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Linear prediction (LP) has become a standard tool for enhancing the appearance 
of multidimensional NMR spectra (1-7). In principle, the method can be used to 
calculate the frequencies, amplitudes, damping factors (linewidths), and phases of all 
components contained in the time-domain signal. In practice, however, the method 
is not very robust in the presence of noise. For this reason, a more conservative ap- 
proach, where the time-domain signal is extended using (imperfect) linear prediction 
coefficients, has been much more popular. In the latter case, the appearance of the 
final spectrum frequently is dominated by the acquired time-domain data, but trun- 
cation at the end of the acquired time domain is minimized by elongating the acquired 
data by predicted data. The weight of these predicted data is decreased by appropriate 
digital filtering prior to Fourier transformation. Here we present a simple modification 
of this commonly used procedure, based on the “forward-backward” LP (FB-LP) 
method (8, 9)) which improves significantly the quality of the prediction coefficients. 

The principles of linear prediction have been described many times before (Z-IO), 
and only the points salient to the present discussion will be briefly reiterated. In the 
case of forward linear prediction, a data point x,, is expressed as a linear combination 
of its K preceding data points: 

K 

x,, = 2 c,$i,-k. 

k=l 
ill 

If N complex data points have been sampled, N - K equations of type [l] can be 
generated, and the coefficients ck can be determined by singular value decomposition 
(SVD), provided K < N/2. In the presence of noise, it is also important to ensure 
that K > M, where A4 is the number of frequency components in the time-domain 
signal. As M is generally unknown, K is typically set in the N/4-N/ 3 range. With the 
prediction coefficients (ck) determined by SVD, the frequencies and damping factors 
of the signal components encoded in these coefficients can be calculated from the K 

roots (zi, . . . , zK) of the polynomial 

ZK-qzK-‘- . . . -c,=() [21 
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The time-domain signal is then described by 
K 

x,, = 2 Akzkn-I. 
k=l 

131 

Each frequency component in the time series x1 . . * xN corresponds to one of the 
roots zk; the amplitude and phase of each signal component is encoded in Ak, which 
can be determined by a second SVD calculation ( 1) . Subsequently, a procedure known 
as “root reflection” is commonly used, which replaces zk by zk/ 1 zk 1 2 if ( i& 1 > 1. This 
ensures that all signal components are decaying exponentials. After root reflection a 
new set of coefficients (CL) is obtained from the polynomial 

fyi (z - zi), [41 
k==l 

where zi denotes the corrected (root-reflected) zk value. 
As was pointed out by Porat and Friedlander (8) and first used in NMR by Delsuc 

et al. (9), the LP can also be performed in a backward manner: 
K 

Xn = c dk&+k. 
k=l 

151 

In the same manner as was used for Eq. [ 11, the “backward” coefficients dk can be 
calculated from [ 51 by SVD. Rooting of the new polynomial 

,,K-dlVK-l- . . . -dK=O [61 
will then yield signal-related backward roots that after root reflection and complex 
conjugation ’ are identical (or nearly identical, in the presence of noise) to the signal- 
related roots of Fq. [ 21. The noise-related roots generally do not show such a correlation 
(8, 9). It has been suggested that searching for the pairs of most similar roots, obtained 
from forward and root-reflected backward linear prediction, provides a robust means 
for distinguishing signal- and noise-related roots (9). The main problem with this 
procedure relates to the requirement for some prior knowledge about the system (the 
number of signal components) and to the fact that this search for closest pairs may 
result in missing roots for weak signal components. 

Here we propose an alternative way to use the information contained in the backward 
linear prediction coefficients. As mentioned above, in the absence of noise, after root 
reflection and complex conjugation, the roots calculated from Eq. [ 61 are identical to 
those from Eq. [ 21, and the new coefficients recalculated (using Eq. [4]) from the 
complex conjugates of the root-reflected roots of Eq. [6] are therefore the same as 
those obtained from solving Eq. [2]. In practice, each set of prediction coefficients 
contains small random errors caused by noise, however. Simply averaging the two 
sets of coefficients results in a reduction of the random error present in these two sets 
of coefficients. The procedure is summarized in the flow diagram in Fig. 1. 

’ Complex conjugation is necessary because the reversal of the time axis in the backward linear prediction 
results in apparent frequencies that are opposite in sign to those in the forward direction. 
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FIG. I. Flow diagram of the forward-backward linear prediction procedure. The left part of the scheme 
is used in regular linear prediction; v: is the complex conjugate of ok. The last two steps, recalculation of 
the new roots from the averaged coefficients and determination of the amplitude and phase of the frequency 
components, are omitted when the method is used simply to extend the length of the RD. 

Results of the new FB-LP method are illustrated both for simulated data and for a 
2D cross section through a 3D data set. Simulated data consist of 16 complex data 
points, each separated by 1 ms dwell times (spectral width, 1000 Hz), containing 
three complex sinusoids with frequencies 160,240, and 480 Hz and relative amplitudes 
AI:A2:A3 = 1:1.5:3. The T2 value of the simulated sinusoids was 50 ms. Different 
amounts of Gaussian noise with root-mean-square amplitude u were added to the 
signal and the results of the LP calculations are reported for various signal-to-noise 
(S/N) ratios, defined as 

S/N = 10 log(A,/a). 171 
Table 1 shows the results of both the LP and the FB-LP methods for various values 
of S/N, using 1000 different sets of computer-generated noise for each value of u. A 
score is counted only if all three frequency components have been correctly identified, 
i.e., if the frequencies derived from the LP for all three components fall within 5 Hz 
of their true values, the T, values are greater than 16 ms, the amplitudes fall within 
30% of their true values, and the phase error is less than 30”. As expected (I ), both 
the LP and the FB-LP methods perform optimally when the number of coefficients 
is 25-35% of the total number of time-domain data points. As also can be seen from 
Table 1, the FB-LP is approximately 1 dB more robust in identifying the correct 
signals than the regular LP method. 

Figure 2 compares the results of the FB-LP and LP methods applied to a cross 
section through a 3D spectrum in which the frequency of ‘3CsH3 methyl protons of 
leucine residues in the protein Staphylococcal nuclease (S. nuclease) is correlated with 
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TABLE 1 

Performance of the FB-LP and LP Methods for Correctly Identifying 
Three Signal Components from 1000 Data Sets Containing Additional 

Computer-Generated Gaussian Noise, as Described in the Text 

LP order 

SIN (dB) Method 3 4 5 6 I 

14 
14 

FB-LP 
LP 

13 
13 

FB-LP 
LP 

12 FB-LP 
12 LP 

11 FB-LP 
11 LP 

10 
10 

FB-LP 
LP 

9 
9 

FB-LP 
LP 

8 FB-LP 
8 LP 

I FB-LP 
I LP 

826 1000 1000 1000 997 
637 995 973 913 719 

503 1000 1000 999 992 
281 993 979 911 744 

208 991 1000 999 920 
69 959 975 910 718 

34 992 994 998 984 
6 870 971 884 715 

10 760 913 916 926 
1 622 930 863 661 

0 501 910 930 854 
0 317 839 716 590 

0 292 786 818 736 
0 113 670 651 481 

0 103 626 669 545 
0 29 449 473 328 

CBH2, C,H, and CsH3 proton signals via long-range ‘H- 13C J coupling. The 3D spec- 
trum results from a 32 (t,, 13C) X 32 (t2, ‘H) X 768 (t3, ‘H) data matrix, with 
acquisition times of 26.5 ( tl ), 11.9 ( t2), and 53.0 ( t3) ms. After 60”-shifted sine-bell 
apodization, zero filling, and Fourier transformation in the t, and t3 dimensions, data 
in the t2 dimension were extended from 32 * to 256 *, using 10 prediction coefficients, 
followed by apodization with a squared cosine bell ( t2) and t2 Fourier transformation. 
Extending the data eightfold by linear prediction is more than what we typically use 
for most 3D data sets, even in cases such as the present one, which has very high 
S/N. For this high-S/N spectrum, both LP and FB-LP offer a comparable enhance- 
ment in resolution over the original spectrum (data not shown). However, as can be 
seen in Fig. 2A, numerous narrow artifacts appear in the slice processed with conven- 
tional LP, whereas in the FB-LP-processed slice such artifacts are much weaker. These 
artifacts correspond to z values that represent noise and that coincidentally fall very 
close to the unit circle, i.e., they result in nearly undamped sinusoidal extension of 
the time-domain data, giving rise to the narrow but sometimes quite intense spikes 
in the spectrum. Particularly when the LP is applied in two or more orthogonal fre- 
quency dimensions, such artifacts significantly decrease the apparent signal-to-noise 
ratio of the NMR spectrum. 
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FIG. 2. Comparison of spectra obtained by extending the t2 time domain eightfold using (A) regular LP 
and (B) FB-LP. In both cases, 10 coefficients were used and data were extended from 32 complex to 256 
complex. Data shown correspond to an F,/F, slice through a 3D spectrum of S. nuclease, enriched with 
“C in the C, position of Leu residues, showing correlations between methyl protons and other protons that 
have a significant (32 Hz) J coupling to the methyl “C. 

In contrast to the previously described mirror-image LP method (IO), the IS-LP 
method does not require any prior knowledge about the NMR signal. It is applicable 
to both damped and undamped signals of unknown phase, but it cannot be used in 
addition to mirror-image LP, because backward and forward LP on the mirror-image 
data results in “backward” coefficients, dk, that are the exact complex conjugates of 
the “forward” coefficients, ck. Hence, the mirror-image, LP method already makes 
implicit use of FB-LP. The “prior information” contained in the additional phase 
constraint (4 = 0 at t = 0) in mirror-image LP makes this latter method superior to 
FB-LP for undamped signals of known phase. In addition, compared to LP or FE%- 
LP, the mirror-image LP method makes it possible to determine double the number 
of frequency components for a signal consisting of a limited number of time-domain 
data points. 

ACKNOWLEDGMENTS 

We thank G. W. Vuister and S. Grzesiek for stimulating discussions and G. W. Vuister for making 
available the spectral data used for Fig. 2. G.Z. is supported by a fellowship from the Cooperative Graduate 
Program in Biophysics, sponsored by the Foundation for Advanced Education in the Sciences and the 
Graduate School of the University of Maryland at College Park. This work was supported by the Intramural 
AIDS-Targeted Anti-Viral Program of the Office of the Director of the National Institutes of Health. 



COMMUNICATIONS 207 

REFERENCES 

1. H. BARKHUIJSEN, R. DE BEER, W. M. M. J. BOVEE, AND D. VAN ORMONDT, J. Magn. Resort. 61,465 
(1985). 

2. H. GESMAR AND J. J. LED, J. Magn. Reson. 76, 183 ( 1988). 
3. J. HOCH, in “Methods in Enzymology” (N. Oppenheimer and T. L. James, Eds.), Vol. 176, p. 216, 

Academic Press, San Diego, 1989. 
4. J. TANG AND J. R. NORRIS, J. Magn. Reson. 78, 23 ( 1988). 
5. Y. ZENG, J. TANG, C. A. BUSH, AND J. R. NORRIS, J. Magn. Reson. 83, 473 ( 1989). 
6. E. T. OLEJNICZAK AND H. L. EATON, J. Magn. Reson. 87,628 ( 1990). 
7. J. J. LED AND H. GESMAR, Chem. Rev. 91, 1413 (1991). 
8. B. PORAT AND B. FRIEDLANDER, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1336 ( 1986). 
9. M. A. DELSUC, F. NI, AND G. C. LEW, J. Mugn. Reson. 73,548 (1987). 

10. G. ZHU AND A. BAX, J. Magn. Reson. 90,405 (1990). 


