may reflect

the observation that in many of the Ncaps the amide of N3

cannot form a very stable H-bond. Other characteristic

features include downfield Dd1HN for N1 and upfield

Dd15M secondary shifts for N2, but again these features are

very similar for the three Ncap motifs. Therefore, for

purposes of our computational analysis, the Ncap box, the

sc(i) / bb(i ? 3) Ncap, and the bb(i) ? sc(i ? 3) Ncap

are grouped together in a single Ncap motif.

The scoring function, SNcap, of Eq. 1 evaluates how

closely the positional //w torsion angles of any given

hexapeptide resemble an Ncap motif. A histogram of all

hexapeptides in the chemical shift database shows that the

SNcap values for Ncap motifs mostly are larger than 0.9

(Fig. 3a), with the Ncap box motif yielding the highest

scores.

It is interesting to note that there are a substantial

number of hexapeptides in the database that match the

backbone angles of an Ncap motif, but lack both the

sc(i) / bb(i ? 3) and the bb(i) ? sc(i ? 3) H-bonds. So,

even while the backbone of these hexapeptides is geo-

metrically very close to that of true Ncap motifs, they lack

the requisite H-bonds. Inspection shows that these Ncap-

like motifs are stabilized by alternate H-bonds, most

commonly bb / bb(i ? 3) (23%), sc / bb(i ? 2) (21%)

and sc ? sc(i ? 3) (4%) between the Ncap residue and its

flanking residues in the helix Table S7). Considering the

close structural similarity and nearly indistinguishable

chemical shifts relative to true Ncaps, we include these

Ncap-like motifs in the Ncap classification.

The Ncap neural network (Ncap ANN) is trained by

using the amino acid type and chemical shift data present

in the chemical shift database as input, and the four-state

structural classification [helix, strand, loop, Ncap]. So, as

training target for the ANN we use 0 or 1 for the first two

elements of this vector, based on the residue’s three-state

DSSP secondary structure classification [helix, strand,

loop]. For the third element of residues identified by DSSP

as loop, a modified loop score is used, 1-SNcap, and SNcap is

used as the value of the fourth element (see ‘‘Methods’’).

The trained Ncap ANN performs well in terms of repro-

ducing the four-state training target in the validation

datasets, in particular the Ncap score. In total, 84% (Qobs)

of the observed Ncaps in the validation datasets (with SNcap

score C 0.3) are positively predicted, i.e., yield a predicted

P4
Ncap score C 0.3. Importantly, the fraction of hexapep-

tides for which the ANN predicts an Ncap in the validation

set and which indeed corresponds to an Ncap based on the

//w-derived SNcap (cf Eq. 1) is 86% (Qpred), i.e. at the

SNcap = 0.3 threshold, 86% of the predictions are correct

(Table S5). As shown in Fig. 6a, Qobs and Qpred are a

function of the value of the SNcap threshold used, even

though the MCC score of 0.85 is relatively insensitive to

this threshold value.

Neural network prediction of Ccap motifs

As with the Ncap motifs, distinction of the different types

of capping motifs, in particular Schellman and aL, can be

problematic due to the mixed H-bonding patterns noted

above. Moreover, very similar secondary chemical shifts

are also observed for the Schellman and aL Ccap motifs

(Fig. 4b), foreshadowing the difficulty to distinguish these

Ccap motifs on the basis of their chemical shifts. Due to the

requirement of a positive / torsion angle for the residues at

the C0 position, Gly and Asn are the two residues most

commonly observed in this position. Analogous to the

Ncap, hydrophobic interaction between residues C3 and C00

often bracket the helix capping motif (Aurora et al. 1994;
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Aurora and Rose 1998), resulting in an increased propen-

sity for Leu, Ala and Met in the C3 position, and Ile, Leu

and Val at C00 (SI Table S1). By contrast, the hydrophilic

residues Glu, Lys, Arg and Gln are more often observed at

positions C2 and C1 (SI Table S1).

As expected, the Ccap motif (C3-C2-C1-Ccap-C0-C00;
numbered i,…,i ? 5) exhibits the Dd13Ca and Dd13Cb

values characteristic of a-helix for residues C3, C2 and C1.

The backbone torsion angles of the Ccap residue itself

cluster around / = -92 ± 15 and w = -1 ± 16

(Table 1; Fig. 1b, c). Despite these angles being close to a-

helical values, the 13Ca, 13Cb, 13C0 and 1Ha Dd values are

close to zero (SI Table S3; Fig. 4b). By contrast, Dd15N of

both the aL and Schellman Ccap residue shows a sub-

stantial upfield shift of ca -6 ppm. Although, with the

exception of the Ccap Dd15N, the Dd values for the Ccap,

C0 and C00 residues are small in magnitude, their values are

weakly correlated with one another (SI Fig. S7), a feature

which is automatically taken advantage of during the

training of the ANN. So, even while the secondary shifts

for the Ccap motifs at first sight appear to be close to

random coil, together with the Ccap amino acid propensi-

ties they suffice for training the ANN to identify the Ccap

motifs. However, the differences between Schellman and

aL Ccaps are insufficiently distinct to allow them to be

distinguished from one another by the ANN, and we

therefore combine them into a single Ccap motif.

Occasionally, a-helices are terminated by a Pro residue,

where a steric collision between the pyrrolidine ring and

the preceding residue prevents continuation of the a-helix.

About 4,800 and 200 such helices are found in the structure

database and chemical shift database, respectively, and 144

and 3 of them can be classified as being a proline Ccap

motif, which must have a Pro at C0 and a three-center

H-bond linking the C=O at the Ccap position to the N–H in

C000 and C0000 positions, i.e., bb(Ccap) / bb(C000) and

bb(Ccap) / bb(C0000) H bonds (Aurora and Rose 1998). If

the requirement of a three-center H-bond is relaxed to

include either a bb(Ccap) / bb(C000) H-bond or a

bb(Ccap) / bb(C0000) H-bond, 1,704 and 70 helices can be

recognized as terminated by a proline Ccap motif,

respectively. The backbone conformation and chemical

shift patterns for this extended proline Ccap motif are

essentially the same as those containing the three-center

H-bond, and we will therefore use this more generous

definition instead. Of the 1704 helices terminated by such a

proline Ccap motif, the //w torsion angles of the Pro res-

idue cluster in two regions, centered at -60 ± 8�/-

23 ± 12� (1,434) and at -58 ± 8�/137 ± 12� (270),

respectively; the residues at the Ccap position also exhibit a

bimodal //w distribution with its two main clusters cen-

tered at -135�/75� and -75�/130� (SI Fig. S5). However,

there appears no direct correlation between the //w torsion

angles of the Ccap residue and the Pro at C0. Consequently,

the Dd values of the Ccap residues in the 70 proline Ccaps

in the chemical shift database show large dispersion (Table

S3), making it difficult to identify the Pro Ccap motifs on

the basis of chemical shifts, and proline Ccaps are therefore

not included in our analysis.

The Ccap score, SCcap, calculated using Eq. 3 for all

available hexapeptides in the chemical shift database

shows that the vast majority of Ccaps yield a score higher

than 0.6, with the majority clustered between 0.9 and 0.95

(Fig. 3b). The Ccap ANN is trained in a manner very

similar to that used for the Ncap ANN, and the trained

network shows excellent performance to reproduce the

four-state structural classification [helix, strand, loop,

Ccap]. Despite lacking very distinct chemical shifts, except

for the Dd15N of the Ccap residue, the Ccap ANN is

remarkably effective at identifying Ccap motifs on the

basis of chemical shifts and amino acid composition. Using

a prediction score cutoff value of 0.3, 94% of its selected

Ccap hexapeptides represent true Ccap motifs (Qpred =

0.94) and 88% of the true Ccaps are identified by the ANN

(Qobs = 0.88), for a total MCC value of 0.92 (SI Table S5).

As with the N-cap motifs, the values of Qpred and Qobs

scale with the prediction threshold value used, but the

MCC value remains relatively constant (Fig. 6b). Evalua-

tion of the trained Ccap ANN on the separate validation

dataset of 11 proteins not used in any of the ANN training

yields Qpred and Qobs values very similar to those observed

for the chemical shift database (Table 3).

Neural network prediction of b-turns

Tight b-turn motifs are highly abundant in proteins. They

play an important role in protein folding. In addition to

other tight turns, such as d-, c-, a-, and p-turns, they enable

direct contacts between elements of regular secondary

structure (a-helix and b-strand) by reversing the direction

of the polypeptide chain. When intervening between two

segments of regular secondary structure, a b-turn invari-

ably is associated with important stabilizing interactions,

such as pairing of b–strands and a-helix packing.

Depending on the //w torsion angles of their two center

residues, b-turns are further sub-categorized into types, I,

II, VIII, I0, II0, VIa1, VIa2 and VIb, with the remainder

being assigned to a ‘‘miscellaneous’’ type IV. In our study

we aim to identify five of the most common types: I, II, I0,
II0 and VIII. The //w torsion angles show large variations

for the first and last residues in a b-turn, but tight clustering

for the center two residues in each turn type (Fig. 2 and SI

Fig. S1).

A total of 914, 432, 175, 107 and 309 isolated b-turns

are observed in the chemical shift database with type I, II,

I0, II0 and VIII, respectively. The secondary chemical shifts
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Ddx;j
turn

� �
observed for each of these turn residues show

substantial scatter and relatively few distinguishing fea-

tures (Fig. 7). For most turn nuclei, the Dd value differs by

less than one standard deviation from zero. However, as

was noted for the Ccap residues, the Ddx;j
turn values within a

given turn again are weakly correlated with one another (SI

Fig. S8). It is difficult to take advantage of this feature in

regular chemical shift analysis, but the correlated nature of

the Dd values is automatically included in the training

process of the ANN. So, even while the secondary shifts for

the different b-turn types at first sight appear to be very

similar to one another, together with the amino acid

propensity in different turn types these Ddx;j
turn values con-

tain sufficient information for the trained ANN to distin-

guish between the different turn types.

Of the different b-turns, types I, II, I0 and II0 exhibit

similar Ca(i,i ? 3) distance distributions, with types I0 and

II0 showing the tightest clustering and shortest average

Ca(i,i ? 3) distance (Table 2; SI Fig. S2). Type VIII

b-turns tend to have longer Ca(i,i ? 3) distances (Table 2)

and appear contiguous with the more ‘‘open’’ turns, which

frequently have type-VIII-like //w torsion angles, but

Ca(i,i ? 3) [ 7 Å (SI Fig. S2). About 75% of the type I, I0,
II and II0 b-turns are expected to show a bb(i) / bb(i ? 3)

Table 3 MICS prediction performance for 11 proteins which are not present in the training database

BMRB/PDB Ncap Ccap b-turn I b-turn II b-turn I0 b-turn II0 b-turn VIII

dinI/1ghh 1/1/1a – 2/2/2 – – – 3/2/2

5589/1nxi 2/2/2 3/3/3 2/2/1 – – – –

16146/1enfA 4/3/3 1/1/1 4/6/4 2/0/0 2/1/1 – 3/3/2

16321/1wzvA – 0/1/0 7/6/6 – – – 6/5/5

16362/1gwyA 2/2/1 1/1/1 2/1/1 1/0/0 1/0/0 – 2/1/1

16447/1phpA 3/3/2 6/5/5 5/8/5 2/2/2 – 1/2/1 7/7/6

16537/2etlA 3/2/2 2/1/1 4/4/2 2/1/1 1/1/1 – 3/2/2

16572/3hn9A – – 4/6/4 3/2/2 – 1/1/1 3/4/3

16656/3ipfA – – 2/2/2 – – – 2/2/2

16661/3gzmA 4/4/4 3/2/2 1/1/1 – – – –

16684/3l48C – – 3/3/3 3/2/2 1/1/1 – 1/1/1

Overall 19/17/14 16/14/13 36/41/31 13/7/7 5/3/3 2/3/2 30/27/24

a Number of the observed, predicted, and correctly predicted elements. Only those observed N-caps, C-caps and b-turns with sufficient observed

chemical shift data, i.e., with at least three backbone and 13Cb chemical shifts per residue, are counted. The thresholds of the predicted score used

to assign a positive prediction are listed in SI Table S5

Fig. 7 Chemical shift patterns

for five types of b-turns. For all

tetrapeptides in the chemical

shift database identified as

isolated type I, II, I0, II0 or VIII

b-turns (according to the

original definitions; see

‘‘Methods’’), the average

secondary 1HN, 15N, 1Ha, 13C0,
13Ca and 13Cb chemical shifts

are plotted together with their

standard deviations for each of

the four residues
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H-bond from the last to the first residue (Hutchinson and

Thornton 1994), whose presence correlates with the short

b-turn Ca(i,i ? 3) distance (\7 Å). In our protein structure

database, more than 80–90% of these turns include such an

intra-turn H-bond (Table 2), exhibiting comparable distri-

butions for the computed H-bond energy (Table 2; SI Fig.

S3). In contrast, the bb(i) / bb(i ? 3) H-bond is rarely

observed in type VIII b-turns, an observation that can be

linked to their relative long Ca(i,i ? 3) distance. A large

fraction (60–80%) of the type I0 and II0 b-turns additionally

exhibit bb(i) ? bb(i ? 3) H-bonds (Table 2). Other intra-

turn H-bonds, including bb(i) ? sc(i ? 3), bb(i) /
sc(i ? 3) and sc(i) / bb(i ? 3) are less common, and are

observed with frequencies of (5, 2, 12%) for type I, (13, 10,

0.5%) for type II, (0.5, 3, 1%) for type I0, (2, 4, 0%) for type

II0, and (1, 1, 0%) for type VIII.

The amino acid sequence preference of b-turns, and the

association of those favored amino acids with the stability

of b-turns has been studied extensively (Wilmot and

Thornton 1988; Hutchinson and Thornton 1994). The

amino acid sequence also serves as the input to a wide

array of bioinformatics algorithms to predict the presence

of b-turns (Wilmot and Thornton 1990; Chou 2000;

Kirschner and Frishman 2008; Petersen et al. 2010).

However, using sequence information alone it proves dif-

ficult to distinguish the different b-turn types, and often all

b-turns are grouped into either a single class or two classes,

I and II (Petersen et al. 2010). The positional preference

observed for the various turn types in our protein structure

database is very similar to those reported earlier, showing a

high occurrence of short and hydrophilic amino acids, such

as Asp, Asn and Gly, at the two center positions (Table S2),

which are responsible for reversing the direction of the

polypeptide chain. The polar character of these residues

relates to the fact that most turns are located on the protein

surface and therefore exposed to solvent.

Type VIII b-turns, added by Wilmot and Thornton

(1990) to complement the six categories (types I, II, I0, II0,
VIa and VIb) defined by Richardson (1981), are charac-

terized by a second residue with an aR and a third residue

with a b backbone conformation. As mentioned above,

they tend to be more ‘‘open’’ in terms of Ca(i,i ? 3) dis-

tance and they lack intra-turn H-bonds. Moreover, in

contrast to the other b-turns, the number of type VIII turns

rapidly increases when the Ca(i,i ? 3) distance cutoff is

slightly increased (SI Fig. S2). This makes it difficult to

draw a sharp distinction on the basis of backbone torsion

angles alone, as reflected in the broad and contiguous

distribution of b-turn score values SVIII (Fig. 3g). The

broader distribution of geometries represented in type VIII

turns is the likely reason that bioinformatics predictions of

these turns show much lower success ratios compared to

predictions of the other turn types (Shepherd et al. 1999;

Kirschner and Frishman 2008; Kountouris and Hirst 2010).

The empirical b-turn score, Sk (Eq. 5), represents a

numerical value reflecting how closely any given turn

mimics the idealized turn type in terms of backbone angles.

b-turn scores, Sk (k = I, II, I0, II0 and VIII), are calculated

for each tetrapeptide in the chemical shift database. With

the exception of the type VIII b-turn, the calculated b-turn

scores are shown to be highly effective at identifying each

of these five types of b-turns (Fig. 3c–f). Almost all type I,

II, I0, II0 b-turns have a corresponding calculated score

Sk [*0.4, while nearly all non b-turns and non type k b-

turns have a very low score Sk \ 0.05. Type IV b-turns are

the only exception, and a number of these exhibit elevated

Sk scores between 0.1 and 0.5. These type IV b-turns with

high Sk values actually are very similar to type k b-turns in

their //w angle pattern, but are excluded by the hard cutoff

(30�/45�; see ‘‘Methods’’) used for the //w angles in the

original definitions. We use a Sk score cutoff of *0.2–0.3

(Table S5) to assign type I, II, I0, II0 and VIII b-turns, such

as to yield optimal overlap between turns identified by

Eq. 5 and those of the original literature definitions.

As described above for the helix capping motifs,

extending the three-state secondary structure classification

[helix, strand, loop] by a fourth class, the specific b-turn

character at any given position in the sequence, provides a

suitable avenue to train the various specific b-turn ANNs.

Five separate b-turn ANN are trained for the five types of

b-turns considered in our study. Using the chemical shifts

and amino acid sequence information contained in our

chemical shift database, the trained networks are proving to

be highly effective at identifying type I, II, I0 and II0

b-turns, and at a somewhat lower level of accuracy also for

the less distinct type VIII b-turn. The values obtained for

Qpred and Qobs again scale with the value chosen for the

score cutoff (Fig. 8), whereas the MCC value is less sen-

sitive to the score cutoff. Final Sk score cut-off values

(Table S5) are selected to optimize the overall b-turn ANN

prediction. Performance of the ANNs for both the valida-

tion datasets used during training (Table S5) and the sep-

arate set of eleven additional validation proteins (Tables 3,

S8) show that ca 75% of the b-turns actually present are

positively identified by their specific ANN, with relatively

few false positives among these predictions, in particular

when the prediction yields a high P4
k value (Table S5).

MCC scores range from 0.67 for the type VIII b-turn to

0.83 for type I0. The best performance is seen for type I0,
and correlates with the unique backbone conformation of

its two center residues, which both have positive / angles.

The statistics reported in Table 3 and SI Tables S5 and

S8 suggest that there is a non-negligible fraction of false

positive b-turn predictions, and the same applies for
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positive Ncap/Ccap predictions. Of these false positives,

many yield a high predicted score and it appears that in

many cases the appearance of a false positive may be

caused by actual differences between the reference struc-

ture, studied in the crystalline state, and the structure

present in solution. The vast majority of b-turns locate on

the protein surface, which frequently exhibit increased

backbone mobility and sometimes adopt different confor-

mations when crystallized in a different space group For

example, the tetrapeptide V83-N84-G85-H86 adopts a type

IV b-turn (/i?2/wi?2 = - 116�/52�; SI0 = 0.04) in refer-

ence structure 2ZJD (solved at a crystallographic resolu-

tion of 1.56 Å, and used by our chemical shift database),

and as a type I0 b-turn (SI0 = 0.99) in reference struc-

ture 2Z0E (solved at 1.9 Å). MICS predicts this element to

be a type I0 b-turn with a predicted P4
I0 score of 0.9. Another

reason for false positive predictions, in particular for type I

b-turns, is that when such turns partially overlap with one

another, these adjacent type I b-turns are often classified as

310 helices by the DSSP program. Interestingly, some of

Fig. 8 MICS prediction

accuracy for five types of

b-turns. Prediction performance

scores for type I (a, a’), II (b,

b’), I0 (c, c0), II0 (d, d’) and VIII

(e, e’) b-turns for all available

tetrapeptides obtained by the

trained ANN in the validation

datasets (see ‘‘Methods’’).

a–e Matthews correlation

coefficient (MCC, red), Qpred

(green) and Qobs (blue), as a

function of the P4
k threshold

value used for a positive

prediction of a type k b-turn.

These scores are used to select

the threshold (see SI Table S5)

for a positive type k b-turn

prediction. (a’–e’) The numbers

of the positively predicted

b-turns are plotted (right y-axis,

thin line with open squares) as a

function of the binned P4
k value;

the ratio of true type k b-turns

relative to the number of

predictions (Qpred) (left y-axis,

bold line with filled circles)

shows the probability that any

given tetrapeptide is correctly

identified as a type k b-turn,

from which fitted polynomials

(Eqs. S3–S7) are derived (red
solid lines) and used by MICS

to convert the P4 scores into

actual probabilities
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the 310 helical segments identified by DSSP are designated

as loops or b-turns by other secondary structure assignment

programs, such as STRIDE (Heinig and Frishman 2004). In

this respect it is important to note that even for the same set

of atomic coordinates different programs do not always

agree in their designation of regular secondary structure,

which therefore limits the extent to which such elements can

be recognized from NMR chemical shifts (Wishart 2011).

Concluding remarks

Both the N- and C-terminal helix capping motifs as well as

five specific types of b-turns can be predicted with quite

good accuracy on the basis of amino acid type and back-

bone and 13Cb chemical shifts. The trained ANNs report a

score that is directly related to the likelihood for any given

residue to be either the second residue in a four-residue

b-turn, or the helical Ncap or Ccap residue. An empirical

relation between these ANN scores and the likelihood that

the ANN prediction is correct (red lines in Figs. 6a’–b’,

8a’–e’) is then used to convert the ANN scores into actual

probabilities. As the ANN programs for recognizing the

different elements of secondary structure, including

a-helix, b-sheet, loop, turns, and helix caps have been trained

separately, use of empirical correlations such as graphed in

Figs. 6 and 8 potentially can result in total probabilities,

summed over the ten different categories, that are higher

than 100%. The probability output is therefore normalized

such that its output cannot exceed 100%. The full MICS

output file reports for each residue both the ten ANN output

scores for it to be of type k (P1 for helix, P2 for sheet, P3 for

loop and P4
k for Ncap, Ccap and the five b-turns) and the

actual probabilities, derived from these ANN output scores.

MICS is available as a user-friendly webserver (http://

spin.niddk.nih.gov/bax/nmrserver/mics). It accepts chemi-

cal shift input files that are either in BMRB or TALOS input

format and presents a graphical display reporting the prob-

abilities that each given residue is of type k (Fig. 9). In

addition, the full output file is emailed to the user.

Fig. 9 Output of the MICS

program, displaying results of

the helix capping motif and

b-turn type predictions for

ubiquitin. MICS also includes in

its output the secondary

structure prediction for a-helix

(red bars) and b-sheet (cyan
bars) as well as the chemical

shift based RCI-S2 prediction

(Berjanskii and Wishart 2005)

(green dots and lines; upper

panel). The predicted Ncap and

Ccap motifs are marked by

yellow arrows (second panel),

and the predicted type I, II, I0, II0

and VIII b-turns (blue bars,

with solid color for the two

center residues and transparent

for the first and last residues) are

displayed in separate panels.

Note that for ubiquitin no type

II, II0 or VIII turns are predicted,

and those panels have therefore

been deleted from the figure.

The heights of the bars and

arrows correspond to the

normalized probabilities

assigned by MICS
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We anticipate MICS to be useful both in conventional

protein structure determination as well as in the chemical

shift based structural modeling, as exemplified by the

programs CHESHIRE and CS-Rosetta. For conventional

protein structure determination, in particular for larger

proteins where the number of NOEs per residue frequently

is smaller, correct identification of local turns and helix

capping motifs on the basis of NOE data can be difficult

and the MICS output will serve as a guide for correct

identification of these local structural elements. CHESH-

IRE and CS-Rosetta use as their input a large ensemble of

short peptide fragments, selected from a protein structure

database. These fragments are then used in a computa-

tionally intensive search to derive a structure that is of low

empirical energy. Finding suitable input fragments is eas-

iest for a-helical and b-sheet segments of a protein, but can

be very difficult for other regions. We anticipate that the

quantitative probabilities provided by MICS will aid in

assembling collections of input fragments that better reflect

the true structure, and therefore will result in improved

convergence and potentially extend the size limit of pro-

teins that can be studied by such methods.

The limitations of secondary structure prediction from

amino acid sequence information alone are exemplified by

a recent study where a single amino acid substitution can

switch the protein structure from a mixed a/b structure to a

3-helix fold (Alexander et al. 2009). Clearly, chemical

shifts which report on the local backbone torsion angles are

invaluable in such cases and can unambiguously identify

the correct secondary structure (Shen et al. 2010). Analo-

gously, we here have demonstrated that the use of chemical

shifts, in addition to sequence, can dramatically improve

the accuracy at which specific b-turns can be identified (SI

Table S8) over what can be achieved with some of the

latest sequence-only programs (Fuchs and Alix 2005;

Kountouris and Hirst 2010; Petersen et al. 2010). To the

best of our knowledge, there are currently no webserver

programs that predict helix-capping motifs from amino

sequence alone. However, when we train our Ncap and

Ccap ANN for identification of such motifs in the absence

of any chemical shift information, the MCC scores for

corresponding predictions are approximately two-fold

lower than obtained by MICS (data not shown).

Software availability

The MICS program can be downloaded from http://spin.

niddk.nih.gov/bax/software. MICS can also be run in web-

server mode at http://spin.niddk.nih.gov/bax/nmrserver/

mics.
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