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In many types of two-dimensional NMR experiments, the sensitivity limitation is 
not the thermal noise, but the presence of baseline distortions, t, ridges, ti noise, or 
other artifacts (1-5). As demonstrated by Otting et al. ( 1 ), one serious source of 
baseline problems originates from incorrect use of the discrete Fourier transform al- 
gorithm. This so-called “first data point problem” applies both to real and to complex 
data and can largely be circumvented by appropriate scaling of the first data point of 
the FID. A second source of baseline distortion arises from delayed sampling of the 
free induction decay, requiring linear frequency-dependent phase correction in the 
frequency domain (6, 7). 

Here we address a different problem that causes similar effects on the baseline of 
2D NMR spectra. This problem only applies to real data, or to “complex” data where 
the real and imaginary components are sampled in a sequential manner. It is shown 
below that if the detected signal is a decaying sinusoid, 

s(t) = sin( 2aft + $)exp( -t/ TZ), [II 
the baseline in the final spectrum will be distorted after suitable phase correction 
unless the phase error, 4, is an integral multiple of 90”. 

To consider the effects of folding, which are the source of the baseline problems 
discussed here, it is necessary to consider the digitized signal. First, a complex signal 
and its Fourier transform are analyzed. The decaying digitized signal is described by 

sn = exp{ i(wf/hJ + 4)}exp{-n/(2fNr2))y PI 
wherefN is the Nyquist frequency, fN = 1/(2A), and A is the dwell time. The discrete 
complex Fourier transform of s, is given by 

N-l 

Sk = 2 s,exp{ i(2ank/N)}. 
n=O 

[31 

This expression can be rewritten as a sum of absorptive (Ak) and dispersive (Dk) 
Lorentzian components, 
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Real(&) = cos &tk - sin $Dk 

Imag(&) = cos q5Dk + sin dAk, 

WI 
WI 

with 

Ak = $ T,/{ 1 + 47r2T:(kf,/N+jf, -f)2} [W 

Dk = ,$ 2rT2(kfNIN+jfN -f)l{ 1 + 4~2T;(kfNIN+L& -f)21, [W 
j=-00 

where the index j accounts for the periodicity of the Fourier transform. The absorp- 
tion-mode component, Ak, can be retrieved from the Fourier transform, Sk, by phase 
correction: 

Ak=cos$Real{Sk} +sin4Imag{&}. 161 
Next, a real signal will be considered: 

s’(t) = 2 cos( 2?rft + $)exp( -t/ r2) 

= [exp{ i(27rft + 4)} + exp{ -i(2?rft + 4)}]exp(--tlT2). 

Note that the phase, c$, has opposite sign for the two opposite frequencies. 
The discrete Fourier transform of [ 71 yields 

[71 

Real ( SI) = cos 4Ak - sin 4 Dk + cos q%Apk + sin 4 D-k [W 
Imag(Slk) = cos c$D~ + sin q5Ak + cos c#~D-k - sin @A-k. WI 

Phase correction, analogous to Eq. [ 61, yields 

Real(S;) = Ak + cos(24)A-k + sin(24)D+ 191 

This demonstrates that it is impossible to phase the spectrum to the absorption mode 
using a frequency-independent phase correction. This effect is graphically shown in 
Fig. 1, before and after phase correction. The solid line in this figure corresponds to 
positive frequencies obtained after a real Fourier transformation. The broken line is 
its mirror image with respect to zero frequency. Although the negative frequencies 
usually are not displayed after a real Fourier transformation, it should be noted that 
the tails of the resonances with negative frequencies extend into the positive fre- 
quency region. In particular, the long tails of the dispersive part of the component 
with negative frequency can cause serious baseline distortions in the positive fre- 
quency region. 

Figure 2 shows a set of phase-corrected real-Fourier-transform spectra, obtained 
from a signal of which the initial phase (at t  = 0) was incremented in multiples of 
15”. As can be seen from the vertical expansions, only for 4 = 0” or C$ = 90” is a flat 
baseline obtained. The spectra for 4 = 0” and 4 = 90” are different because the first 
one corresponds to Ak + Aek and the second one corresponds to Ak - A+, Thus, for 

the 0” case, the tails of the absorption-mode resonances add, and for the second case 
they subtract. This is a relatively small effect unless resonances are very close to the 
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FIG. 1. (a) Fourier transform of the signal, s(t) = cos(ft + r/6). The real Fourier transform does not 
distinguish between positive frequencies (solid line) and negative frequencies (broken line), and only one- 
half of these data is usually displayed. (b) After phase correction, the resonance with the positive frequency 
is phased to the absorption mode, but the tails of the dispersion of the resonance at opposite frequency 
cause. baseline distortion in the positive frequency region. 

edge of the spectrum. The extent to which the baseline distortion is visible depends 
also on the minimum distance between resonances and the edges of the spectrum. If 
large margins are chosen at either side of the spectrum, the baseline distortion ap- 
proaches a near-linear tilt of the spectral region of interest. For two-dimensional ex- 
periments, such an oversampling procedure requires large amounts of data storage 
space and it generally is preferable to avoid the distortion by adjusting the signal 
phase relative to the receiver phase or by using acquisition of complex data points, 
with the real and imaginary components sampled simultaneously. 

The baseline distortion discussed above can lead to serious ridges in phase-sensitive 
2D spectra. These effects can be seen most clearly for spectra that have in-phase reso- 
nances, such as NOESY (8)) ROESY ( 9)) or HOHAHA ( 10, I1 ) . Experiments in 
which there is no net intensity of the diagonal or cross multiplet (for example, multi- 
ple-quantum-filtered COSY) do not exhibit this type of baseline distortion. In the Fi 
dimension of 2D spectra, the folding baseline distortion is only present when the 
TPPI procedure is used to separate positive and negative frequencies ( 12)) or when 
the transmitter is positioned at one side of the spectrum and a real Fourier transfor- 
mation is used. When the hypercomplex data acquisition procedure is followed ( 13)) 
the folding baseline distortion is also absent. In contrast to the baseline distortion that 
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FIG. 2. The 270 MHz real Fourier transform spectra of a sample ofthe 23-amino-acid peptide magainin- 
2, in 2: 1 (v/v) D20/trifluoroethanol-&. The spectra are shown for phase increments of 15” ofthe acquired 
signal, keeping the receiver phase constant. The delay between the pulse and the first data point was ad- 
justed similarly for all spectra, such that no frequency-dependent phase correction was needed. 

is obtained if the scaling of the first data point of the FID is misset ( I ) , the baseline 
distortion introduced by the nonzero zero-order phase correction cannot be removed 
completely by linear baseline correction routines. The zero-order phase of the ac- 
quired signal depends on a number of experimental parameters, such as probe tuning 
and receiver gain setting. This may account for the experimental observation made 
by us and others that the severity of the baseline problem in 2D spectra varies from 
day to day. If sequential sampling is used in the t2 dimension of 2D experiments, it is 
therefore important to adjust the signal phase to either 0” or 90” prior to the start of 
the experiment. 

As is well known, linearly frequency-dependent phase corrections are another ori- 
gin of baseline distortion in 1 D and 2D spectra (6, 7). This applies to the cases of 
both simultaneous and sequential acquisition of complex data. In the F2 dimension 
of 2D spectra, this error can be minimized by adjustment of the delay between the 
pulse and the time the first data point is taken (14); in the F, dimension the error 
can be minimized by using short pulses or offset-compensated pulses. 
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