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Abstract

Residual dipolar couplings and their corresponding alignment tensors are useful for structural analysis of macro-
molecules. The error in an alignment tensor, derived from residual dipolar couplings on the basis of a known
structure, is determined not only by the accuracy of the measured couplings but also by the uncertainty in the
structure (structural noise). This dependence is evaluated quantitatively on the basis of simulated structures using
Monte-Carlo type analyses. When large numbers of dipolar couplings are available, structural noise is found to
result in a systematic underestimate of the magnitude of the alignment tensor. Particularly in cases where only few
dipolar couplings are available, structural noise can cause significant errors in best-fitted alignment tensor values,
making determination of the relative orientation of small fragments and evaluation of local backbone mobility
from dipolar couplings difficult. An example for the protein ubiquitin demonstrates the inherent limitations in
characterizing motions on the basis of local alignment tensor magnitudes.

Introduction

Residual dipolar couplings (rDCs) can be observed in
solution when a molecule is aligned with the magnetic
field, either as a result of its own magnetic suscep-
tibility anisotropy (Gayathri et al., 1982; Bothner-
By, 1996), or caused by an anisotropic environment
such as an oriented liquid crystalline phase (Saupe
and Englert, 1963; Emsley, 1996) or an anisotropi-
cally compressed gel (Tycko et al., 2000; Sass et al.,
2000). When alignment can be kept sufficiently weak,
the NMR spectra retain the simplicity normally ob-
served in regular isotropic solution, while allowing
quantitative measurement of a wide variety of rDCs,
even in macromolecules (Tolman et al., 1995; Tjan-
dra and Bax, 1997). These couplings can either be
used for further refinement of structures determined
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by conventional methods (Tjandra et al., 1997) or
for determining a structure directly (Delaglio et al.,
2000; Hus et al., 2000). They can also be used for
structure validation (Cornilescu et al., 1998; Clore
and Garrett, 1999), for determination of relative ori-
entations of molecular fragments or domains (Tjandra
et al., 1997; Losonczi et al., 1999; Bewley and Clore,
2000; Clore, 2000; Goto et al., 2001), or for studying
dynamic effects (Fischer et al., 1999; Meiler et al.,
2001; Tolman et al., 2001). Analysis of the relation
between a molecule’s 3D shape and its alignment ten-
sor values can yield important insights into all of these
processes (Zweckstetter and Bax, 2000; Bewley and
Clore, 2000).

If well-defined structures of either complete
macromolecules, their domains, or even smaller frag-
ments are available, an alignment tensor that describes
the average orientation of this (sub)structure with re-
spect to the magnetic field can be calculated from
the observed dipolar couplings (Tjandra et al., 1996;
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Losonczi et al., 1999). This is increasingly used to
determine relative orientations of protein domains and
RNA fragments, and also for identification of mo-
bile protein segments (Vermeulen et al., 2000; Fischer
et al., 1999; Tolman et al., 2001; Almond and Duus,
2001; Wang et al., 2001). In order to avoid over-
interpretation of the data in such applications, it is
critical to have accurate estimates of the uncertainties
in the magnitude and orientation of the alignment ten-
sor. These uncertainties can be particularly large when
only a small number of residual dipolar couplings is
available for the individual substructures.

This report focuses primarily on the effect of un-
certainty in the atomic coordinates of the structure
used, so-called structural noise, on alignment tensors
that are calculated from rDCs on the basis of such a
structure. Results and conclusions in this study are
based mostly on simulated data, where the ‘true’ struc-
ture and dipolar couplings are known exactly. The
effect of structural noise is simulated by adding ran-
dom errors to the bond vector orientations, whereas
simply adding noise to the dipolar couplings simu-
lates the effect of measurement noise. The effect of
structural noise is shown to vary greatly, depending
on the orientations of the internuclear vectors relative
to the alignment tensor. Modules to determine the un-
certainty in the alignment parameters as a function
of measurement or structural noise are implemented
in the software package PALES (Zweckstetter et al.,
unpublished).

Methods

The alignment tensor can conveniently be derived
from experimental dipolar couplings and a known
structure, either by singular value decomposition
(SVD) (Losonczi et al., 1999) or by an iterative multi-
dimensional least-squares minimization of the differ-
ence between back-calculated rDCs and experimental
ones (Tjandra et al., 1996). SVD is more stable than
iterative least-squares minimization but does not per-
mit certain parameters, such as the alignment tensor
magnitude or rhombicity, to be held constant. All fits
carried out in this study are based on SVD.

Simulated dipolar vector orientations are generated
as follows: First, 10,000 vectors are created that are
uniformly distributed on a sphere, using a double-
cubic-lattice method (Eisenhaber et al., 1995). Then,
a random subset of NDC vectors is selected from this
ensemble, and corresponding ‘true’ dipolar couplings

are calculated using

dPQ(θPQ,φPQ)=Da[(3 cos2 θPQ − 1)

+ 3
2 Rsin2θPQ cos(2φPQ)], (1)

where (θPQ ,φPQ) are the polar angles of vector P-Q.
Most of the graphs shown are derived for a magnitude
of the alignment tensor, Da, of 10 Hz, and rhombicity,
R = 0.3, but the effect of varying R is also considered.

The effect of structural uncertainty is simulated
by slightly reorienting the selected vector orientations
in a random manner, such that the deviations be-
tween the original and final vectors are described by
a Gaussian cone-shaped distribution, with a standard
deviation σcone, and a relative probability of sin(β)
exp(-β2/σ2

cone) for an angle β between the original and
modified orientation.

The angle ϑ between the orientation of two align-
ment tensors is calculated according to Sass et al. in a
five-dimensional linear vector space, and expresses the
collinearity of alignment tensors, independent of their
magnitude (Sass et al., 1999). Also following Sass,
a generalized alignment tensor magnitude is defined,
which includes the effect of rhombicity:

GMag = (2Da/DPQ
max)[π(4 + 3R2)/5]1/2, (2)

where DPQ
max = −µ0(h/2π)γP γQ/(4π2r3

PQ), with µ0
the permittivity of vacuum, h Planck’s constant, γ the
magnetogyric ratio, and rPQ the PQ internuclear dis-
tance. However, because much of the recent literature
reports Da, and visualization of the meaning of the pa-
rameters is frequently carried out using diagonalized
alignment tensors, most of the results reported here
refer to Da. For the same reason, the deviation of the
principal z and transverse axes of the alignment tensor
from their true orientations is also considered.

Results and discussion

The effect of noise on best-fitted alignment tensors
is evaluated in two different ways. First, we analyze
for a large number of simulated structures how the er-
rors in derived alignment tensors correlate, on average,
with parameters such as the number of experimen-
tally available dipolar couplings and the uncertainty
in the structure coordinates. Next, we evaluate for a
large set of individual structures how the error estimate
obtained by Monte-Carlo procedures correlates with
the true error in the derived alignment tensor. Proper
parameterization of such Monte-Carlo procedures is
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Figure 1. Ratio of the RMSD between measured and
back-calculated dipolar couplings, Dmeas,i and Dcalc,i,
rms(Dmeas − Dcalc) = [

∑NDC
i=1 (Dmeas,i − Dcalc,i)2/NDC]1/2,

and the true magnitude of the alignment tensor (Dtrue
a ). Noise-free

Dmeas values are generated for a randomly selected initial structure,
using Dtrue

a = 10 Hz, and R = 0.3, according to Equation 1. Dcalc

values are dipolar couplings that are back-calculated after an SVD
fit of Dmeas values is made to a structure in which structural noise
has been added to the original structure. Results are shown as a
function of the number of dipolar couplings, NDC, and are averages
over 1000 different initial structures. Calculations are carried out
for four different levels of structural noise: 2.5◦ (−), 5◦ (– –),
10◦ (....) and 15◦ (·-·-). Assuming an isotropic distribution of
internuclear vectors, rmsd values vary only weakly with rhombicity
of the alignment tensor and scale with (4 + 3 R2)1/2 (Clore and
Garrett, 1999). Error bars correspond to one standard deviation.

found to be critical when evaluating the outcome of
such evaluations.

Structural quality and dipolar coupling RMSD

Figure 1 shows the relation between structural noise
and the average RMSD of the input and back-
calculated dipolar couplings. Average RMSD values
are obtained using 1000 randomly selected starting
structures, each consisting of NDC (from 6 to 300)
vectors. The calculation is repeated for structural noise
amplitudes, σcone, of 2.5, 5, 10 and 15◦. As expected
for an SVD fit with five adjustable parameters, Fig-
ure 1 shows that if only six dipolar couplings are
included in the fit, the RMSD is invariably quite small.
The RMSD rapidly reaches a plateau value when more
than ca 25 couplings are included. For example, for
structural noise with Gaussian amplitude σcone =
5◦, the RMSD becomes about 18% of Da, which is
comparable to what is seen when comparing experi-
mental dipolar couplings with high-resolution crystal
structures. For example, 17% is obtained when com-
paring experimental ubiquitin dipolar couplings with

its 1.8-Å X-ray structure (Ottiger and Bax, 1998) and
11% is found when comparing dipolar couplings for
the third IgG-binding domain of streptococcal protein
G with its 1.1-Å X-ray structure (B. Ramirez, un-
published). Much lower agreement, corresponding to
>10◦ structural noise is found when comparing dipo-
lar couplings measured for a range of other proteins
to either lower resolution (> 2 Å) crystal structures
or to NMR structures solved in the absence of dipolar
couplings, including structures with small (< 0.7 Å)
backbone RMSD (data not shown). The fact that for
the wide variety of proteins studied to date the agree-
ment between dipolar couplings and X-ray crystal
structure invariably improves with higher resolution
suggests that the residual in the dipolar coupling fit
is often dominated by structural noise, particularly
when considering globular domains, and not by local
dynamics.

For a given amount of structural noise, the rms
error in Da depends only very weakly on the rhom-
bicity of the alignment tensor (see legend to Figure 1).
Note, that these structural noise estimates are based
on the assumption that errors in dipolar coupling
measurements are small compared to structural un-
certainties (as is the case with current measurement
techniques and overall alignment strengths discussed
in this paper) and highly flexible protein parts, such
as the C-terminus of ubiquitin (residues 73–76), are
excluded.

Error in derived alignment tensor

Figure 2 shows the rms error in the derived alignment
tensor parameters for different amounts of structural
noise. As expected, for large numbers of dipolar cou-
plings (NDC ≥ 20) the rms error in the orientation
of the alignment tensor z-axis, �ψz, decreases ap-
proximately with N1/2

DC, for all four levels of structural
noise (Figure 2B). Remarkably, the fractional error
in the magnitude, Da, of the SVD-derived alignment
tensor shows a very different behavior (Figure 2A):
At low levels of structural noise, the error decreases
with increasing NDC, whereas at σcone = 5◦ the frac-
tional error reaches a plateau value of ca. 0.02 and the
plateau value increases to ca. 0.18 for σcone = 15◦.
This plateau value results from a systematic underes-
timate of the alignment tensor magnitude in the case
of structural noise, which would not occur if the error
were only in the measurement instead of in the struc-
ture (see below, and Figures 5C,E). The magnitude
of this systematic error increases rapidly with in-
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Figure 2. Uncertainty in magnitude (A) and orientation (B) of alignment tensors as a function of the number of dipolar couplings, NDC, for
four different levels of structural noise: 2.5◦ (-), 5◦ (– –), 10◦ (....) and 15◦ (·-·-). �Da = Dtrue

a − Dsvd
a indicates the difference between

the SVD-derived alignment magnitude and its true value, Dtrue
a , whereas �ψz is the deviation from the true orientation of the z-axis of the

alignment tensor; σ(�Da) = [
∑1000

i=1 (�Di
a)

2/1000]1/2 and σ(�ψz) = [
∑1000

i=1 (�ψi
z)

2 / 1000]1/2 are the rms values of these errors. Values
shown are averages obtained from 1000 randomly generated structures; errors for individual structures can be significantly higher (see text).

creasing magnitude of the structural noise (Figure 3),
particularly for high NDC values.

The error in the SVD-derived rhombicity, �R,
correlates directly with the fractional error in Da (Fig-
ure 4). For NDC = 15 (solid lines in Figure 4), the
ratio of the error in the magnitude of the rhombicity
and the fractional error in Da changes relatively little
with increasing structural noise. However, at larger
NDC values the error in R decreases relative to the
error in Da. This results from the above-mentioned
systematic underestimate in the SVD-derived Da value
for the case of structural noise and large NDC. Because
R is the ratio of the z and the transverse component of
the alignment tensor, both of which are systematically
underestimated in the case of structural noise, there is
no such systematic bias in R. As a consequence, the
error in R decreases relative to the error in Da with in-

creasing structural noise. Numerical calculations show
that the rms error in the transverse orientation of the
alignment tensor, σ(�ψxy), is directly related to the
rms error in z axis orientation, σ(�ψz):

σ(�ψxy) ≈ 2σ(�ψz)/(3R). (3)

Clearly, Equation 3 only applies to cases where
2σ(�ψz)/(3R) <<π/2; for larger values the transverse
orientation will be undefined.

A numerical example

A simple practical example serves to illustrate how the
above numbers can be used to estimate the expected
uncertainty in the SVD-derived alignment parame-
ters. The example discussed below assumes that for a
given structure the SVD analysis yields Da = 7.5 Hz,
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Figure 3. Systematic underestimation of the average magnitude of
alignment as a function of structural noise for the case of large
numbers of dipolar couplings. In the simulation 200 couplings were
used, and values shown are averages obtained from 1000 differ-
ent structures, i.e. <Da> = [

∑1000
i=1 Da,i]/1000, where Da,i is the

alignment magnitude obtained for structure i by a single SVD.

Figure 4. Uncertainty in alignment tensor rhombicity as a function
of structural noise for four different numbers of dipolar couplings:
NDC = 15 (–); NDC = 20 (....); NDC = 40 (– –); NDC = 100
(·-·-). Panels A–D differ in the rhombicity, R, of the alignment ten-
sor used for calculating the exact dipolar couplings: R = 0.0 (A);
R = 0.1 (B); R = 0.2 (C), R = 0.6 (D). Symbols σ (�Da) and σ

(�R) are the root-mean-square values of the differences between
the SVD-derived Da and R and their true values, Dtrue

a and Rtrue,
for an individual structure. Rms values are obtained by repeating
SVD calculations for 1000 different, randomly selected structures.

R = 0.25, with a 3 Hz rmsd of the SVD fit, using
NDC = 50. In Figure 1 an RMSD/Da = 3/7.5 = 0.4
ratio for NDC = 50 falls between the 10◦ and 15◦
structural noise curves, and interpolation suggests an
approximate structural noise level of about 12◦. Fig-
ure 3 indicates that 12◦ structural noise yields a Da
underestimate by about 11% relative to the true value,
which therefore is estimated at 8.3 Hz. In a second it-
eration, the estimate for RMSD/Da = 3/8.3 is slightly

smaller, pointing to a structural noise of 10◦. Fig-
ure 2B then indicates an estimated error of 4◦ for the
z-axis orientation. The estimated uncertainty in the
transverse orientation then follows from Equation 3 to
be about 10◦. The uncertainty in R is derived from Fig-
ure 4C, using σ (� Da)/Dtrue

a ≈ 0.1 (Figure 2A). For
NDC = 50, interpolation between the NDC = 40 and
NDC = 100 curves in Figure 4C yields an uncertainty
in R of 0.075.

It is important to realize that these estimated uncer-
tainties are averages, derived from a large number of
simulated structures. For any individual structure, er-
rors may be considerably higher or lower, and analysis
of uncertainties for individual structures can only be
derived with Monte-Carlo methods, discussed below.

Estimation of errors: Losonczi Monte-Carlo method

In order to obtain a better representation of the un-
certainty in SVD-derived alignment tensor values, ob-
tained for a given structure, Losonczi et al. (1999) pro-
posed to repeat the SVD calculation many times (1000
times in the present study), but each time with differ-
ent Gaussian noise added to the experimental rDCs. In
this so-called Monte-Carlo approach, only those solu-
tions are accepted for which all back-calculated rDCs
are within a given margin of the original experimental
dipolar couplings. Originally, it was suggested to set
the amplitude of the added noise two to three times
higher than the measurement uncertainty, in order to
account indirectly for uncertainties in the structure.
However, the results obtained depend both on the
amplitude of this added noise and on the acceptance
margin used. Instead, we use a fixed recipe, described
below, for selection of these parameters that yields
close agreement between the derived uncertainties and
the standard errors, obtained from the simulated re-
sults. In the present study, the PALES program (M.
Zweckstetter, unpublished) is used, which iteratively
adjusts the amplitude of the noise added to the dipolar
couplings, such that an adjustable fraction of the solu-
tions (80% in our study) are accepted when using an
acceptance margin that is two-fold larger than the rms
amplitude of the added noise. In practice, this 80%
acceptance criterion corresponds approximately to a
rms noise that is comparable to two to three times the
rms obtained in the initial SVD fit.
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Estimation of errors: Structural noise Monte-Carlo
method

A second method for estimating the uncertainty in the
derived alignment tensor has also been implemented
in the program PALES. In this so-called ‘structural
noise Monte-Carlo method’, structural noise is added
to the original structure (see Methods) with an ampli-
tude that is derived from Figure 1 to match the RMSD
between the experimental and back-calculated dipolar
couplings. The spread in the alignment parameters ob-
tained for these noise-corrupted structures, when using
the coupling constants back-calculated for the original
structure (i.e., yielding a perfect fit if no structural
noise were added), then provides another unbiased
measure for the spread in the alignment parameters.
On average, the Losonczi Monte-Carlo method, when
implemented in the way described above, and struc-
tural noise Monte-Carlo method yield uncertainties
that are quite similar to one another. However, as will
be shown for the case of ubiquitin, some differences
can occur when considering small fragments.

Losonczi Monte-Carlo evaluation of individual
structures

Below, ensembles of NDC internuclear vectors are
randomly selected from a set of 10 000 uniformly
distributed orientations. In the Losonczi Monte-Carlo
method, Gaussian noise is then added to the exact
dipolar couplings, calculated from Equation 1, and the
standard deviation of this noise is adjusted to corre-
spond to 5◦ structural noise (i.e., 1.8 Hz; see Figure 1).
For a given starting structure, the Losonczi Monte-
Carlo procedure is repeated 1000 times using different
sets of noise-containing dipolar couplings, and the
average alignment tensor is calculated from the ‘ac-
cepted’ SVD solutions. In order to simulate variations
in the non-uniformity of the distribution of internu-
clear vectors, the whole procedure is repeated 100
times, randomly selecting different starting ensem-
bles (with the same number of internuclear vectors
NDC) from the set of 10,000 uniformly distributed ori-
entations. For each of these 100 starting structures,
average Da values and errors in the orientation of the
Monte-Carlo-averaged tensor are shown in Figure 5.
Although averaging Da values is not strictly valid due
to the non-linearity of alignment tensors, average val-
ues are shown as recent work focusing on quantitative
analysis of motion from dipolar couplings were based
on those (Tolman et al., 2001). Analysis of the re-
sults obtained for simulated data confirms that adding

noise to the data as part of the Losonczi Monte-Carlo
procedure followed by averaging of the resulting ten-
sors generally yields magnitudes quite similar to those
obtained from a single SVD with no additional noise
added to the data (data not shown).

The performance of the Losonczi Monte-Carlo
method is evaluated for three different cases: (i) ab-
sence of measurement and structural noise, (ii) pres-
ence of measurement noise but no structural noise,
and (iii) presence of structural noise but no measure-
ment noise. These three different cases are simulated
by addition of noise to exact (noise-free) dipolar cou-
plings/structures a single time prior to a Monte-Carlo
evaluation. Thus, this addition of noise is performed
for simulating situations practically encountered when
working with dipolar couplings and not related to
the Monte-Carlo procedure itself. During the Loson-
czi Monte-Carlo procedure noise is then added many
times to dipolar couplings to assess potential varia-
tions in alignment tensor values.

Figures 5A and 5B apply to the case where, as part
of the Monte-Carlo procedure, ∼1.8 Hz random noise
is added to the couplings calculated for the exact struc-
ture (i.e., in the absence of measurement and structural
noise). Except for the smallest ensembles (NDC = 6),
the averaged SVD results all cluster tightly around
the correct value. For NDC = 6, the spread in calcu-
lated alignment tensor values is very high for the few
structures that yield large outliers, identifying these
Monte-Carlo SVD results as unreliable.

Figures 5C and 5D correspond to the case where
there is no structural noise, but 1.8 Hz rms noise has
been added to the simulated dipolar couplings, prior
to the Monte-Carlo procedure. This corresponds to the
case where the structure is perfectly known, but the
measurement has a rms error of 1.8 Hz. Depending
on the ensemble of starting vectors, substantial errors
in both magnitude and orientation of the alignment
tensor can be present, which decrease with increasing
NDC.

Figures 5E and 5F correspond to the case where
5◦ structural noise is added to the bond vector orienta-
tions, but the measurement is assumed to be perfect.
This reflects the common situation where one-bond
15N-1H and or 13C-1H dipolar couplings are measured
for a protein or nucleic acid whose atom positions are
not known exactly, whereas measurement error in the
dipolar couplings is negligible. Comparison of Fig-
ures 5E and 5F with 5C and 5D reveals that for small
numbers of dipolar couplings (NDC ≤ 10), structural
noise results in an up to ca. 50% larger Monte-Carlo
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Figure 5. Average alignment tensor values as a function of the number, NDC, of dipolar couplings when using the Losonczi Monte-Carlo
method, with 100 different ensembles of internuclear vectors (test structures) for each NDC. Da = (

∑1000
i=1 Di

a)/1000 is the alignment tensor

magnitude, averaged over 1000 Monte-Carlo calculations; �<ϑ> = (
∑1000

i=1 |ϑi |)/1000 denotes the corresponding average error in the general-

ized orientation, where ϑi is the angle between the true tensor orientation and the SVD-derived orientation for the i-th Monte-Carlo calculation.
A and B show variations for ensembles without measurement or structural noise; C and D are for structures with measurement noise (∼ 1.8 Hz)
but without structural noise; E and F are for the absence of measurement noise but with random errors in the vector orientations following
a Gaussian distribution of 5◦ standard deviation. In A, C and E the distributions in alignment tensor magnitude is shown, whereas B, D and
F depict the angles between the orientation of the Monte-Carlo averaged alignment tensor and its true orientation. The magnitude used for
calculating true dipolar couplings (Da = 10 Hz) is indicated by straight lines in A, C and E (the rhombicity was 0.3).

spread than for the case where noise is added to the
experimental data, whereas for large NDC the spread
in SVD results is only ca. 25% higher.

Importantly, the data shown in Figure 5E con-
firm that for NDC ≥ 20 the SVD results tend to
underestimate the true magnitude of the alignment ten-
sor, whereas the opposite is seen for very low NDC
values. This systematic underestimate increases with
higher structural noise, from 2% to 9%, and 18%
for Gaussian structural noise with standard deviations
of 5, 10 and 15◦, respectively (Figure 3). This un-
derestimate results from the fact that structural noise
unevenly influences experimental dipolar couplings.
Couplings for vectors that are at an orientation where
the predicted value varies steeply with orientation ef-
fectively contain more structural noise than those for
orientations nearly parallel to any of the principal
axes of the alignment tensor. One possible way of
addressing this problem is to weight the dipolar cou-
plings during SVD according to their dependence on
structural noise, after an initial, unweighted SVD has
defined the alignment tensor orientation and approx-

imate magnitude. In practice, however, we find the
improvement in the accuracy of Da obtained with such
a procedure to be modest and more than offset by
an increase in the uncertainty of the alignment tensor
orientation (data not shown).

Clearly, the results shown in Figure 5 indicate that
substantial errors in the magnitude and orientation of
the alignment tensor can result from either measure-
ment error or uncertainty in the input structure. A key
question is, however, whether the uncertainty in this
alignment tensor can be accurately estimated from the
spread in the SVD results when adding noise to the ex-
perimental dipolar couplings. Figures 6A, 6B show the
ratio of the error in the average alignment tensor and
the root-mean-square spread of the SVD results for the
case of noise-contaminated dipolar couplings, when
conducting the Losonczi Monte-Carlo analysis. As
can be seen from this figure, for most input structures
the true errors in Da and tensor orientation are smaller
than the Monte-Carlo spreads (�<Da>/σMCDa < 1),
but exceptions occur. In particular, for NDC = 6, the
true error can be more than three times larger than the
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standard deviation observed in the Monte-Carlo simu-
lations. This demonstrates that in particular for small
numbers of dipolar couplings the accuracy of SVD-
results and Monte-Carlo evaluations is strongly related
to the linear independence of involved internuclear
vectors.

For the situation where the error in the original
SVD fit is dominated by structural noise, the Losonczi
Monte-Carlo analysis tends to underestimate the true
error in the alignment tensor parameters (Figures 6C
and 6D). For example, even for NDC = 300 the true
error can be more than two-fold larger than the stan-
dard deviation observed in the Monte-Carlo analysis,
and the ratio can be considerably larger for NDC = 6.
This applies to both the magnitude and orientation of
the alignment tensor, and similar results are obtained
when evaluating uncertainties in the alignment tensor
by the structural noise Monte-Carlo method (data not
shown).

Evaluation of fragments in ubiquitin

As is clear from the above, the spread in alignment
magnitudes and orientations obtained with the Loson-
czi Monte-Carlo procedure provides a reasonable es-
timate for the uncertainty in the molecular alignment
parameters. These uncertainties need to be taken into
account when evaluating whether alignment tensors
for different fragments in the same protein have differ-
ent magnitudes (requiring dynamic effects). Figure 7
addresses this question for 3-residue fragments of
ubiquitin, with on average about 12 couplings per frag-
ment, as a function of position along the polypeptide
backbone. In this analysis we consider two differ-
ent structural models available for ubiquitin, namely
the high-resolution NMR structure (Cornilescu et al.,
1998), refined with residual dipolar couplings (Fig-
ure 7 A/C/E/G), and the 1.8-Å crystal structure (Vijay-
Kumar et al., 1987) (Figure 7 B/D/F/H).

In Figures 7A-D, black curves mark the gener-
alized magnitude of the local alignment tensors as
obtained from an initial SVD fit, i.e. without adding
additional noise to the dipolar couplings. Colored lines
correspond to the uncertainty estimates (one standard
deviation in Figures 7A,B; extreme values in 7C,D)
when using either the Losonczi Monte-Carlo method
(green) or the structural noise Monte-Carlo method
(red). As described above, in the Losonczi Monte-
Carlo method the amplitude of the noise added to the
dipolar couplings is adjusted automatically such that
an adjustable fraction of the solutions (80% in our

Figure 6. Distribution of the ratio of the true errors (�<Da> =
[(
∑1000

i=1 Di
a)/1000 − DTrue

a ] and �<ϑ>) in the averaged Loson-
czi Monte-Carlo results, and the corresponding rmsd uncertainties,
σMCDa = {(

∑1000
i=1 Di

aDi
a)/1000 − [(

∑1000
i=1 Di

a)/1000]2}1/2 and

σMCϑ = {(
∑1000

i=1 ϑiϑi )/1000 − [(
∑1000

i=1 ϑi)/1000]2}1/2, where

ϑi indicates the angle between a single alignment tensor during the
i-th Losonczi Monte-Carlo procedure and its average orientation.
(A,B) With 1.8 Hz measurement noise but no structural noise; (C,D)
with 5◦ structural noise but no measurement noise. These figures are
derived from the same simulations used to generate Figures 5 C/D
and E/F. The variations shown result from different distributions of
internuclear vectors. In total 100 different ensembles of internuclear
vectors were tested for each NDC. Input magnitude and rhombicity
were 10 Hz and 0.3, respectively. For NDC = 6, �/σ-ratios fall
outside the window shown and can reach up to 5.

study) are accepted when using an acceptance mar-
gin that is two-fold larger than the rms amplitude of
the added noise. In the structural noise Monte-Carlo
method, on the other hand, structural noise is added
to the original structure (see Methods) with an ampli-
tude that is derived from Figure 1 to match the RMSD
between the experimental and back-calculated dipolar
couplings. Because addition of noise to the structure
or to the dipolar couplings typically leads to an asym-
metric distribution of SVD results, the average of the
Monte-Carlo positive and negative standard deviations
(obtained by averaging the values of either the two red
or the two green curves) generally does not coincide
exactly with the results from the initial SVD (black
line).

As can be seen from Figure 7A, for the fragment
centered at Leu8 the generalized magnitude falls more
than one standard deviation below what is observed
for the full protein, both when considering the Loson-
czi Monte-Carlo and the structural noise Monte-Carlo
procedures. However, when considering the entire
ensemble of Monte-Carlo results (Figure 7C), sev-
eral of these exceed the value obtained for the full
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Figure 7. Variation in SVD-derived local alignment tensor values for 3-residue fragments of ubiquitin as a function of position along the
polypeptide backbone. Experimental dipolar couplings comprise five different types of backbone couplings (N-H; C′-N; C′-HN ; Cα-Hα;
C′-Cα; in total 295 couplings) observed in 5% w/v bicelles (Ottiger and Bax, 1998). SVD results are shown for the NMR structure (A/C/E/G)
(Cornilescu et al., 1998) (PDB code 1D3Z) and the 1.8 Å X-ray structure (B/D/F/H) (PDB code 1UBQ) (Vijay-Kumar et al., 1987). In A-D, the
straight solid lines correspond to the generalized magnitude (Sass et al., 1999) of the alignment tensor (GMag) as obtained from an initial SVD
fit, i.e. without recourse to the Monte-Carlo procedure, and using all 295 dipolar couplings. The rms uncertainty in this value, as obtained from
the distribution of magnitudes when using the Losonczi Monte-Carlo procedure on the full protein is marked by dashed lines (A,B). Dashed
lines in (C,D) mark the extreme values, obtained when using this Monte-Carlo procedure. Black curves in A-D show the GMag obtained by
a single SVD on individual fragments. Green lines in A and B are error estimates obtained from the Losonczi Monte-Carlo RMSD, whereas
C and D show the range of solutions (using 1000 noise sets). The corresponding results for the structural noise Monte-Carlo evaluation are
shown in red. (E,F) Difference in the local alignment tensor orientation, �ϑ, (as obtained by a single SVD on the corresponding fragment)
relative to that determined from a SVD on the full structure are plotted as solid lines. Maximum angular deviations obtained from the Losonczi
Monte-Carlo (�) and the structural noise Monte-Carlo (�) methods are also shown. (G,H) Number of available dipolar couplings for each
fragment. Fragments are labeled with the number of the central residue.

protein. Therefore, the data of Figure 7A cannot be
interpreted as proof of internal motion at Leu8. Inter-
estingly, when considering the same dipolar couplings
but using the X-ray structure (which differs from the
solution structure by less than 0.4 Å rmsd for the
backbone atoms) this fragment shows alignment pa-
rameters that are very close to the value obtained for
the full protein (Figure 7B). This confirms that very
small differences in local structure can have substan-
tial effects on the apparent magnitude of observed
alignment parameters. For several other fragments the
local alignment tensor also falls more than one Monte-
Carlo standard deviation above or below the alignment
tensor value obtained for the full protein. However,

for none of these does the entire Monte-Carlo ensem-
ble fall outside the values for the full protein. We
therefore conclude that the dipolar couplings used in
this evaluation do not provide evidence for motion of
the ubiquitin polypeptide backbone. When comparing
the Losonczi Monte-Carlo method (green lines in Fig-
ure 7) with the structural noise Monte-Carlo method
(red), similar patterns are obtained. Differences be-
tween the two methods tend to be largest for small
NDC values.

Figures 7E and 7F show the difference in the local
alignment tensor orientation from the global alignment
tensor. Clearly, substantial differences are observed,
particularly for the X-ray structure. However, for nei-
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ther structure does the difference for any 3-residue
fragment exceed the maximum deviation obtained
with the structural noise Monte-Carlo method. The
spread in local alignment tensor orientation obtained
with the Losonczi Monte-Carlo method tends to be
smaller than that of the structural noise Monte-Carlo
method. However, in both cases the high degree of un-
certainty indicates that it is very difficult to spot rigid
body structural rearrangements for small fragments
from such a local dipolar coupling analysis.

As expected, the degree in uncertainty of the local
alignment tensor correlates inversely with the num-
ber of dipolar couplings available for a given frag-
ment. For example, some of the largest uncertainties
in the X-ray structure derived alignment parameters
are observed around residues Gly10 and Pro38, two
fragments for which only seven dipolar couplings are
available. The smaller increase in uncertainty when
evaluating the NMR structure is believed to be artifi-
cial: the smaller number of dipolar couplings available
for the NMR structure calculation resulted essentially
in exact fits between the structure and the dipolar cou-
plings during the structure determination. In contrast,
when the number of dipolar couplings available for
a given fragment significantly exceeds the degrees of
freedom it generally is impossible to obtain a perfect
fit between structure and dipolar couplings because the
assumptions regarding bond angles, peptide bond pla-
narity, and uniform local dynamics made during NMR
structure calculation are not strictly valid.

The better agreement between the local alignment
tensor magnitude and orientation observed for the
NMR structure over the X-ray structure does not imply
that the NMR structure describes ubiquitin better than
the X-ray structure. It merely serves to illustrate that
the spread obtained in the Monte-Carlo evaluation is
lower for structures that show good agreement with
the dipolar couplings because lower noise values are
used in their Monte-Carlo evaluations.

Based on the results of Figure 7, we conclude that
the ubiquitin dipolar couplings provide no conclusive
evidence for extensive backbone motions, even though
such motions can be detected from 15N relaxation
studies for several regions in ubiquitin, e.g., residues
T9-T12, and Q49-D52 (Tjandra et al., 1995). How-
ever, results plotted in Figure 7 neither confirm nor
exclude the presence of large amplitude motions on a
time scale slower than the overall rotational diffusion
rates. The large uncertainty in the magnitude of align-
ment when analyzing small fragments merely poses
upper limits for the amplitude of such motions.

Concluding remarks

When measuring one-bond dipolar couplings in
weakly aligned proteins, the error in the measure-
ment frequently is more than an order of magnitude
smaller than the range of dipolar couplings measured.
In this case, the residual when fitting the dipolar
couplings to a reference structure generally will be
dominated by the uncertainty in the coordinates of
the reference structure. Both the Losonczi and struc-
tural noise Monte-Carlo methods provide reasonable
estimates for the uncertainty in the derived alignment
parameters. However, in the case of structural noise
and a large number of dipolar couplings (>∼20) the
magnitude of the alignment tensor is systematically
underestimated. When fitting dipolar couplings to very
high resolution X-ray crystal structures (determined
at a resolution ≤1.5 Å), the effect of structural noise
is expected to be most severe for one-bond 15N-1H
dipolar couplings, where the 1H positions are typically
added to the original coordinates by model building. In
our experience, this frequently results in a less good
fit of these couplings to the structure than for those
between 13Cα-13C′ and 13C′-15N.

The values for the alignment magnitude plotted in
Figure 7 are, on average, derived from more than 12
dipolar couplings each. Considering that the structural
noise in ubiquitin is rather small (ca. 5◦), this corre-
sponds to a favorable system for detecting the presence
of motions from dipolar couplings measured in a sin-
gle medium. However, as can be seen from Figure 7,
even in this favorable case the maximum uncertainties
in the magnitude of alignment for many of the three-
residue fragments exceed 25%, which corresponds to
uncertainties in the squared generalized order parame-
ter, S2, of nearly 50%. We therefore conclude that
evaluation of local backbone mobility from variations
in local alignment magnitude using a single medium
is very difficult.

Only an approximate estimate for the uncertainties
of the derived alignment parameters can be derived
from Figures 1–4. A more precise estimate for a
given structure and a set of experimental data requires
use of either the Losonczi or structural noise Monte-
Carlo methods. Uncertainty estimates obtained with
the Losonczi Monte-Carlo procedure are quite sensi-
tive to the assumed error and the acceptance cut-off
criterion used. Therefore, it is recommended to follow
the guidelines outlined in this paper when using this
method.
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Analogous to the evaluation shown in Figure 7,
estimation of the uncertainty in the alignment tensor
magnitudes for different domains in a given protein is
needed in order to evaluate whether an observed differ-
ence in alignment tensor magnitude (requiring domain
motion) or orientation (requiring a different relative
domain orientation from the reference structure) is
statistically significant.

Convenient tools for conducting the analyses
described above, including the standard Monte-
Carlo procedure and the structural noise Monte-Carlo
method have been incorporated into the software pack-
age PALES (M. Zweckstetter, unpublished), which
can be obtained from the authors.
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