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A powerful method of sequential resonance assignment of protein 1H-NMR spectra is presented and illustrated with 
respect to the DNA-binding protein her from phage Mu. It is based on correlating proton-proton through-space and 
through-bond connectivities with the chemical shift of the directly bonded lSN atom. By this means, ambiguities arising 
from chemical shift degeneracy of amide proton resonances can be resolved. The experiments described involve combin- 
ing the ~H-detected heteronuclear multiple quantum coherence correlation experiment with homonuclear nuclear Over- 

hauser enhancement, J-correlated or Hartmann-Hahn experiments. 
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1. INTRODUCTION 

The assignment of the 1H-NMR spectrum of a 
protein is an essential prerequisite for the deter- 
mination of its three-dimensional structure in solu- 
tion. The mainstay of sequential resonance 
assignment lies in the identification of through- 
space (< 5 A) and through-bond connectivities be- 
tween the NH protons, on the one hand, and the 
C~-I and Call protons, on the other [1,2]. Further, 
because the chemical shift dispersion of the NH 
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protons is, in general, larger than that of other 
proton types, the NH-aliphatic region of two- 
dimensional nuclear Overhauser enhancement 
(NOESY) spectra provides one of the main sources 
of long range NOEs between residues far apart in 
the sequence, which are essential for determining 
the polypeptide fold. For mainly a-helical proteins 
where the chemical shift dispersion of the NH 
resonances is small, as well as for proteins larger 
than 100 residues, spectral overlap and degeneracy 
within the NH region can present serious im- 
pediments towards successful assignment. To date 
two approaches have been used to tackle this pro- 
blem. The simplest method exploits the differences 
in temperature and pH dependence of the NH 
backbone resonances. By recording a set of two- 
dimensional NMR spectra at a variety of 
temperatures and/or pH values, some degeneracies 
can be removed. In practice, however, this may not 
always be feasible owing to a limited range of con- 
ditions over which the protein under study is 
stable. A second approach involves the use of 
specific labelling. In general, this is expensive as 
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well as difficult since it requires the use o f  aux- 
o t rophic  strains. Spectral simplification may be 
achieved either by the incorpora t ion  o f  selected 
deuterated amino acids [3] or by the incorpora t ion  
o f  heteronuclear  spin labels at specific positions in 
the molecule. In this respect a number  o f  
heteronuclear  filtered homonuc lear  experiments 
have been proposed  in recent years [4-10] .  A fur- 
ther  serious drawback  o f  all these methods  is that  
it involves recording a great many  spectra. 

In this paper we demonst ra te  a much  simpler 
strategy for  facilitating the sequential assignment 
o f  proteins that  have spectra that  are too  complex 
for  analysis by the s tandard  homonuclear  methods 
alone. It involves the use o f  complete 15N labelling. 
In particular,  the method  involves the correlat ion 
o f  p ro ton -p ro ton  through-space and th rough-bond  
connectivities with the chemical shift o f  the direct- 
ly bonded  15N a tom by means o f  relayed 15N-~H 
multiple quan tum  coherence spectroscopy.  

2. E X P E R I M E N T A L  

The protein ner from phage Mu was purified from 
Escherichia coli B containing the inducible plasmid pL-ner 
which directs high level production of the protein [11]. Com- 
plete 15N labelling (-93%) was achieved by growing the 
bacteria in a minimal medium using LSNH4CI as the sole 
nitrogen source. The sample for NMR comprised 2 mM protein 
in 90°70 H20/10% D20 containing 150 mM phosphate buffer, 
pH 7.0. 

All NMR spectra were recorded on a Bruker AM-600 spec- 
trometer at 27°C. 

3. RESULTS A N D  D I S C U S S I O N  

The experiments we use rely on a combina t ion  o f  
the heteronuclear  multiple quan tum coherence 
pulse scheme (HMQC)  [12-19] with experiments 
such as homonuc lea r  nuclear Overhauser  enhance- 
ment  (NOESY) [20], J-correlated (COSY) [21] and 
H a r t m a n n - H a h n  ( H O H A H A )  [22,23] spec- 
t roscopy.  The pulse schemes with the min imum 
a m o u n t  o f  phase cycling necessary for  complete 
suppression o f  artifacts, are presented in fig.1. 

To  minimize spectral crowding and to maximize 
sensitivity we find it essential to  remove the 
heteronuclear  coupl ing in both  frequency dimen- 
sions. In the F2 dimension this is accomplished by 
i rradiat ion o f  the tSN nuclei with an energy effi- 
cient W A L T Z 1 6  [24] or G A R P  [25] sequence. In 
the FI  dimension,  1H-~SN zero and double  quan-  
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Fig.l. Pulse schemes for heteronuclear MQC correlation and 
relayed heteronuclear MQC-COSY, -HOHAHA and -NOESY 
experiments. Each of the four schemes utilizes the 15N pulses 
shown at the bottom of the figure. The phases are cycled as 
follows: ¢q = 2(x),2(-x); ¢i2 = 4(x),4(.v),4(-x),4(-y); 01 = 
x , -  x; ~b2 = x (and may be inverted together with the receiver 
phase after the basic phase cycle is complete); receiver (HMQC 
and relayed HMQC-COSY) = x , -  x; receiver (relayed HMQC- 
NOESY) = 2(x,-x),2(v,-y),2(-x,x),2(-y,y). The duration 
of zl was 4 ms, slightly shorter than 1/(2JNH). To obtain pure 
phase absorption spectra using the time proportional 
incrementation method [29] the phase of ff~ is incremented by 
90 ° for every successive t~ value. ~SN decoupling during the 
acquisition time (t2) is achieved using the WALTZ-16 
decoupling sequence [24]. In addition, to avoid effects of an 
incomplete steady state, the phase if2 and the receiver phase 
may be inverted after completion of the above phase cycles [30]. 

t um coherence is present. The 180 ° tH pulse at the 
center o f  the evolution period (tl) interchanges 
zero and double  quan tum coherence,  with the final 
result that  observed resonances appear  to be 
modula ted  by the *SN chemical shift only [12]. 
Thus ,  for N H  protons ,  no  heteronuclear  decoupl-  
ing is needed during this interval. For  NH2 groups,  
on  the other hand,  the zero and double  quan tum 
coherences are modula ted  by the passive J coupl- 
ing to  the second pro ton .  Ideally, the effect o f  this 
coupl ing is also removed by the 180 ° 1H pulse. In 
practice, however,  rf  inhomogenei ty  makes perfect 
inversion o f  the passive p ro ton  difficult.  Conse- 
quently,  a low intensity doublet  super imposed on 
an intense decoupled singlet resonance is of ten 
observed for  NH2 correlations.  

As has been demonst ra ted  recently [26], the 
relaxation rate o f  the heteronuclear  multiple quan-  
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tum coherence is to first order not influenced by 
the strong 1H-15N dipolar coupling. As a result, the 
linewidths in the F1 dimension of spectra recorded 
using the relayed HMQC-NOESY, HMQC-COSY 
or HMQC-HOHAHA method are narrower by 
about 25070 than the corresponding NH linewidths 
in the homonuclear NOESY, COSY or HOHAHA 
spectra, respectively, thereby providing increased 
resolution. 

Fig.2 presents the results obtained on the 
uniformly ~SN-labelled DNA-binding protein ner 

from phage Mu. This protein has been cloned and 
overexpressed in Escherichia coil [11] and the 
determination of its solution structure is currently 
under way in our laboratory. The simple 15N-~H 
correlation spectrum is shown in fig.2A. At pH 7, 
61 of the potential 69 ~SN-1H correlation peaks are 
present in the spectrum. (Note that the use of H20 
presaturation abolishes signals of NH resonances 
that exchange rapidly with water protons by 
saturation transfer.) In addition, correlation peaks 
involving the NH2 groups of glutamine and 
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Fig.2. 600 MHz two-dimensional pure phase absorption tSN-tH HMQC correlation (A) and relayed 15N-IH HMQC-NOESY (B and 
C) spectra of Mu ner at 27°C. The 15N(FI axis)-NH(F2 axis) and 15N(F1 axis)-aliphatic(F2 axis) regions of the relayed ]SN-~H HMQC- 
NOESY spectrum are shown in (B) and (C), respectively. Selected NH(t')-NH(i+ 1), C'q-I(0-NH(i+ 1) and C~'H(t)-NH(i+ I) NOE 
connectivities are shown in (B) and (C). The peaks in (A) and (B) are labelled at the position of ]SN(0-NH(i) connectivity; while those 
in (C) are labelled at the position of the ~SN(i)-C~rI(t) or ~SN(i)-CaH(i) connectivities, the latter being indicated by the letter/5'. The 
NOESY mixing time was 200 ms. Water suppression was achieved by pre-saturation during the relaxation delay and, in the case of 
the 15N-~H HMQC-NOESY experiment, during the mixing time rm as well. The sample contained 2.7 mM Mu ner in 90% H20/10% 
DzO containing 150 mM sodium phosphate buffer, pH 7.0, with the protein -93% tSN labelled. 800 increments were recorded for 
each spectrum with 16 and 32 scans per tl value for the correlation and relayed-correlation experiments, respectively. The digital 
resolution is 9.8 Hz/pt  in F2 and 4.1 Hz/pt  in FI, the latter being obtained by appropriate zero filling. The spectra were recorded 
on a Bruker AM600 spectrometer. IH and 15N chemical shifts are expressed relative to 4,4-dimethyl-4-silapentane-l-sulfonate and 

liquid NH~, respectively. 
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asparagine and three tryptophan indole protons 
are observed. Because of  a small phase distortion, 
only one of  the spurious doublet lines mentioned 
above is visible adjacent to each intense correlation 
for NH2 groups. This low intensity doublet compo- 
nent facilitates identification of  NH2 resonances, 
which for magnetically non-equivalent protons is 
confirmed by the presence of  a second proton cor- 
relating with the s a m e  15N chemical shift (fig.2A). 

The 15N(F1)-NH(F2) region of  the relayed 
15N-1H HMQC-NOESY spectrum is shown in 
fig.2B. It is readily appreciated that a large number 
of  NH-NH NOEs are manifested in this spectrum, 
most of  which arise from sequential connectivities 
between neighbouring NH protons along the 
polypeptide chain. These NH(t)-NH(i+ 1) connec- 
tivities are the same as those observed in a conven- 
tional NOESY spectrum. The absence of a 
diagonal together with the fact that ~SN chemical 
shift differences are in general not correlated with 
IH ones, makes it easier to detect NOEs between 
NH protons with only slightly different proton 
chemical shifts. Two stretches of  sequential NH(t)- 
NH( i+  1) connectivities are delineated, one from 
Ala-12 to Gly-17, the other f rom Gin-63 to Trp-66. 

The 15N(FI axis)-lH aliphatic(F2 axis) region of  
the relayed lSN-1H HMQC-NOESY spectrum is 
shown in fig.2C, and some examples of  C%I(t)- 
N H ( i + I )  and Cz~I-I(t)-NH(i+I) NOE connec- 
tivities are indicated. The positions of  the C%I 
resonances are easily determined from the relayed 
15N-1H HMQC-COSY spectrum as well ~ by 
reference to a ~H-1H H O H A H A  spectrum (not 
shown). This region is analogous to the NH- 
aliphatic region of  a IH-1H NOESY experiment. 
The NH-aliphatic NOEs, however, are spread ac- 
cording to the 15N chemical shift of  the directly 
bonded nitrogen. Because it is very rare to find 
that both the ~H and 15N chemical shifts of  two 
NH groups are degenerate, NOEs involving NH 
protons with the same chemical shifts can be readi- 
ly resolved in this manner. 

The methodology described in this paper is of  
general applicability to any protein that can be 
uniformly labelled with tSN, a relatively inexpen- 
sive and easy process for bacterially expressed pro- 
teins, and should significantly speed up the 
assignment process when combined with presently 
used homonuclear experiments. In the case of  Mu 
ner, where the chemical shift dispersion of  the NH 

protons is small due to a very high helical content, 
the experiments presented here were essential for 
successful sequential assignment. Further, because 
the 1H-detected 15N-all HMQC correlation experi- 
ment is itself very sensitive, the reduction in signal- 
to-noise over conventional NOESY, COSY or 
H O H A H A  spectra is at most a factor of  2. It is 
also evident that the two-dimensional version of  
these experiments described here can be readily ex- 
tended to three dimensions [27,28] with the 15N 
chemical shift in one dimension and IH-chemical 
shifts in the other two, and it is hoped that this 
kind of  3D-NMR experiment will extend the size of  
proteins whose three-dimensional structures can be 
determined by NMR. 
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