

Figure S1. Evaluation of the transfer efficiency as a function of delays τ_1 and τ_2 . The transfer efficiency ranges from 0 to 0.85, where 1 represents the transfer efficiency of sensitivity-enhanced HSQC optimized for ¹³CH₂ (Schleucher, J.; Schwendinger, M.; Sattler, M.; Schmidt, P.; Schedletzky, O.; Glaser, S. J.; Sørensen, O. W.; Griesinger, C. *J. Biomol. NMR* **1994**, *4*, 301-306). The bold lines correspond to pairs of τ_1 and τ_2 that yield spin-state-selective transfer from ¹³C to ¹H. The solid dot corresponds to delays for which the CH₂-TROSY transfer efficiency is at a maximum.

Figure S2. Contour plot showing the relative intensity of the signal at the ¹³C frequency δ_c , corresponding to transitions C^{+-} and C^{-+} . Values reported on the graph represent the relative intensity in % of this spurious peak compared to the selected correlation when using the pulse scheme of Figure 2a. The bold lines correspond to pairs of τ_1 and τ_2 that yield spin-state-selective transfer from ¹³C to ¹H. The solid dot corresponds to delays for which the CH₂-TROSY transfer efficiency is at a maximum.

Figure S3. Average sensitivity per unit of measuring time for Gly correlations in the CaM/M13 system, recorded with the CH₂-TROSY pulse scheme at 800 MHz, 35 °C. The intensities, normalized for equal measuring times, are plotted as a function of the recycle delay δ , for cases where only ¹H spin polarization is used (\blacksquare), only ¹³C polarization (\blacktriangle), or the sum of both ¹H and ¹³C (\bigcirc). Destruction of either the ¹H (for \bigstar) or ¹³C (for \blacksquare) polarization, immediately prior to the start of the Figure 2a pulse scheme, was accomplished by a 90° ¹H or ¹³C pulse, followed by a pulsed field gradient.

Figure S4. Comparison of (**a**) sensitivity-enhanced HSQC and (**b**) CH_2 -TROSY spectra of GB3, at 800 MHz, 10 °C. Assignments are indicated for methylene side chain groups with resolved ¹H chemical shifts. Both experiments have been recorded in the constant-time (CT) mode (using a CT ¹³C evolution period of $1/{}^{1}J_{CC} \approx 28 \text{ ms}$) (Vuister, G. W.; Bax, A. J. Magn. Reson. **1992**, 98, 428-435), with a total measuring time of 1 h per spectrum. Spectra result from identical time domain matrices, consisting of $340^{*}(t_1) \times 1350^{*}(t_2)$ data points, corresponding to acquisition times of 28 ms and 120 ms respectively. Data were processed identically: without apodization in the t_2 dimension, and with a 90° shifted sine bell in the t_1 dimension. Spectra are plotted at the same contour levels. ¹H cross-sections through the Glu-15 C^vH^v₂ correlation show that only the CH₂-TROSY experiment allows one to distinguish the two proton chemical shifts. Cross sections shown on the right correspond to the dashed lines in panels (**a**) and (**b**).