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Abstract: Cross-correlation between15N-1H dipolar interactions and15N chemical shift anisotropy (CSA) gives
rise to different relaxation rates of the doublet components of15N-{1H} peptide backbone amides. A simple scheme
for quantitative measurement of this effect is described which yields information on the magnitude of the CSA from
the relative intensities of1H-15N correlations obtained with two slightly different pulse schemes. The method is
applied to a sample of uniformly15N-enriched ubiquitin and measurements conducted at two field strengths (8.5 and
14 T) yield identical results. The degree of relaxation interference correlates with the isotropic15N chemical shift
and results indicate that the sum of the most shielded principal components of the CSA tensor is nearly invariant to
structural differences in the polypeptide backbone. The relaxation interference is directly proportional to the generalized
order parameter,S2, of the peptide backbone amides, and this relation can be utilized to obtain approximate values
for these order parameters.

There is a renewed interest in understanding the relation
between protein structure and13C and15N chemical shifts.1-3

Indeed, recentab initio calculations show considerable promise
for providing an accurate correlation between chemical shift
and the structure of the peptide backbone. In proteins, the
results of calculations could only be compared with the value
of the isotropic chemical shift, as accurate values for the
individual chemical shift anisotropy (CSA) tensor elements in
proteins are not easily measured. Here we demonstrate that a
measure for the magnitude of the CSA of individual peptide
backbone15N nuclei can be obtained from quantitative measure-
ment of interference effects between the CSA and dipolar
relaxation mechanisms. The magnitude of the interference effect
is expected to be directly proportional to the generalized order
parameter,S2,4,5and this correlation is confirmed experimentally.
Inversely, the simple relaxation interference measurement can
be used to obtain the relativeS2 values of the backbone amides.
Relaxation of peptide backbone15N nuclei in proteins is

dominated by CSA and by the dipolar interaction between15N
and its directly attached proton. Based on solid-state NMR
studies of model compounds containing peptide bonds, the15N
CSA tensor is nearly axially symmetric and its unique axis
makes a relatively small angle ofca. 20-24° with the N-H
bond vector.6-9 As a result, for a15N nucleus attached to a
proton in the|â〉 spin state the sum of the dipolar and CSA

tensors is much smaller than for15N nuclei attached to a1H in
the |R〉 spin state, and the two types of15N nuclei relax at very
different rates. This differential relaxation is commonly referred
to as a cross-correlation or relaxation interference effect10-15

and a simple treatment of this effect, directly applicable to the
case of peptide15N-1H amide pairs, has been presented by
Goldman.13 Although cross correlation forms the basis of
several elegant heteronuclear magnetization transfer experi-
ments,16,17more often it is considered a nuisance as it can alter
the outcome of relaxation measurements if no precautions are
taken to eliminate the effect.18-20 Here we demonstrate that
the effect can be used advantageously to obtain information on
the15N CSA tensor and on the internal dynamics of the peptide
backbone. The method is demonstrated for human ubiquitin, a
small globular protein of 76 residues which is well-characterized
by both X-ray crystallography21 and numerous NMR studies.22-27
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Experimental Section

All NMR experiments were carried out at 27°C on a sample of
commercially obtained (U-15N)-ubiquitin (VLI Research, Southeastern,
PA), 1.4 mM, pH 4.7, 10 mM NaCl. Experiments were carried out on
Bruker AMX-360 and AMX-600 NMR spectrometers operating at1H
resonance frequencies of 360 and 600 MHz, respectively. Both
spectrometers were equipped with pulsed field gradient1H/15N probe-
heads, optimized for1H detection.
Data matrices acquired at both 360 and 600 MHz consisted of 128*-

(t1) × 768*(t2) data points, with acquisition times of 64 (t1) and 83 ms
(t2). A total of 32 scans per complext1 increment was collected in
experiment B (Figure 1) at both 360 and 600 MHz, whereas 384 and
128 scans were accumulated in experiment A (Figure 1) at 360 and
600 MHz, respectively. All experiments were performed with the1H
carrier positioned on the H2O resonance and the15N carrier at 116.5
ppm. Durations for the dephasing delay, 2∆, were 46.7, 68, and 132
ms at 600 MHz and 132 ms at 360 MHz.
All data sets were processed using 45° shifted sine-bell apodization

and zero filling in both dimensions to yield a digital resolution of 2.3,
3.9 Hz (F1) and 2.7, 4.5 Hz (F2) for 360 and 600 MHz data respectively.
Data were processed using nmrPipe28 and analyzed with the program
PIPP.29 Resonance intensities were obtained from peak heights using
three-data-point interpolation,29 and resonance assignments are taken
from Wang et al.25

Results and Discussion

Assuming an axially symmetric15N chemical shift tensor with
an angleθ between the orientation of its unique axis and the
N-H bond vector, the15N transverse relaxation rates for the
two doublet components of an isolated15N-1H spin pair are
given by5,13-15

where the+ sign applies to the upfield15N doublet component
(1JNH < 0) andλ andη are given by

whered ) γH2γN2h2/(80π2rHN6), R ) -4π/3Bo(σ| - σ⊥)rHN3/
(hγH), andrNH is the15N-1H internuclear distance, assumed to
be 1.02 Å. Jdd(ω), Jcc(ω), andJcd(ω) are the spectral densities
for dipolar autocorrelation, CSA autocorrelation, and dipolar-
CSA cross correlation, respectively. For an axially symmetric
CSA tensor, these spectral densities are given by

whereµp(t) is the unit vector describing the orientation of the
axially symmetric interactionp at time t, andP2(x) ) (3x2 -
1)/2. Assuming isotropic rotational diffusion of a rigid body,
one has

whereθ is the angle between the unique axes of the CSA and
dipolar tensors, i.e.,θ ) cos-1(µd(t)‚µc(t)). Although eq 3 is
no longer rigorous in the presence of internal motion, results
of calculations shown in the Appendix indicate it remains a very
good approximation providedθ is small. Therefore, the
superscripts in the spectral density function may be dropped
and eq 1c is then rewritten as

For the case of isotropic rotational diffusion and additional
rapid internal motions, occurring on a time scaleτe and
described, in the model-free approach of Lipari and Szabo,4 by
a generalized order parameterS2, the spectral density function
is defined as

with τ-1 ) τc-1 + τe-1. The time constantτc is the rotational
correlation time, assuming isotropic diffusion. However, ro-
tational diffusion of ubiquitin is slightly anisotropic, and to a
good approximation is described by an axially symmetric
diffusion tensor,D, with D|/D⊥ ) 1.17.27 In this case,
calculation of the cross-correlation term becomes considerably
more complex,30,31unlessθ ) 0°. Forθ ) 0°, one may simply
use eq 1 in combination with the spectral density function
applicable for axially symmetric rotational diffusion with internal
motion:32,33

with k ) 1, 2, 3 andA1 ) 0.75 sin4 â, A2 ) 3 sin2 â cos2 â, A3
) (1.5 cos2 â - 0.5)2, whereâ is the angle between the N-H
bond vector and the unique axis of the rotational diffusion
tensor;τ1 ) (4D| + 2D⊥)-1, τ2 ) (D| + 5D⊥)-1, τ3 ) (6D⊥)-1,
and τ-1 ) τe-1 + (2D| + 4D⊥)-1, whereD| andD⊥ are the
rotational diffusion constants parallel and perpendicular to the
unique axis of the diffusion tensor. For peptide15N nucleiθ is
small (20-24°), and use of eqs 1 and 6 provides a reasonable
approximation.
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Figure 1. Pulse scheme for quantitative measurement of cross
correlation. In the reference experiment (scheme B), the open1H 90°
and composite (90y-220x-90y) 180° pulses are not applied, whereas
they are applied in scheme (A), where all resonances are the result of
cross correlation effects during the period 2∆. Narrow and wide pulses
correspond to flip angles of 90° and 180°, respectively. The two low
power pulses immediately preceding and following the last non-selective
1H 180° pulse have a width of 1 ms each and correspond to flip angles
of 90°. With the carrier positioned on the H2O resonance, they are part
of the WATERGATE water suppression scheme.39 The radio-frequency
phase of all pulses is assumedx, unless indicated. Delay durations:τ
≈ 2.4 ms;δ ) 2.67 ms,T2/8 < ∆ < T2/2. Phase cycling:φ1 ) y,-y;
φ2 ) x,x,-x,-x; φ4 ) 4(x),4(y),4(-x),4(-y); φ5 ) -x; Receiver) x,-
2(-x),x,-x,2(x),-x. Quadrature detection in thet1 dimension is
accomplished by incrementingφ3 in the States-TPPI manner. All
gradients are sine-bell shaped, with an amplitude of 25 G/cm at their
center. Durations: G1,2,3,4,5) 2.75, 2, 1, 1.5, and 0.4 ms.

R2 ) λ ( η (1a)

λ ) d[4Jdd(0)+ 4R2Jcc(0)+ 3Jdd(ωN) + 3R2Jcc(ωN) +

Jdd(ωN - ωH) + 3Jdd(ωH) + 6J dd(ωN + ωH)] (1b)

η ) 2Rd{4Jcd(0)+ 3Jcd(ωN)} (1c)

Jpq(ω) )∫0∞〈P2(µp(0)‚µq(t)〉 cos(ωt) dt (2)

Jdd(ω) ) Jcc(ω) ) Jcd(ω)/P2(cosθ) (3)

η ) 2Rd{4J(0)+ 3J(ωN)}P2(cosθ) (4)

J(ω) ) S2τc/(1+ ω2τc
2) + (1- S2)τ/(1+ ω2τ2) (5)

J(ω) ) S2∑
k

Akτk/(1+ ω2τk
2) + (1- S2)τ/(1+ ω2τ2) (6)
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Measurement of Cross Correlation. Figure 1 shows the
pulse scheme used for measuring the cross correlation effect
quantitatively. The pulse scheme is essentially an HSQC1H-
15N correlation experiment,34 with a relaxation period 2∆
inserted before the15N evolution period. The experiment is
performed twice, once with applying the shaded1H 90° and
composite1H 180° pulses, and once without applying these
pulses. In the following these experiments will be referred to
as A and B, respectively.
In both versions of the pulse scheme,1H magnetization

(represented by S) is transferred to15N (represented by I) at
time point a in Figure 1, and antiphase transverse15N
magnetization, described by the operator product 2IySz, is
generated by the first 90° 15N pulse. The two15N doublet
components are described byIySz( Iy/2. The downfield doublet
component,IySz - Iy/2, relaxes at a rateλ - η, whereas the
upfield component relaxes atλ + η (cf. eq 1). Thus, after the
dephasing delay 2∆ (time pointb in Figure 1), the transverse
magnetization is given by

where ε( ) exp[-2∆(λ ( η)]. At time point b the 15N
magnetization is returned to thez axis. In scheme A, the
antiphase fraction of the15N zmagnetization,IzSz(ε+ + ε-), is
destroyed by the sequential application of a 90° 1H pulse and
pulsed field gradient G3. The in-phase component,Iz(ε+ - ε-)/
2, is converted to antiphase magnetization during the subsequent
delay, 2δ, prior to t1 evolution and transfer of15N magnetization
to protons by the final reverse INEPT part of the pulse scheme.
In scheme B, the 90° 1H pulse is not applied and theIzSz 15N
magnetization is converted back into antiphase transverse15N
magnetization at time pointc. This-IySz(ε+ + ε-) term remains
antiphase at the end of the delay 2δ, as the composite1H pulse
is not applied in scheme B. After thet1 evolution period, the
15N magnetization is returned to observable proton magnetiza-
tion, in a manner identical to that of scheme A. In the absence
of the composite1H 180° pulse, the in-phase15N magnetization,
Iy(ε+ - ε-)/2, remains in phase at the end of thet1 evolution
period and therefore does not contribute to the signal detected
in scheme B. Thus, the ratio of the signal intensities obtained
with schemes A and B equals

Note that the losses caused by relaxation are essentially identical
in schemes A and B. The faster relaxation of theIzSz term
between time pointsb andc in scheme A, relative to the decay
of Iz in scheme B, produces negligible relaxation loss because
the duration of this delay (2 ms) is about two orders of
magnitude shorter than the inverse of the difference in relaxation
rates ofIzSz and Iz. In addition to the very small relaxation
loss between time pointsb andc in scheme B, there is also a
loss of signal which occurs in scheme A and not in B, caused
by the imperfection of the composite 180° 1H pulse. As a test,
adding a composite pulse between time pointsb andc in scheme
B is found to change the average intensity of the15N-1H
correlations by a factor of-0.986, indicating that 99.3% of the
protons are inverted by the composite pulse and the imperfection
in this pulse therefore may be safely ignored. TheIA/IB ratio
divided by the uncertainty in this ratio caused by thermal noise
is highest when 2∆ ≈ λ-1, i.e., when the duration of 2∆ is
approximately equal toT2. Thus, the random uncertainty in

the derived CSA values is minimal when 2∆ ≈ T2. Note that
in both schemes A and B the applicable value ofT2 is the
average of theT2 for in-phase and antiphase15N magnetization,
which, on average, is about a third shorter than the in-phaseT2
measured in regular relaxation experiments.35,36

Figure 2 shows theIA/IB ratio as a function of 2∆. As can
be seen from this figure, the ratio agrees very well with the
theoretical dependence of eq 8. This means that even for a
dephasing time as long asT2, there is no significant second-
order effect on theIA/IB ratio. However, if durations of 2∆
longer thanT2 are used, such effects can become noticeable.
For example, there is a cross-correlation effect between the15N-
1HN dipolar interaction and the approximately 8 times smaller
intraresidue15N-1HR dipolar interaction. In particular forφ
backbone angles near-120°, where the two dipolar interactions
are nearly collinear, such dipole-dipole cross correlation can
give rise to a slight decrease of the measuredIA/IB ratio.
As can be seen from eqs 4 and 8, theIA/IB ratio is a function

of S2(σ| - σ⊥)P2(cosθ) and the effects of a variation inσ| -
σ⊥ cannot be separated from a change inθ or S2. We refer to
S2(σ| - σ⊥)P2(cosθ) as the reduced CSA, or CSAred. S2 values
for human ubiquitin have been derived previously from15N
relaxation time measurements,27 and based on solid-state NMR
measurements on model compounds,θ is generally believed to
fall between 20 and 24°,6-9 which putsP2(cosθ) in the 0.825-
0.75 range.
Figure 3 shows excellent agreement between CSAred values

measured at 600-MHz1H frequency for two different durations
of 2∆. A very small systematic decrease ofca. 1.1% in CSAred

observed for the longer duration of 2∆ is presumably caused
by cross correlation between15N-1HN and 15N-1HR dipolar
interactions, mentioned above. The measurement was also
repeated at 360-MHz1H frequency and again shows very good
agreement with the data measured at 600 MHz (Figure 3B).
Figure 4 shows the values of CSAred as a function of residue

number. As expected the highly mobile C-terminal tail yields
much smaller values for CSAred than the remainder of the
protein. After dividing CSAred by the previously derivedS2

value, the values become more homogeneous, with an average
value of 140( 9 ppm (Figure 4B). Assuming aθ value of
20°, this yields an average value forσ| - σ⊥ of -170 ppm.
This is slightly larger than the value of 160 ppm commonly

(34) Bodenhausen, G.; Ruben, D. J.Chem. Phys. Lett.1980, 69, 185-
189.

(35) Bax, A.; Ikura, M.; Kay, L. E.; Torchia, D. A.; Tschudin, R.J.
Magn. Reson. 1990, 86, 304-318.

(36) Peng, J. W.; Thanabal, V.; Wagner, G.J. Magn. Reson. 1991, 95,
421-427.

σb ) (IySz - Iy/2) exp[-2∆(λ - η)] + (IySz + Iy/2)×
exp[-2∆(λ + η)] ) IySz(ε

+ + ε
-) + Iy(ε

+ - ε
-)/2 (7)

IA/IB ) (ε- - ε
+)/(ε- + ε

+) ) tanh(2∆η) (8)

Figure 2. Ratio of intensities,IA/IB, obtained with schemes A and B
of Figure 1, as a function of 2∆, at 600-MHz1H frequency, for six
different residues in ubiquitin. The drawn lines correspond to eq 8.
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used for the magnitude of the CSA in15N relaxation studies.
However, this latter value was based on the width of powder
patterns observed in solid-state NMR spectra of polycrystalline
peptides. As a result of rapid internal motions the width of
these powder patterns is reduced by a factorS relative to the
true value of the CSA.7 The magnitude of the CSA observed
in the present study therefore is in good agreement with previous
solid-state NMR results.
Correlation between CSA and Isotropic Shift. The

isotropic15N shift, δ, equals minus one-third of the trace of the
chemical shift tensor:δ ) -(σ11 + σ22 + σ33)/3. The least
shielded component,σ11, is the one oriented in the peptide plane
and nearly orthogonal to the C-N bond. Theσ22 and σ33
components are most shielded and are of comparable magnitude
in peptide bonds. Forθ ) 0°, the magnitude of the cross-
correlation effect is determined byσ11 - (σ22 + σ33)/2.
Although this relation is only valid whenθ ) 0°, the assumption
of an axially symmetric tensor withσ| - σ⊥ ) σ11 - (σ22 +
σ33)/2 yields nearly the same magnitude for the cross-correlation
term, providedθ < 25°.
If the σ11, σ22, andσ33 values of the15N shielding tensors in

ubiquitin are normally distributed, with standard deviations∆1,
∆2, and∆3, respectively, the standard deviation for the isotropic
shift is expected to be1/3(∆1

2 + ∆2
2 + ∆3

2)1/2, provided
variations inσ11, σ22, andσ33 are uncorrelated. A decrease in
σ22 or σ33 (i.e., deshielding) gives rise to a smaller chemical
shift anisotropy and a smaller value of the cross-correlation term,
in addition to a downfield change of the isotropic shift. In
contrast, a decrease inσ11 will increase the chemical shift
anisotropy, but also give rise to a downfield change of the
isotropic shift.

As shown in Figure 5, experimentally we observe that a
downfield isotropic shift is correlated with an increase in the
CSA. Therefore, this means that variations inσ11 are larger
than those in (σ22 + σ33)/2. The slope of the correlation
observed in Figure 5 is-0.30, which is close to the value of
-1/3, expected if (σ22 + σ33)/2 were invariant to structural
differences. Thus, variations inσ22 and σ33 must be highly
correlated and opposite in sign. This agrees with the remarkable
observation by Hiyama et al.7 for the 15N CSA tensor of a
tripeptide whereσ22 andσ33 differ by 47 ppm in the triclinic
crystal form, but by only 7 ppm in the monoclinic crystal form,
with the isotropic shift andσ11 remaining unchanged.
Considering that fluctuations in (σ22+ σ33)/2 do not contribute

significantly to variations inσ11 - (σ22 + σ33)/2, the scatter in
the correlation shown in Figure 5 must originate from one or
more of the following five causes. First, it is possible that all
three principal values vary together, i.e., without changing the
chemical shift anisotropy. This assumption is implicit when
plotting the deviation from random coil chemical shift,∆δ,
instead of the isotropic shift,δ, itself. 15N chemical shift tensors
reported by Oas et al.6 indicate that the change in isotropic shift
between a glycine and a tyrosine residue is approximately the
same as the change in the (σ22 + σ33)/2 values of these two
tensors, and therefore provide some justification for using the
∆δ instead ofδ. Second, there is considerable uncertainty in
the random coil15N shift values, which can differentially affect
the∆δ values. For example, the pairwise rmsd between random
coil shifts reported by Glushka et al.37 and Wishart et al.38 is
2.8 ppm. Third, random error in the measurement ofIA/IB
results in an uncertainty in CSAred, which is further amplified
when CSAred is divided byS2≈ 0.85, and by the uncertainty in
S2, estimated at 1%. The random uncertainty in CSAred is
estimated by comparing values derived from data measured at
2∆ ) 46.7 and 68 ms. The pairwise rmsd is 1.4 ppm, indicating
a random error of 0.7 ppm in the average, used for deriving the
values shown in Figure 5. Thus, the total random error in the
CSAred/S2 values is estimated to beca. 1 ppm. Fourth,
variations in the angleθ can have a large effect on CSAred.

(37) Glushka, J.; Lee, M.; Coffin, S.; Cowburn, D.J. Am. Chem. Soc.
1989, 111, 7716-7720.

(38) Wishart, D. S.; Sykes, B. D.; Richards, F. M.J. Mol. Biol. 1991,
222, 311-333.

(39) Piotto, M.; Saudek, V.; Sklenar, V.J. Biomol. NMR1992, 2, 661-
665.

Figure 3. Comparison of CSAred values measured from (A) data
acquired at 600 MHz and 2∆ durations of 46.7 and 132 ms and (B)
data acquired at 600 and 360 MHz, both for 2∆ ) 132 ms.

Figure 4. Values of (A) CSAred and (B) CSAred/S2 as a function of
residue number in human ubiquitin. The CSAred values have been
calculated from data acquired at 600 MHz and 2∆ ) 46.7 ms, assuming
isotropic (O) and axially symmetric (∆) rotational diffusion.

Figure 5. Correlation between CSAred/S2 and the deviation,∆δ, of
the isotropic shift from the random coil value38 for the backbone amide
15N nuclei in human ubiquitin. CSAred values are calculated from data
recorded at 600 MHz, using the average of the values obtained for 2∆
) 46.7 and 2∆ ) 68 ms and the axially symmetric diffusion parameters.
Residues Leu73-Gly76 are not included in this figure as the low-order
parameters for these residues amplify the uncertainty in CSAred/S2. The
correlation coefficient,r, equals 0.50.

CSA-Dipolar Cross Correlation J. Am. Chem. Soc., Vol. 118, No. 29, 19966989



Even a small increase inθ from, for example, 20 to 22°
decreases the expected CSAred/S2 value by∼6 ppm. It is
therefore likely that variations inθ are also a significant source
of the scatter observed in Figure 5. Finally, if the orientation
of theσ11 tensor component is not collinear with the N-H bond
vector, the deviation from axial symmetry of the15N CSA tensor
provides an additional contribution to cross correlation and
thereby affects the value derived for CSAred. Following Chung
et al.,30 calculations for the case of isotropic tumbling and an
asymmetric15N CSA tensor indicate that the typical values of
the15N CSA asymmetry observed in peptide bond amides affect
CSAred by not more than a few percent.
Correlation between CSAred andS2. The magnitude of the

relaxation interference effect,η, is directly proportional to the
generalized order parameter,S2, and the variability inS2 is
considerably larger than the variation inσ| - σ⊥. Therefore,
the CSAred values provide information on the relative values of
the order parameters of the backbone15N nuclei. Figure 6
shows the correlation between the order parameters calculated
previously from15N T1 andT2 values and the CSAred values
calculated using eqs 4 and 8, using an isotropic rotational
correlation time of 4.1 ns.24,27 The solid line corresponds to
the relation between CSAred andS2, calculated usingσ| - σ⊥
) -170 ppm, andθ ) 20°. The previously measured order
parameters agree to within a root-mean-square deviation (rmsd)
of 0.045 with the values calculated from CSAred, assuming a
uniform CSA of-170 ppm,θ ) 20°, andτc ) 4.1 ns. The
rmsd decreases to 0.040 when the spectral density function
appropriate for axially symmetric diffusion (eq 6) and the
previously reported principal values of the diffusion tensor are
used. As discussed above, this residual rmsd of 0.04 is caused
by variations in the magnitude of the CSA and small variations
in the angleθ between the dipolar vector and the unique axis
of the CSA tensor.
The results shown in Figure 6 indicate that if the rotational

correlation time is known, the individual backbone order
parameters can be estimated from the CSAred values with an
rms uncertainty of less than 0.05. Even if the rotational
correlation is not knowna priori, it is well-established from
numerous15N relaxation studies that the order parameters for
most N-H pairs involved in secondary structure cluster are
about a value of 0.85. Thus, ifIA/IB ratios are plotted as a
histogram, the most populatedIA/IB ratio corresponds to an order
parameter of∼0.85, and the isotropic rotational correlation time
can then be calculated assuming again thatσ| - σ⊥ ) -170

ppm, andθ ) 20°. If no clear clustering of theIA/IB ratios is
observed, this could indicate that the rotational diffusion is
substantially anisotropic, or that there is an exceptionally large
number of mobile residues in the protein.

Concluding Remarks

We have demonstrated that cross correlation between dipolar
and CSA relaxation mechanisms can be quantitatively measured
from two simple two-dimensional NMR experiments. For15N,
the experiments offer good sensitivity, approximately a factor
of 5 lower than a regular1H-15N HSQC experiment, and yield
information on the magnitude of the chemical shift anisotropy,
provided order parameters for the backbone amides have been
derived from15N relaxation measurements.
The average15N CSA, measured in this manner, is-170 ppm,

assumingθ ) 20°. This value is about 10 ppm larger than the
width of the15N powder pattern observed in solid-state NMR
spectra of small model compounds, but this difference may be
caused by the fact that the solid-state NMR powder pattern width
is reduced by rapid internal fluctuations of the amide.7 For
example, for anS2 value of 0.9, the width of the powder pattern
reduces by 5% relative to the static value. The correlation
observed between the CSA and the isotropic shift indicates that
the sum of the most shielded CSA tensor components is largely
invariant to structural changes.
Provided the rotational correlation time of the protein is

known, the measurement of cross correlation yields information
on the generalized order parameterS2, i.e., on the amplitude of
the rapid internal motions. In contrast to the most commonly
used approach, where this number is derived fromT1, T2, and
NOE values, the present method is not affected by line
broadening caused by slow conformational exchange. However,
as a result of the inherent variations inθ and the magnitude of
the 15N chemical shift anisotropy, the precision of the order
parameter obtained from the experiments proposed in this paper
is limited toca. 5%. TheS2 values derived in this manner show
improved agreement with order parameters obtained from
conventional15N relaxation measurements when the previously
derived axially symmetric diffusion tensor27 is used instead of
isotropic tumbling.
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Appendix

In the presence of internal motions, there is no rigorous,
generally valid relationship between cross- and auto-correlation
functions. However, this Appendix shows that if the rotational
diffusion of the macromolecule is isotropic and the internal
motions can be described as independent, small, equal amplitude,
restricted rotations about three mutually orthogonal axes,〈P2-
(µp(0)‚µq(t))〉 ) P2(cos(θpq))〈P2(µi(0)‚µi(t))〉, with i ) p, q, just
as is the case in the absence of internal motions. Moreover,
for a more general class of physically plausible small amplitude
internal motions, the above is a good approximation ifθpq is
sufficiently small.
Unlike auto-correlation functions, cross-correlation functions

are not always positive and can even increase with time. Since
NMR cross-correlation functions are identical to those that
determine the fluorescence depolarization of probes whose

Figure 6. Correlation between the CSAred values in human ubiquitin
and the previously measured order parameters.27 CSAred values are
calculated from data recorded at 600 MHz, using 2∆ ) 46.7 ms,
assuming isotropic diffusion withτc ) 4.1 ns. The solid line corresponds
to the correlation expected ifσ| - σ⊥ ) -170 ppm andθ ) 20°. The
previously measuredS2 values deviate from the solid line with a rmsd
of 0.045.
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emission and absorption dipoles are not coaxial, they have been
extensively studied in the fluorescence literature.31

For an isotropically reorienting macromolecule, in the pres-
ence of internal motions that are uncorrelated with the overall
motion,

In general,Cpq(0) ) P2(cosθpq). The simplest approximation
for Cpq(t), which is exact att ) 0 and∞, is

When p) q, Cii (∞) is just the square of the generalized order
parameterSi2. In generalSdd2 * Scc2 as is commonly assumed,
although for15N in peptide bonds one expects this to be a very
good approximation. When p* q, Cpq(∞) ) ∫∫ dΩ dΩ′
P2(µp‚µq′) is not necessarily positive and can be greater than
Cpq(0).
To illustrate the above, consider restricted internal rotations

described by the angleγ about thez axis. Then,31

whereθp andθq are the polar angles ofµp andµq, φpq is the
difference in their azimuthal angle, anddm0(2) are reduced
Wigner rotation matrices. It follows from eq A.3 that

For free rotations, such as apply to methyl groups,Cpq(∞) )
P2(cosθp)P2(cosθq), andCii (∞) ) P2(cosθi)2, i ) p, q. For
backbone amides the amplitude of rotations is restricted and
one has|〈exp(imγ)〉|2 = 1 - m2〈(δγ)2〉, where〈(δγ)2〉 is the
mean square of the rotation angle. After some algebra, one
finds

When p) q, this reduces to

Equation A.5 shows that, depending on geometry,Cpq(∞) can
be either smaller or greater thanP2(cosθpq).
Equation A.5 can be generalized to include independent,

small-amplitude, restricted rotations about one or more ad-
ditional axes. To lowest order, all one has to do is add
analogous terms proportional to〈(δγI)2〉 with coefficients
determined by the polar and azimuthal angles with axis I taken
as thez axis. To illustrate this, supposeµp andµq lie in theyz
plane, with thez axis bisecting the angle betweenµp andµq. If
the angle betweenµp,q and thez axis is(θ/2, thenP2(cosθpq)
) P2(cosθ). Suppose one has independent rotations with mean-
square amplitude〈(δγI)2〉, I ) x, y, z, about the three axes, then

since for rotations about thezaxisθp ) θq ) θ/2 andφpq ) π,

about thex axisθp ) θq ) π/2 andφpq ) 2θ, and about they
axisθp ) π/2 + θ/2, θq ) π/2 - θ/2, andφpq ) 0. Similarly

When 〈(δγz)2〉 ) 〈(δγx)2〉 ) 〈(δγy)2〉 ) 〈(δγ)2〉,

and

It then follows from eq A.2 that

as claimed in the beginning of the Appendix. Note, however,
that eq A.11 is not exact for arbitrary types of internal motion
and applies only to isotropic overall motion. However, provided
θ is small, eq A.11 remains a good approximation for other
physically reasonable types of internal motion of peptide amides.
For example, if〈(δγz)2〉 ) 0 and〈(δγx)2〉 ) 〈(δγy)2〉 ) 〈(δγ)2〉,

and

Comparison of eqs A.12 and A.13 confirms that eq A.11 remains
a good approximation providedθ is small.
When the rotational diffusion is anisotropic, expressions for

the correlation functions become considerably more complex.
For example, for axially symmetric rotational diffusion, in the
absence of internal motions, one has30,31

where nowθp andθq are the spherical angles describing the
orientation ofµp and µq relative to the unique axis of the
rotational diffusion tensor. The auto-correlation function is

and thus in general〈P2(µp(0)‚µp(t))〉 * 〈P2(µq(0)‚µq(t))〉 * 〈P2-
(µp(0)‚µq(t))〉P2(cosθpq). Thus, the approach used in the text
to treat anisotropic overall motion is far from rigorous, although
it is expected to be a reasonable approximation whenθpq is
small.

Supporting Information Available: Table with CSAred

values, derived from data measured at 360 and 600 MHz1H
frequency for three different durations of the dephasing delay,
2∆ (3 pages). See any current masthead page for ordering and
Internet access instructions.
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Cpp(∞) ) Cqq(∞) ) 1- 3〈(δγz)
2〉sin2(θ/2)- 3〈(δγx)

2〉 -

3〈(δγy)
2〉cos2(θ/2) (A.8)

Cpq(∞) ) P2(cosθ)[1 - 6〈(δγ)2〉] (A.9)

Cqq(∞) ) 1- 6〈(δγ)2〉 (A.10)

Cpq(t) ) P2(cosθ)Cqq(t) (A.11)

Cpp(∞) ) Cqq(∞) ) 1- 3〈(δγ)2〉[1 + cos2(θ/2)] )

1- 6〈(δγ)2〉(1- θ2/8+ ...) (A.12)

Cpq(∞) ) P2(cosθ){1- 3〈(δγ)2〉[cos2(θ/2) cosθ +

cos 2θ]/P2(cosθ)} ) P2(cosθ){1- 6〈(δγ)2〉(1+

θ2/8+ ...)} (A.13)

〈P2(µp(0)‚µq(t))〉 ) exp(-6D⊥t)P2(cosθp)P2(cosθq) +
exp[-(5D⊥ + D|)t](3/4) sin(2θp) sin(2θq) cos(φpq) +

exp[-(2D⊥ + 4D|)t](3/4) sin
2(θp) sin

2(θq) cos(2φpq) (A.14)

〈P2(µi(0)‚µi(t))〉 ) exp(-6D⊥t)[P2(cosθi)]
2 +

exp[-(5D⊥ + D|)t](3/4) sin
2(2θi) +

exp[-(2D⊥ + 4D|)t](3/4) sin
4(θi) i ) p, q (A.15)

〈P2(µp(0)‚µq(t))〉 ) exp(-t/τc) 〈P2(µp(0)‚µq(t))〉internal≡
exp(-t/τc) Cpq(t) (A.1)

Cpq(t) ) Cpq(∞) + [P2(cosθpq) - Cpq(∞)] exp(-t/τe) (A.2)

Cpq(t) ) ∑
m)-2

2

〈exp[im(γ(0)- γ(t))]〉dm0
(2)(θp)dm0

(2)(θq) ×

cos(mφpq) (A.3)

Cpq(∞) ) ∑
m)-2

2

|〈exp(imγ)〉|2dm0(2)(θp)dm0
(2)(θq) cos(mφpq)

(A.4)

Cpq(∞) ) P2(cosθpq) - 3〈(δγ)2〉 sinθp sinθq×
(cosθp cosθq cosφpq + sinθp sinθq cos 2φpq) (A.5)

Cqq(∞) ) 1- 3〈(δγ)2〉 sin2 θq (A.6)

Cpq(∞) ) P2(cosθ) + 3〈(δγz)
2〉[sin2(θ/2) cosθ] -

3〈(δγy)
2〉[cos2(θ/2) cosθ] - 3〈(δγx)

2〉[cos 2θ] (A.7)
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