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A set of new experiments for obtaining the conventional anisotropy powder patterns 
utilizes a series of * or 2a pulses synchronized with the rotation of the magic-angle spinner. 
The experiment is most conveniently performed in a two-dimensional fashion. The new 
pulse sequences are rather insensitive to imperfections of the pulses. Experimental results 
are shown for hexamethylbenzene and pamdimethoxybenzene. 

INTRODUCHON 

One of the advantages of studying organic molecules in the solid state rather than 
in the liquid state is the information about the chemical shift anisotropy that can be 
obtained. Unfortunately a straightforward recording of a i3C spectrum of a nonspin- 
ning sample to get the anisotropy information fails in many cases because of the 
usually extensive overlap of the signals originating from different sites in the molecule, 
and because of poor sensitivity, due to the fast decay of the signal. 

Several types of experiments have been proposed to overcome these problems, at 
least partially. If sample spinning at the magic angle is used on a compound with a 
chemical shift anisotropy of the order of the spinning frequency or larger, then spin- 
ning sidebands occur in the spectrum which allow the reconstruction of the original 
anisotropy pattern (1, 2). Dixon (3, 4) recently proposed an experiment for the re- 
moval of overlap between the different sidebands and isotropic peaks, making this 
approach more practical. However, it should be noted that the reconstruction of the 
anisotropy powder pattern from spinning sidebands is not straightforward. Stejskal 
et al. (5) proposed spinning the sample at high speed, but slightly away from the 
magic angle, giving a line much narrower than in the nonspinning case, but showing 
the same kind of pattern. Aue et al. (6) proposed using the spinning sideband re- 
construction method via a two-dimensional experiment, giving in some respects the 
same advantages and disadvantages as the more recent one-dimensional approach of 
Dixon (4). Lippmaa et al. (7) were the first to propose the application of a series of 
?r pulses that are synchronized with the high-speed magic-angle spinner rotation. The 
lineshape obtained in this kind of experiment allows the reconstruction of the con- 
ventional powder anisotropy pattern. A more elaborate approach has recently been 
proposed by Yarim-Agaev et al. (8). They show that a sequence with six a pulses 
applied during each spinner revolution gives, analogous to Lippmaa’s experiment, 
the opportunity to reconstruct the powder anisotropy pattern, but in a more reliable 
way. Both the Lippmaa and the Yarim-Agaev experiments are, as the authors point 
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FIG. 1. Schematic representation of the 2x pulse sequence; r, indicates the rotor period, the evolution 
period t, consists of an integer number n of rotor periods. The initial contact is a standard cross-polarization 
for enhancing the 13C magnetization. 

out, extremely sensitive to pulse imperfections, and also require a two-dimensional 
approach in the case of nearby resonances. 

The experimental approach reported here utilizes two-dimensional Fourier trans- 
formation and gives the conventional isotropic spectrum in the F2 dimension and 
the corresponding anisotropy patterns in the F1 dimension. These new experiments 
are rather insensitive to imperfections of the rf pulses. 

EXPERIMENTAL 

The hexamethylbenzene and paradimethoxybenzene were obtained from Aldrich 
Chemical Company and were used as received. The 13C NMR experiments were 
carried out at 25.27 MHz on a homebuilt spectrometer, using a Nalorac widebore 
superconducting magnet, a Nicolet 1180 data system, and a Nicolet 293A pulse 
programmer. The width for a 13C * pulse was 10.9 ~sec and for a 27r pulse, 21.0 
psec. A bullet type Kel-F rotor was employed and the spinning speed was adjusted 
to be 2400 Hz. 

RESULTS AND DISCUSSION 

The Basic Sequence 
In the description of the new sequences it is assumed that the spinning speed is 

large compared with the width of the anisotropy pattern. In practice this means that 
spinning sidebands should have a total integrated intensity that is less than about 10 
percent of that of the isotropic peak. The pulse sequence for the basic experiment is 
set out in Fig. 1 and is rather similar to the 27r sequence proposed by Yarim-Agaev 
et al. (8). The main differences are the opposite phases of the two A pulses and the 
fact that our experiment is performed in a two-dimensional fashion. In addition, the 
time T between the two ?r pulses will always be short compared with the time (TR) 
needed for a full revolution of the spinner. This latter restriction simplifies the results 
considerably, as shown below. 

The resonance frequency of a nucleus in the kth arbitrary crystallite can always 
be written as 

%C(t) = n, + n,(t) 114 
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FIG. 2. Evolution of the transvexse magnetization of a 13C nucleus in a certain crystallite during the first 
rotor period. (a)-(f) correspond to the times indicated in Fig. 1. 

with 
n,(t) = C,COS(Q~f + 4,)+ C~coS(2QRt + $*), [lb1 

where t is the time starting from the end of cross-polarization, RI is the isotropic shift 
frequency, QA is the anisotropic contribution, QR is the spinner rotation frequency, 
and C, , C2, &, and & are constants that depend on the orientation of the crystallite 
with respect to the static magnetic field at t = 0 (point a in Fig. 1). 

In Fig. 2 the evolution of the 13C magnetization vector in the transverse plane from 
the nucleus in the kth crystallite is shown for different times in the sequence of Fig. 
1 during the first revolution of the spinner. Suppose for convenience that Qi = 0; 
i.e., the isotropic 13C shift is on resonance. After cross-polarization the i3C magne- 
tization vector will start out along the y axis (Fig. 2a). Then during a time, 7, it covers 
an angle (CY) given by 

a= 
s 

” Q/&)dt. PI 
0 

The first rr,, pulse rotates the magnetization vector and thereby inverts this angle (Figs. 
2b, c). During the time 7 between the two ?r pulses the vector evolves through an 
angle, @, given by 

/3 = 6”’ n,(t)df Pal 
or,ifr4 T,, 

B = T&,(T~ + T/Z). Pbl 
At the end of the 7 period the angle of the vector with respect to the y axis in the 
rotating frame equals /3 - LX. The second pulse, a a-,, pulse, inverts this angle to 
(Y - fi (Fig. 2e), and during the following interval 72, the vector will evolve through 
an angle, y, given by 

y= TR 
s 

a,( t)dt. 141 
TI+T 

The total angle evolved through during one revolution of the spinner is given by 
(Y - /3 + y. Furthermore, it follows from Eq. [l] that 

s 

TR 

Q,(t)dt = 0 = a + ,6 + y. [51 
0 

Hence at the end of the first spinner rotation the vector makes an angle, a! - B + y 
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= -28, with the positive y axis. After n rotations of the spinner the vector will make 
an angle, -2n@, with the positive y axis. Therefore, if data acquisition is started after 
n revolutions of the spinner, for which t, = nTR , and a set of experiments is performed 
with different values of n, then phase modulation of the detected y component of 
13C magnetization occurs as a function of t,. This phase modulation occurs with a 
frequency, -28/T,, and a two-dimensional Fourier transformation will give a res- 
onance line at 

(~1, ~2) = (-W/7',, 0) = (-27%(71 + ~/W'-'R,W WI 
Of course, in the case of a polycrystalline or powdered sample, all possible values 

for &(T~ + ~/2) occur, corresponding to the different orientations of the crystallites 
after the end of the cross-polarization at a. Hence, in the P1 dimension of the 2D 
spectrum the static powder anisotropy pattern will appear, scaled by a factor 
-27/TR. In the case of an arbitrary value, Qi, for the isotropic chemical shift, the 
total accumulated phase angle at the beginning of data acquisition will be 

a - /3 + y + !&(T, + 72 - T) = -28 + Q,(TR - 27) 

and the two-dimensional Fourier transformation will give a resonance line at 

(WI, 02) = (-%?/TR + (TR - ~T)%/TR, 81). [71 

The Qi contribution in the F, dimension can easily be removed by the application 
of a linearly frequency-dependent phase correction, 9,) to each of the spectra obtained 
for a different number (n) of spinner revolutions prior to acquisition, where a, is 
given by 

a, = -hr(T~ - 27)n rad/Hz. PI 
As phase modulation occurs in this experiment, lines in the two-dimensional spec- 

trum will show a phase-twisted lineshape (9, IO), and no full two-dimensional ab- 
sorption spectrum can be obtained unless another experiment that generates a so- 
called reversed-precession signal (II) is performed. However, for our purposes this 
is not necessary because each of the cross sections that cuts the F2 axis at f12 = Qi, 
showing the anisotropy pattern, can be phased to the pure absorption mode (10). 

If the condition, r 4 TR, is met, the two 13C u pulses of opposite phase will partially 
cancel each other’s imperfections that are due to such factors as rf inhomogeneity or 
simply a miscalibration of the n-pulse width. However, the effect of imperfection due 
to frequency offset of the carbon rf field is not compensated by the phase inversion 
of the second pulse. Furthermore, the longer the period 7, the less pulse imperfections 
will be compensated, and adjustment of the length of the ?r pulses becomes more 
critical. In practice, a T value as large as TR/lO causes serious problems. 

Compensated Multiple 2~ Sequence 

In order to avoid the problems of pulse imperfections indicated above, a pulse 
sequence with better compensating characteristics is clearly desirable. Such a se- 
quence, which relies on the same principles as the one shown in Fig. 1, is shown in 
Fig. 3. The 7rY-~-~-Y 13C sequence is now replaced by an integer number of 27rY- 
2~, pulse pairs. The 2a pulses cause an apparent halt in the precession of all the 
magnetization vectors during the period, T. This can easily be understood by using 
average Hamiltonian theory: In the case of a single pair of 27r,,-2~ pulses the 
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RG. 3. Schematic representation of the multiple-2r sequence. TR indicates the rotor period and 7 the 
time during which an integer number of 2+~~-2~-~ pulse pairs are applied. 

Hamiltonian in the rotating frame during the first half of the r period is given by 
+-yH, ZY and during the second half by -yH,I,,, neglecting the effect of chemical 
shift. Therefore the average Hamiltonian during the 7 period is zero, and no average 
precession takes place in the rotating frame. Hence, after a complete revolution, the 
total accumulated phase angle is (Y + y = -6, where (Y, p, and y are as defined before. 
Then, using the same arguments as in the previous section, phase modulation of the 
detected 13C magnetization component will occur with frequency -/3/TR, where j3 is 
again given by Eq. [3]. The interval 7 is now the time during which the two 2u pulses 
are applied. Note that the modulation frequency is halved compared with the ex- 
periment described in the previous section. However, this decreased modulation fre- 
quency is more than offset by the high degree of compensation of pulse imperfections, 
causing a slower decay of the signal as a function of t,, i.e., a higher resolution of 
the anisotropy powder pattern. Not only pulse imperfections due to rfinhomogeneity 
or a pulse miscalibration, but also radiofrequency offset imperfections are to a large 
extent corrected for in the present case. The linear frequency-dependent phase cor- 
rection +i, which is necessary to remove the isotropic shift contribution in the Fi 
dimension, is given by an equation analogous to Eq. [8]: 

a’1 = -27r(T, - ~)n t-ad/Hz. 191 
Figure 4 compares the static 13C powder patterns of hexamethylbenzene obtained 

from (a) a conventional cross-polarization experiment on a nonspinning sample and 
(b) an experiment using the scheme of Fig. 1, taking a cross section through the 2D 
spectrum parallel to the F, axis at the Fz frequency of the aromatic carbon. In 
obtaining the spectrum the number of different t, values used was 34, the maximum 
number allowed by the pulse programmer. Four scans were time-averaged for each 
value oft, , giving a total measuring time of approximately 3.5 minutes. The spectrum 
of Fig. 4a is the result of 5000 accumulations, taking approximately 1.6 hr, and some 
Gaussian weighting was used to improve the signal-to-noise ratio. No digital filtering 
was used in the F, dimension to obtain the spectrum in Fig. 4b. Experimentally it 
was found that best results were obtained if proton decoupling was continued during 
the 13C pulses, but at a sufficiently high-power level to prevent a Hartmann-Hahn 
contact during the application of the “C pulses. It is important that an FID for 



SHIFT ANISOTROPY IN POWDERS 405 

I 1  I 
0 mm -lb0 

1 
200 100 -200 

FIG. 4. “C chemical shift anisotropy patterns for the aromatic carbons in hexamethylbenzene obtained 
by (a) a conventional cross-polarization experiment on a nonspinning sample and (b) by taking a cross 
section through the two-dimensional spectrum at the F2 frequency of the aromatic carbons. The isotropic 
shift of the aromatic carbons corresponds to 0 ppm. The sequence of Fig. 1 was employed, using 34 different 
t, values and a 7 period of 39 w. The length of the * pulses was 10.9 psec. 

tl = 0 and tl = TR (i.e., n = 0 and n = 1) is obtained, because, if these points are 
absent in the t, domain, significant distortion of the anisotropy pattern can result. 
In our case these two FIDs could not be obtained automatically, but had to be 
obtained from separate experiments. In order to calculate the spectral width in the 
F, dimension, the width of the 13C ?r pulses has to be taken into account. The values 
for the different delays used were r1 = 10 psec, T = 39 psec, and 72 = 345 ~sec. In 
practice half the width of a ?r pulse is added to the 7 value, giving a corrected value 
of 50 psec. The spectral limits in the F, dimension are +(2T,)-‘, yielding a spectral 
width of 2(2T,)-‘. The chemical shift anisotropy was scaled by a factor, -27/TR; 
hence, the corrected spectral range is given by &(47)-l = +5 kHz. In order to eliminate 
the minus sign in the scaling factor, which makes the anisotropy pattern appear to 
be reversed, the spectrum was reversed in order to give the conventional presentation. 

The agreement between the two anisotropy patterns shown in Fig. 4 is fairly good, 
although the resolution in spectrum (b) appears to be worse than that of spectrum 
(a). This is due to pulse imperfections, and the fact that T is not infinitely short, so 
that no instantaneous frequency is measured, but the average frequency during in- 
terval, 7. This averaging effect is clearly visible in the computer-simulated anisotropy 
patterns shown in the Appendix. Nevertheless, the values for the tensor components, 
u1 and aI, for this axially symmetric molecule can easily be extracted. 

Figure 5 shows the anisotropy patterns measured for the four different sites in 
pdimethoxybenzene, a compound of which the anisotropies had been studied by 
Maricq and Waugh (I) by using the spinning-sideband reconstruction technique. The 
spectra shown were obtained by using the experiment of Fig. 3, utilizing four 2?r 
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FIG. 5. 13C chemical shift anisotropy patterns for the four different sites in p-dimethoxybenzene obtained 
from cross sections parallel to the F, axis through the 2D spectrum at the corresponding shift in the F2 
domain. The sequence of Fig. 3 was employed, using 34 different t, values, four 2% pulses of 21 psec each 
per 7 period and 8 accumulations per t, value. The isotropic shift frequencies correspond to 0 ppm. 

pulses of 2 1 psec each and eight accumulations for each value of t, . In order to show 
the “breakpoints” in the powder pattern more clearly, a Lorentzian-to-Gaussian res- 
olution-enhancement filter was applied in the F, dimension. The corrected spectral 
limits in the F, dimension are given by +(27)-l = k5.95 kHz = +235 ppm. Using 
this frequency scale, the values found for a,, a,,,,, and u, in the principal axis system 
are given in the “measured” column of Table 1. Comparing these values with those 
obtained by Maricq and Waugh (1) shows that all our values are about 25% smaller. 
This is in full agreement with the results of computer simulations shown in the 
Appendix, which show that the apparent narrowing of the anisotropy pattern is about 
25% for 7/TR = 0.25. Nevertheless, the overall shape of the anisotropy patterns 
remains unchanged and the values for a,, an, and u, can be adjusted for this 
systematic error, giving the values found in the “adjusted” column of Table 1. The 
adjusted results are in fair agreement with those obtained by Maricq and Waugh (1). 

In summary it can be said that the new experiments presented in this paper are 
convenient ways to obtain the shape of the anisotropy pattern. Especially the multiple 
27r sequence is insensitive to adjusting the width of the 2~ pulse and is therefore a 
good choice for routine use; however, it was found that proper tuning of the probe 
is important in both experiments proposed, in order to minimize phase transients 
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TABLE 1 

MEASUREDANDADJUSTED "C CHEMICALSHIFFTENSORVALUESINDIMETHOXYBENZENE 

CH 
/ 

a3 
b c 

Principal tensor Maricq and Waugh 
Site component Measured Adjusted (Ref. (0 

a(CW 011 67 71 80 
a22 67 71 71 
033 28 19 16 

b Cl1 166 184 193 
022 136 144 134 
a33 42 18 12 

C 011 177 196 198 
012 130 134 136 
033 39 13 23 

d 011 209 227 230 
a22 160 162 162 
a33 95 75 74 

Note. All values are referred to TMS = 0 PPM. 

during the rise and fall times of the rfpulses. Sensitivity of the new methods is rather 
good; in our experiments we found it to be a factor of about 5 to 10 less in terms 
of signal-to-noise ratio, compared with a conventional CP/MAS spectrum obtained 
in the same measuring time. 

FIG. 6. Computer simulations of anisotropy powder patterns as measured with the sequences of Figs. 1 
and 3 for values of r/TR varying from 0 to 0.25 from top to bottom. The left half shows the patterns for 
an axially symmetric chemical shift tensor. The right half is computed with a22 = (a,, + CT’~)/~. 
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APPENDIX: THE EFFECT OF FINITE r VALUE ON THE POWDER PATTERN 

The orientation of the principal axis system (PAS) in an arbitrarily oriented crys- 
tallite is defined by the angles (Y, j3, and y. Angle CI is defined as the angle between 
the direction of the uj3 component of the PAS and the magic-angle axis, which we 
define to be in the yz plane of our laboratory frame. Angle /3 is the angle over which 
the u33 component has to be rotated about the magic-angle axis, in order to fall in 
the yz plane, and to be in the same half-plane as the positive z axis. Angle y is defined 
as the angle through which the PAS has to be rotated about the u33 component (when 
rotated about /3 into the zy plane) to bring the ull component colinear with the 
positive x axis. 

Using these definitions for LX, j3, and y, the shift, 6, of the nucleus in this arbitrarily 
oriented crystallite is given by 

wa, P, Y) = w cos a + \/2/3 cos /3 sin a)2u33 

+ (lb-’ sin (Y sin y - m cos ff cos /3 sin y - \/2/3 sin /3 cos ~)‘a~, 

+ (VTl sin (Y cos y - I@ cos (Y cos B cos y + 1/213 sin /3 sin ~)~a~~. 

The static powder anisotropy pattern is now simply calculated by integrating 6 over 
the angles (Y, 8, and y from zero to a. The powder pattern as measured in our 
experiments is simulated analogously by integrating 6(a, fi, y) over j3 from PI to /3, 
+ 27rr/TR before integrating over CX, PI, and y. Figure 6 shows computer simulations 
for an axially Symmetric chemical shift tenSOr and for one with u22 = (6, , -I- U&/2. 

For values r/TR > 0.25 the simulated pattern rapidly looses similarity with the static 
powder pattern as r/TR is increased. 

No broadening function has been used in the computer simulations. The effect of 
broadening due to transverse relaxation is to make the broadening contribution due 
to the finite 7 value appear less severe. 
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