1803

Two-Dimensional NMR Methods for Determining χ_1 **Angles of Aromatic Residues in Proteins from** Three-Bond $J_{C'C\gamma}$ and $J_{NC\gamma}$ Couplings

Jin-Shan Hu, Stephan Grzesiek, and Ad Bax*

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520

Received October 17, 1996

Aromatic residues in proteins typically are very important in the NMR structure determination process because they increase ¹H resonance dispersion and they provide large numbers of longrange NOE constraints. The orientation of an aromatic group relative to the polypeptide backbone is defined by the torsion angles χ_1 and χ_2 . The χ_2 angle usually equals +90 or -90°, where the sign is of no consequence for Phe and Tyr residues. χ_1 is most commonly found in either -60° or 180° rotameric states.¹ Although, in principle, χ_1 can be obtained from ${}^3J_{\text{H}\alpha\text{H}\beta}$ couplings and intraresidue and sequential NOEs,² for slowly tumbling proteins, quantitative measurement of these parameters tends to be difficult. Here, we demonstrate that in ${}^{13}C/{}^{15}N$ enriched proteins the χ_1 angle can readily be determined from two simple quantitative J correlation experiments which yield the intraresidue ${}^{3}J_{C'C\gamma}$ and ${}^{3}J_{NC\gamma}$ coupling constants.

Measurement of ${}^{3}J_{CC}$ and ${}^{3}J_{NC}$ couplings in proteins has largely been restricted to couplings involving methyl groups^{3–6} which, as a result of their favorable relaxation properties and 3-fold degenerate proton resonance, offer exceptional resolution and sensitivity. Here, we exploit the long transverse relaxation times of the backbone ${}^{15}N$ and ${}^{13}C'$ to measure ${}^{3}J$ couplings to side-chain C^{γ} resonances of aromatic residues. These ¹³C^{γ} resonances fall in a relatively narrow region, ranging from ~ 110 ppm for Trp to ~140 ppm for Phe, which permits ${}^{3}J_{C'C\gamma}$ and ${}^{3}J_{\rm NC\gamma}$ for these residues to be measured using two simple 2D spin-echo difference experiments.

The pulse schemes used for measurement of ${}^{3}J_{C'C\gamma}$ and ${}^{3}J_{NC\gamma}$ are shown in Figure 1. In the pulse scheme of Figure 1A, H^N magnetization is transferred to its ¹⁵N, and after a subsequent semi-constant-time evolution period,7 it is converted into antiphase $C'_{v}N_{z}$ magnetization of the preceding carbonyl. At the midpoint of the subsequent spin-echo delay, 2δ , a selective 180° C' pulse rephases the effect of $J_{C'N}$, $J_{C'C}$, and $J_{C'H}$ couplings (except for carbonyl-carbonyl/carboxyl couplings, which will attenuate C'_yN_z). If the ¹³C^{arom} selective 180° pulse is applied at the end of the spin-echo delay (position *a*), the effect of $J_{C'C\gamma}$ couplings in aromatic residues will also refocus. However, when the ¹³C^{arom} 180° pulse is applied at position b, $J_{C'C\nu}$ dephasing is active for the full period 2δ . Therefore, in this latter case, the C'_vN_z magnetization at the end of the 2δ period,

Figure 1. Pulse schemes for (A) the ${}^{13}C' - \{{}^{13}C^{\gamma}\}$ spin-echo difference and (B) the $^{15}N{-}\{^{13}C^{\gamma}\}$ spin-echo difference $^{1}H{-}^{15}N$ HSQC experiments, for measurement of ${}^{3}J_{C'C\gamma}$ and ${}^{3}J_{NC\gamma}$ in aromatic residues. Narrow and wide rectangular pulses denote 90° and 180° flip angles (except for shaded low-power 90°_{-x} ¹H pulses), respectively, and unless indicated the phase is x. The shaped low-power ¹H 90°_{-x} pulse, the $^{13}C^{\alpha}$ 180° pulses, and the 180° $_{\phi 5}$ $^{13}C'$ pulse in scheme A have an envelope profile of the center lobe of a sin(x)/x function and durations of 2 ms, 150 μ s, and 260 μ s, respectively (for 151 MHz ¹³C). Open pulses are G3-shaped,¹³ and the reference spectrum is recorded using the ${}^{13}C^{arom}$ pulse in position *a*, omitting the pulse labeled *b*, whereas the attenuated spectrum is recorded using pulse b and omitting pulse a. Spectra are recorded in an interleaved manner, i.e., data with the G3 pulse in positions a and b are recorded and stored separately, before incrementing t_1 . RF power: ¹H, $\gamma_H B_1 = 27$ kHz (high-power pulses), 220 Hz (low-power pulses), 3.1 kHz (Waltz-16); ${}^{15}N$, $\gamma_NB_2 = 5.3$ kHz (pulses), or 1.0 kHz (Waltz-16). All rectangular ¹³C' pulses are applied using RF field strengths of 4.5 kHz at 151 MHz. The duration of the G3 ${}^{13}C^{arom}$ 180° pulse is 580 μ s, corresponding to an inversion bandwidth of ± 18 ppm at 151 MHz ^{13}C . Carrier positions: $^{1}H,\,H_{2}O$ frequency (~4.65 ppm); ¹³C', 176 ppm; ¹³C^{arom}, 127 ppm; ¹³C^α, 56 ppm; ¹³C^{aliph}, 43 ppm; ¹⁵N, 116.5 ppm. For both schemes, t₁ quadrature is obtained by altering the phase ϕ_1 in the States-TPPI manner. For A, delay durations are as follows: $\tau = 2.25$ ms; $\Delta = 5.4$ ms; T' = 12.5ms; $\delta = 25-50$ ms, depending on the rotational correlation time, τ_c . In order to obtain sufficient resolution in the 2D spectrum, a t_1 acquisition time (AT) longer than $(2J_{NC'})^{-1}$ is needed, and this evolution period is therefore implemented as semi-constant-time7 rather than constant-time. Thus, for the first t_1 duration, $t_1^a(0) = t_1^b(0) = t_1^d(0) = t_$ 7 ms; $t_1^{c}(0) = 0$; $\Delta t_1^{a} = (AT - 14 \text{ ms})/2N$, $\Delta t_1^{b} = 7/N \text{ ms}$, $\Delta t_1^{c} = (AT$ -28 ms)/2N, and $\Delta t_1^d = -7/N$ ms, where N is the number of t_1 increments and the spectral width, SW, equals $(\Delta t_1^a + \Delta t_1^b + \Delta t_1^a 2\Delta t_1 d^{-1} = AT/N$. Phase cycling: $\phi_1 = x$; $\phi_2 = x$, y, -x, -y; $\phi_3 = x$ $2(x), 2(-x); \phi_4 = 4(x), 4(-x); \phi_5 = 61^{\circ}$ to compensate for the Bloch-Siegert shift induced by the $180^{\circ}_{\phi 4}$ pulse (most easily adjusted by finding the ϕ_5 value which yields zero signal and incrementing that value by 45°); receiver = x, -x, -x, x. All gradients are sine-bell shaped, 25 G/cm at their center, with durations $G_{1,2,3,4,5,6} = 3.75, 1.5$, 0.5, 1.65, 1.35, and 0.5 ms. For part B, $\tau = 2.25$ ms, $\Delta = 5.4$ ms, and $\delta = 30-65$ ms, depending on τ_c . All pulse widths and shapes are the same as for scheme A, except for the ¹³C' and ¹³C^{aliph} pulses, which are G3-shaped and have durations of 1.25 ms and 430 μ s, respectively. Phase cycling: $\phi_1 = x$; $\phi_2 = x$, y, -x, -y; $\phi_3 = 4(x)$, 4(-x); receiver = x, -x. Gradients durations: $G_{1,2,3} = 3.75, 2.0, \text{ and } 0.5 \text{ ms.}$

and thereby the intensity in the 2D $^{15}\mathrm{N}{-}^{1}\mathrm{H}^{\mathrm{N}}$ correlation spectrum, is attenuated by $\cos(2\pi J_{C'C\gamma}\delta)$. As δ is known, $J_{C'C\gamma}$ can be calculated from $J_{C'C\gamma} = \cos^{-1}(I_b/I_a)/2\pi\delta$, where I_a and

S0002-7863(96)03625-6 This article not subject to U.S. Copyright. Published 1997 by the American Chemical Society

^{*} Address correspondence to this author at Building 5, Room 126, NIH, Bethesda, MD 20892-0520.

<sup>Bettesta, MD 20692-0520.
(1) Ponder, J. W.; Richards, F. M. J. Mol. Biol. 1987, 193, 775-791.
(2) Wagner, G.; Braun, W.; Havel, T. F.; Schaumann, T.; Go, N.;
Wüthrich, K. J. Mol. Biol. 1987, 196, 611-639. Güntert, P.; Braun, W.;
Billeter, M.; Wüthrich, K. J. Am. Chem. Soc. 1989, 111, 3997-4004. Clore,</sup>

G., M.; Bax, A.; Gronenborn, A. M. J. Biomol. NMR **1991**, *1*, 13–22. (3) Bax, A.; Max, D.; Zax, D. J. Am. Chem. Soc. **1992**, *114*, 6924–

⁶⁹²⁵ (4) Vuister, G. W.; Wang, A. C.; Bax, A. J. Am. Chem. Soc. 1993, 115, 5334-5335.

 ⁽⁵⁾ Schwalbe, H.; Rexroth, A.; Eggenberger, T.; Geppert, T.; Griesinger,
 (5) Schwalbe, H.; Rexroth, A.; Eggenberger, T.; Geppert, T.; Griesinger,
 (6) Grzesiek, S.; Vuister, G. W.; Bax, A. J. Biomol. NMR 1993, 3, 487–

^{493.}

⁽⁷⁾ Grzesiek, S.; Bax, A. J. Biomol. NMR 1993, 3, 185-204. Logan, T. M.; Olejniczak, E. T.; Xu, R. X.; Fesik, S. W. J. Biomol. NMR 1993, 3, 225 -231

 $I_{\rm b}$ are the intensities of the H^N-1⁵N correlations in the two experiments with the ¹³C^{arom} 180° pulse applied at positions *a* and *b*, respectively. The C'_yN_z magnetization at the end of the 2 δ period of residues other than Phe, Tyr, His, and Trp will be independent of whether the ¹³C^{arom} 180° pulse is applied at time *a* or *b* and will yield identical intensities (except for the random noise contribution) in the two spectra. As magnetization is transferred from the H^N of residue *i* + 1 to the ¹³C' of residue *i*, the $J_{C'C\gamma}$ coupling of an aromatic residue *i* is reflected in the intensity ratio of the amide of residue *i* + 1. For convenience, the pulse scheme is implemented as a 2D ¹H⁻¹⁵N correlation, but it can also be recorded as a ¹H^N-¹³C' spectrum or as a 3D ¹H^N-¹⁵N-¹³C' correlation.

The pulse scheme for measurement of ${}^{3}J_{\text{NC}\gamma}$ (Figure 1B) is analogous to that of Figure 1A, the principal difference being that no transfer to ${}^{13}\text{C'}$ is needed because this experiment measures the ${}^{3}J_{\text{NC}\gamma}$ dephasing. If T₂ is the transverse relaxation time of ${}^{15}\text{N}$ in the ${}^{13}\text{C'}/\text{C}^{\alpha}$ -coupled mode, it can be shown that, in the limit where ${}^{3}J_{\text{NC}\gamma} \ll 1/T_2$, optimal sensitivity in the difference spectrum is obtained when $\delta \approx T_2$. Again, ${}^{3}J_{\text{NC}\gamma}$ is obtained from $J_{\text{NC}\gamma} = \cos^{-1}(I_{\text{b}}/I_{\text{a}})/2\pi\delta$.

In both pulse schemes, water-flip-back procedures⁸ are used to avoid saturation of the H₂O signal. This can increase the sensitivity of the experiment, particularly at high pH. For small proteins at low pH, the advantage of the water-flip-back is smaller and the absence of ¹H decoupling during the 2δ period in the scheme of Figure 1A can even decrease the sensitivity of the experiment. Therefore, for the C'-C^{γ} experiments on ubiquitin and calmodulin, ¹H decoupling was not interrupted during the 2δ period, whereas for Nef at pH 8.0, the flip-back procedure as shown in Figure 1A was advantageous.

Experiments were applied to samples of 1.5 mM U- 13 C/ 15 N ubiquitin, pH 4.3, 30 °C; 1.5 mM of a complex between U- 13 C/ 15 N calmodulin and a 26-residue unlabeled peptide fragment of skeletal muscle myosin light chain kinase, pH 6.8, 100 mM KCl, 35 °C; and a 0.6 mM sample of HIV-1 U- 13 C/ 15 N Nef, with deletion of the membrane anchoring 39-residue N-terminal tail and residues 159–173, pH 8.0, 35 °C.

Figure 2A shows the reference spectrum for the calmodulinpeptide complex, obtained with the scheme of Figure 1B and the 180° ¹³C^{arom} pulse in position a, together with the ¹⁵N- $^{13}C^{\gamma}$ difference spectrum (Figure 2B). Intense correlations for Phe16, Phe65, Phe68, Phe89, His107, Tyr138, and Phe141 correspond to large (~2.5 Hz) $^{3}J_{NC\gamma}$ couplings, indicative of χ_{1} = 180° . Figure 2C shows the analogous difference spectrum for the ${}^{13}C' - {}^{13}C'$ experiment, where the four observed correlations correspond to large (~4.1 Hz) ${}^{3}J_{C'C\gamma}$ couplings for Phe12, Phe19, Phe92, and Phe99, indicative of $\chi_1 = -60^\circ$. The difference spectra are free of spurious signals that would have resulted if the selective 180° ¹³Carom pulse had affected either the backbone ${}^{13}C'$ or ${}^{13}C^{\alpha}$ spins. Even for ubiquitin (Supporting Information), for which the signal-to-noise is much higher, no artifacts are observed. Results for calmodulin and ubiquitin agree with their respective X-ray structures,^{9,10} but disagree with the rather ill-determined χ_1 angles of Phe16, Phe19, and Phe65 in the original NMR structure of the calmodulin-peptide complex.11

Figure 2. Sections of the 600-MHz ¹H–¹⁵N correlation spectra of calmodulin complexed with a 26-residue peptide:¹¹ (A) reference spectrum obtained with the scheme of Figure 1B and the ¹³C^{arom} pulse in position *a*; (B) ¹⁵N–{¹³C^{γ}} difference spectrum, showing correlations for the calmodulin amide ¹⁵N nuclei with a significant coupling (>1.5 Hz) to an aromatic ¹³C^{γ} spin (total recording time, 2.3 h; 2 × 195^{*} × 512^{*} acquired matrix size); (C) ¹³C'–{¹³C'} difference spectrum, obtained with the scheme of Figure 1A, showing correlations for the calmodulin amide ¹⁵N nuclei for which the preceding ¹³C' has a significant coupling (>2 Hz) to an aromatic ¹³C^{γ} spin (total recording time, 7 h; 2 × 70^{*} × 512^{*} matrix size). The dephasing duration, 2 δ , was 128 ms for the ¹⁵N–{¹³C'}</sup> difference spectrum and 100 ms for the ¹³C'-{¹³C'}</sub> difference spectrum.

The experiments are applicable to proteins with less-thanideal NMR properties. As shown in the Supporting Information, the experiments were also applied to a 0.6 mM sample of HIV-1 Nef, a protein which exhibits relatively large line widths, corresponding to an effective rotational correlation time of *ca*. 12 ns. The resulting spectra yielded χ_1 information for 18 of the 23 assigned aromatic residues. For five of these, the χ_1 angle was undetermined in the set of structures calculated without information from the ¹⁵N-¹³C^{γ} and ¹³C^{\prime}-¹³C^{γ} difference experiments, despite extensive analysis of NOE, ROE, and *J* couplings other than ³*J*_{C^{$\prime}C_{\gamma}} and ³$ *J* $_{NC<math>\gamma$}.</sub></sup>

In summary, we have demonstrated that ${}^{3}J_{C'C\gamma}$ and ${}^{3}J_{NC\gamma}$ couplings for aromatic residues can readily be measured using simple and sensitive 2D NMR experiments. Except for residues with low backbone order parameters, the ${}^{3}J_{C'C\gamma}$ and ${}^{3}J_{NC\gamma}$ couplings cluster in relatively narrow ranges: 2.4 ± 0.2 Hz for *trans* ${}^{3}J_{NC\gamma}$ and ≤ 0.5 Hz for *gauche*; 4.0 ± 0.3 Hz for *trans* ${}^{3}J_{C'C\gamma}$ and ≤ 1.1 Hz for *gauche*. This suggests that for aromatic residues χ_1 rotamer averaging is rare. Moreover, the small ranges of the *trans* couplings indicate that the amplitude of χ_1 angle fluctuations for aromatic residues must be quite uniform.¹²

Acknowledgment. We thank F. Delaglio and D. Garrett for data analysis software. This work was supported by the AIDS Targeted Anti-Viral Program of the Office of the Director of the National Institutes of Health. J.-S.H. is supported by a postdoctoral fellowship from the Cancer Research Institute, New York, NY.

Supporting Information Available: Three tables containing the ${}^{3}J_{NC\gamma}$ and ${}^{3}J_{CC\gamma}$ values measured for ubiquitin, calmodulin, and Nef and two figures showing the reference and N-C^{γ} and C^{\prime}-C^{γ} difference spectra for ubiquitin and Nef (5 pages). See any current masthead page for ordering and Internet access instructions.

JA963625Z

⁽⁸⁾ Grzesiek, S.; Bax, A. J. Am. Chem. Soc. **1993**, 115, 12593–12594; Kay, L. E.; Xu, G. Y.; Yamazaki, T. J. Magn. Reson. Ser. A **1994**, 109, 129–133.

⁽⁹⁾ Meador, W. E.; Means, A. R.; Quiocho, F. A. *Science* **1992**, *257*, 1251–1255.

⁽¹⁰⁾ Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol. Biol. 1987, 194, 531–544.

⁽¹¹⁾ Ikura, M.; Clore, G. M.; Gronenborn, A. M.; Zhu, G.; Klee, C. B.; Bax, A. *Science* **1992**, *256*, 632–638.

⁽¹²⁾ Brüschweiler, R.; Case, D. A. J. Am. Chem. Soc. 1994, 116, 11199– 11200.

⁽¹³⁾ Emsley, L.; Bodenhausen, G. Chem. Phys. Lett. 1990, 165, 469–476.