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Abstract NMR chemical shifts in proteins depend

strongly on local structure. The program TALOS estab-

lishes an empirical relation between 13C, 15N and 1H

chemical shifts and backbone torsion angles / and w
(Cornilescu et al. J Biomol NMR 13 289–302, 1999).

Extension of the original 20-protein database to 200 pro-

teins increased the fraction of residues for which backbone

angles could be predicted from 65 to 74%, while reducing

the error rate from 3 to 2.5%. Addition of a two-layer

neural network filter to the database fragment selection

process forms the basis for a new program, TALOS?,

which further enhances the prediction rate to 88.5%,

without increasing the error rate. Excluding the 2.5% of

residues for which TALOS? makes predictions that

strongly differ from those observed in the crystalline state,

the accuracy of predicted / and w angles, equals ±13�.

Large discrepancies between predictions and crystal

structures are primarily limited to loop regions, and for the

few cases where multiple X-ray structures are available

such residues are often found in different states in the

different structures. The TALOS? output includes pre-

dictions for individual residues with missing chemical

shifts, and the neural network component of the program

also predicts secondary structure with good accuracy.

Keywords Heteronuclear chemical shift �
Secondary structure � Order parameter � Dynamics �
TALOS

Introduction

Chemical shifts are well recognized as important reporters

on protein structure. Strong correlations between local

structure and chemical shifts have been established by

quantum chemistry methods, including both density func-

tional theory (DFT) and Hartree Fock calculations (Xu and

Case 2001; Czinki and Csaszar 2007; Moon and Case

2007; Vila et al. 2007, 2008; Villegas et al. 2007), and by

alternate computational (Haigh and Mallion 1979; Wil-

liamson and Asakura 1993; Case 1995) or fully empirical

methods (Wagner et al. 1983; Saito 1986; Spera and Bax

1991; Wishart et al. 1991; Williamson and Asakura 1993;

Williamson et al. 1995; Asakura et al. 1997; Ando et al.

1998; Cornilescu et al. 1999; Castellani et al. 2003; Neal

et al. 2003, 2006; Shen and Bax 2007). The need for

streamlining the protein structure determination process

has been well recognized (Billeter et al. 2008), and it is

clear that recent chemical shift based approaches offer an

attractive route to expedite this process, at least for smaller

proteins (Cavalli et al. 2007; Shen et al. 2008, 2009;

Wishart et al. 2008). At the same time, conventional

structure determination efforts frequently take advantage of

the empirical relation between chemical shifts and the

backbone torsion angles / and w, most commonly pre-

dicted by the program TALOS (Cornilescu et al. 1999), as
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a complement to conventional NOE distance restraints or

to internuclear distances obtained by solid-state NMR.

In its original implementation, the TALOS (Torsion

Angle Likeliness Obtained from Shift and Sequence Sim-

ilarity) program was based on a small, 20-protein database

for which complete or nearly complete heteronuclear res-

onance assignments and high resolution X-ray coordinates

were available. In validation trials, the original program

reported consistent predictions of / and w for on average

65% of the residues. Subsequent expansion of the database

to 78 proteins, implemented in post-2003 releases of the

program, yield consistent predictions of / and w for on

average 72% of the protein residues, with an error rate

decreased to below 3% (unpublished results). Although at a

first glance these statistics appear quite encouraging, the

vast majority of the predictions pertain to residues located

in elements of well-defined secondary structure, where

conventional NMR restraints often already define local

structure quite well. The 28% of residues for which

TALOS obtains ambiguous results are mostly located in

regions of irregular structure, including loops and turns.

We here report an extension of the original program,

named TALOS?, which extends the fraction of consistent

predictions to 88%, i.e., which cuts in half the fraction of

residues unpredictable by TALOS, while at the same time

slightly lowering the error rate to below 2.5%.

TALOS? is largely based on the same concept as the

original TALOS program, and now exploits a larger data-

base of 200 proteins originally taken from the BMRB

(Markley et al. 2008) for use in the chemical shift pre-

diction program SPARTA (Shen and Bax 2007), but more

importantly it includes a neural network component whose

output is used as an additional term in the conventional

TALOS database search. The neural network component of

the program relies on a well established computational

framework that optimizes the relation between a large

number of input variables, such as amino acid types and

chemical shifts, and any given output parameter. The latter,

in our application, can be the secondary structure of any

given amino acid or the area of the Ramachandran map

where the residue resides. Importantly, after training on a

database for which the input and output parameters are

known, the neural network not only identifies the most

likely answer when applied to datasets where the output is

unknown, but it also reports a reliable estimate of the

likelihood that any of the possible output values is appli-

cable. Neural network algorithms are widely used in

information processing, and have found numerous appli-

cations in NMR data analysis too. These include work on

facilitating resonance assignment (Hare and Prestegard

1994; Huang et al. 1997; Pons and Delsuc 1999), identi-

fication of secondary structure in the presence and absence

of NMR chemical shift data (Andreassen et al. 1990; Choy

et al. 1997; Hung and Samudrala 2003), and approaches

that permit prediction of chemical shifts based on known

protein structure (Meiler 2003; Moon and Case 2007).

Here, the inverse of this latter application is used to iden-

tify the approximate region of the Ramachandran map

where a given residue resides, based on the chemical shifts

and residue type of the residue in question, as well as those

of its immediate neighbors in the protein sequence.

In order to expand the program’s ability to predict

backbone torsion angles, TALOS? now also considers the

frequently encountered cases where residue assignments

are lacking. Although the fraction of such residues for

which consistent predictions can be made tends to be sig-

nificantly lower, the reliability of such predictions remains

high. For convenience, and in order to prevent assignment

of backbone torsion angles to regions that are dynamically

disordered, TALOS? also reports an estimated backbone

order parameter derived from the chemical shifts in a way

recently described by (Berjanskii and Wishart 2008).

Methods

Preparation of the NMR database

The original TALOS protein structure database of 20

proteins (Cornilescu et al. 1999) in recent years has been

upgraded to include 78 proteins, and this database is used

in post-2003 release versions of the program. The current

work utilizes the further expanded database of 200 pro-

teins, originally developed for the SPARTA chemical shift

prediction program (Shen and Bax 2007). This database,

extracted from the BMRB, contains proteins with nearly

complete backbone NMR chemical shifts (d15N, d13C0,
d13Ca, d13Cb, d1Ha and d1HN) as well as PDB coordinates

from high-resolution X-ray structures. Details regarding

the preparation of the database, including calibration of

reference frequencies, etc., have been described previously

(Shen and Bax 2007). For the current application, if the

database entry contains two or less assigned chemical

shifts for any given residue, these chemical shift entries

are removed. For residues with incomplete sets of chem-

ical shifts (less than six for non-Gly residues, less than

five for Gly), a standard TALOS database search (Cor-

nilescu et al. 1999) was performed to find the average

(secondary) chemical shifts for the atoms of the center

residues of the best ten matched triplets. These predicted

secondary chemical shifts were then assigned to the

atom(s) with missing experimental chemical shifts of this

residue. Therefore, after this adjustment the database

contains residues with either complete 15N, 13C0, 13Ca,
13Cb, 1Ha and 1HN chemical shifts, or no chemical shift

values at all.
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In order to study relations between NMR chemical shifts

and backbone torsion angles, a three-state backbone ‘‘//w
distribution’’ code is assigned to each residue: [1 0 0] (Alpha

or ‘‘A’’; -160 \ /\ 0 and -70 \ w\ 60), [0 0 1] (left-

handed helix, here referred to as positive-/ or ‘‘P’’; 0 \ /
\ 160 and -60 \ w\ 95), and [0 1 0] (Beta or ‘‘B’’,

comprising all others, including some residues with positive

/ angles outside the P region). These regions are depicted in

Fig. 1a. For each residue in the database, a field was added to

indicate the DSSP secondary structure (Kabsch and Sander

1983), determined from the X-ray coordinates, and further

regrouped into three states: H (Helix; DSSP classification of

H or G), E (Extended strand; E or B) and L (Loop; com-

prising DSSP classifications I, S, T and C).

Neural network architecture and training

TALOS? uses a two-level feed-forward multilayer artifi-

cial neural network (ANN) to predict the location in //w
space, or the secondary structure, based on a residue’s

NMR chemical shifts and amino acid type, and those of its

adjacent residues.

For the first level neural network (Fig. 2), the input

signals to the first layer consist of tri-peptide parameter sets

derived from the above described database. Each tripeptide

set has 78 nodes, representing six secondary chemical shift

values and twenty amino acid type similarity scores for

each residue. In the hidden layer of the network, where

each node receives the weighted sum of the input layer

nodes as a signal, 20 such nodes (or hidden neurons) are

used. The output of a hidden layer node is obtained through

a nodal transformation function; here a standard sigmoid

function is used (see Eq. 1).

For the purpose of predicting the torsion angle distri-

bution from NMR chemical shifts, the above described

three-state //w torsion angle distribution of the center

residue of each tri-peptide in the database is used as the

target of the first level network: [1 0 0] for alpha (A), [0 1

0] for beta (B), and [0 0 1] for positive-/ (P). Each output

value has one node with a linear activation function

[f2(x) = x, Eq. 1]. This procedure is schematically shown

in Supplementary Information Fig. S1. The empirical

relationship between the three-state //w torsion angle

distribution and NMR chemical shift data received by the

first level network is given by

P1�3 ¼ f2 f1 X1�78 �W
ð1Þ
78�20 þ b

ð1Þ
1�20

� �
�W

ð2Þ
20�3 þ b

ð2Þ
1�3

� �

ð1Þ

with f1(x) = 1/(1 ? e-x), and f2(x) = x. X1978 is the input

data vector consisting of 78 elements; W(1) and b(1)are the

weight matrix and bias, respectively, for the connection

between the nodes in the input and the hidden layer; W(2)

and b(2)are the weight matrix and bias, for the connection

between the nodes in the hidden and output layer; P193 is

the training target or the output vector.

The second level of neural network, as implemented

here, is used to smoothen the prediction by accounting for

commonly observed patterns in proteins, and follows its

use in the well-known sequence-based secondary structure

prediction programs PHD (Rost and Sander 1993) and

PsiPred (Jones 1999). The two-level artificial neural net-

work shown in Fig. 2 uses the input information from three

sequential residues for the first level, and the input from

five sequential residues for the second level, and will be

referred to as a 3-5 ANN model. A more detailed discus-

sion of the slightly different ANN models used in this study

is presented below.

For all ANN models used, the input layer for the second

level uses the parameter set of the three-state //w torsion

angle distribution predicted by the first level of the network

for each available tri-peptide in the database, i.e., each set

has 15 nodes when the input of five sequential residues is

used. The hidden layer contains six nodes, and the three-

state //w torsion angle distribution of the center residue of

the corresponding pentapeptide in the database is used in

Fig. 1 Prediction of the three-state //w distribution using a neural

network with a 3-3 ANN model. a //w distribution of the residues in

the 200-protein TALOS database. Boxed areas marking the three-

state //w regions for Alpha and Positive-/, with the remainder

designated Beta (see Methods). Note that the Beta region also

includes some residues with positive / angles outside of the left-

handed helical region. (b, c, d) //w distributions of residues with

C0.9 confidence for their three-state //w neural network prediction

for b ‘‘Alpha’’, c ‘‘Beta’’ and d ‘‘Positive-/’’ predictions. Correct

predictions are shown in green, and false predictions in red
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the output layer and as the target of the neural network. The

empirical formula of the neural network is similar to Eq. 1:

P1�3 ¼ f2 f1 X1�15 �W
ð1Þ
15�6 þ b

ð1Þ
1�6

� �
�W

ð2Þ
6�3 þ b

ð2Þ
1�3

� �

ð2Þ

where X1915 is the input vector containing the 15 nodes;

the definitions of weights, biases, and activation functions

are the same as those in Eq. 1. Equations 1 and 2 of this

two-level network, with the optimized weights and biases

obtained from the training dataset, are then used to predict

the three-state //w torsion angle distribution for residues in

any protein of unknown structure. The Eq. 2 network

output vector, P193, represents the probabilities for the

query residue to be within each of the three states: alpha,

beta and positive-/.

The final ‘‘predicted state’’ of a given residue is assigned

to the state with the largest probability. For later analysis of

the prediction performance of the network, the confidence

of a given prediction is defined as the difference between

the probabilities of the two most favored predicted states.

Several slight modifications of the above two-level

neural network have been used also, to allow application

for cases where missing chemical shift data do not permit

use of the above 3-5 ANN model:

1. 3-3 ANN model. Similar to the 3-5 ANN model, but the

data used in the input layer of the second level neural

network are from tripeptides instead of pentapeptides,

i.e., 3 9 3 nodes are used in the input layer, allowing

predictions nearer to the protein termini and nearer to

segments where two or more sequential residues lack

chemical shifts.

2. 3-3 ANN(i-1) model. Similar to the 3-3 ANN model,

except that the input layer of the first-level neural

network uses tri-peptide parameter sets lacking the six

chemical shifts of the first residue, i - 1, i.e., each

input layer set has 72 nodes.

3. 3-3 ANN(i) model. Similar to the 3-3 ANN(i-1)

model, but lacking chemical shifts for the center

residue of the triplet.

4. 3-3 ANN(i?1) model. Similar to the 3-3 ANN(i-1)

model, but lacking chemical shifts for the last residue

of the triplet.

In order to study the relation between the three-state

secondary structure (helix or H, extended strand, or E, and

Fig. 2 Architecture of the two-level feed-forward artificial neural

network used to predict the region of the Ramachandran map in which

a given residue resides. The ANN calculates the probability for any

center residue of a tripeptide fragment to reside in one of the three-

state //w torsion angle regions. The ANN uses as input for the first

level feed-forward prediction the known parameters characterizing

each of the three residues of the tripeptide and is trained on the 200-

protein database to predict the known output //w state. Besides the

six chemical shifts, input parameters for each residue of the tripeptide

are represented by a 20-dimensional vector, consisting of the

coefficients of its row in the BLOSUM62 matrix, widely used in

calculating sequence alignment (see http://www.ncbi.nlm.nih.gov/

books/bv.fcgi?rid=sef.figgrp.194). The total of 78 input parameters

(aqua) per tripeptide are used to predict the probability for occupation

of each of the three //w states by the center residue of each tripeptide

(yellow), used as input for the second level. 20 hidden nodes (grey)

are used for the first level of the ANN (Supplementary Fig. 1). The

ANN output of the first level for five sequential residues is used to

fine-tune prediction of the //w state (red), using a hidden level

consisting of six nodes (grey). For more details, see main text
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loop, L) and NMR chemical shifts, the same two-level

neural network architectures are used, in which the three-

state secondary structure classification of the center residue

of the corresponding penta- or tri-peptide in the database is

used in the output layer and as the target for both levels of

the neural network.

Neural network training

The weights and bias terms were determined by training

of the network, using the chemical shift and sequence

information of the 200-protein database, described above.

To prevent over-training, a three-fold training and vali-

dation procedure was performed for each above men-

tioned neural network model by dividing the input

training dataset into three input subsets followed by

separate training of the corresponding neural networks.

For each of these three network optimizations, one input

subset was excluded from the training dataset but then

used to evaluate the performance of the neural network

during the training. This subset, referred as the validation

dataset, was not used to calculate the weight changes in

this network. Training of the network was terminated

when the performance of the network on the validation

dataset, represented by the mean squared errors (MSE)

between the predicted values and targets, began to

degrade.

Neural network testing and validation

In addition to the above three-fold training and validation,

a second validation procedure was performed for a set of

13 additional proteins, which have (1) (nearly) complete

chemical shifts, (2) a good quality reference structure, (3) a

wide range of folds and (4) no homologous protein (C30%

sequence identity) in the 200-protein database. The neural

network prediction used for these 13 proteins was obtained

by averaging over the outputs from the three networks

separately trained above.

To inspect the network prediction performance of a

given state for a protein or dataset, an accuracy score Q is

defined (Rost and Sander 1993):

QðiÞ ¼ Npred&correct
i

Nobserved
i

; i ¼ A; B; Pðor H; E; LÞ ð3Þ

which describes for state i the ratio of residues correctly

predicted to be in state i (Npred&correct
i ) relative to those

experimentally observed to be in state i (Nobserved
i ). The

overall network prediction performance for all three

states in a protein or dataset can be measured by a Q3

score:

Q3 ¼

P
i

N
pred&correct
i

P
i

Nobserved
i

i ¼ A; B; Pðor H; E; LÞ ð4Þ

Similarly, the prediction reliability is evaluated by a

true-positive ratio:

TPðiÞ ¼ Npred&correct
i

N
pred
i

i ¼ A; B; Pðor H; E; LÞ ð5Þ

which describes for state i the ratio of residues correctly

predicted to be in state i (Npred&correct
i ) relative to those

predicted to be in state i (Npred
i ). In our TALOS? appli-

cation of neural network prediction, the weight assigned to

such a prediction depends on the confidence reported by

the neural network. We therefore also define the values of

Eqs. 3, 4, 5 for results reported at a confidence level[c%,

and refer to these as Qc(i), Q3
c(i), and TPc(i).

TALOS? database search approach for predicting

backbone //w angles

The predicted //w torsion angle classification, obtained by

using the above neural network approach, was used as an

additional input when carrying out the regular TALOS

backbone torsion angle predictions (Cornilescu et al.

1999). This neural network supplemented software pack-

age is named TALOS?.

For a given query tri-peptide [i - 1, i, i ? 1], the ori-

ginal TALOS program searches its database for the ten tri-

peptides [j - 1, j, j ? 1]k (k = 1,…,10) best-matched in

terms of backbone chemical shift and residue type. When

at least nine out of the ten [/j/wj]k cluster in the same

region of the Ramachandran map, the original TALOS

program made a //w prediction for residue i from the

average values of the cluster. TALOS? uses a modified

similarity score, accounting for the output of the neural

network //w distribution predictions:

Sði; jÞ ¼
Xþ1

n¼�1

k0
nD

2
Restype þ

X
X

kX
n DdXiþn � DdXjþn

� �2

"

þks
nDð/;wÞ

s
iþn;jþn

i
ð6Þ

where the terms accounting for the difference in residue

type, DRestype, and the difference in secondary chemical

shift (DdXiþn � DdXjþn) of nucleus X, including their

weighting coefficients kn
0 and kn

X, are identical to those of

the standard TALOS similarity score (Eq. 1 of Cornilescu

et al. 1999), X = 15N, 1HN, 1Ha, 13Ca, 13Cb and 13C0. The

new terms Dð/;wÞsi;j account for the difference of the //w
states predicted for query residue i and observed for

database residue j:
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Dð/;wÞsi;j¼
100� 1þ Pi sjð Þ

1�confidence

� ��1

confidence�T

1=Pi sj

� �
confidence\T

8><
>:

s¼½Alpha,Beta,Positive�/�
ð7Þ

where Pi(sj) is the predicted probability for query residue i

to be in state sj (the observed state of the corresponding

residue of the database tri-peptide). The weighting factors

for each of the Dð/;wÞsiþn;jþn terms are given by kn
s = 0.2,

1, 0.2 for n = -1, 0, 1. A confidence threshold value

T = 0.8 is used in the default parameterization of the

program; when the neural network prediction has a confi-

dence below this value, a less steep weighting factor is

used compared to residues whose //w state is predicted at

high confidence, aimed at eliminating residues with //w
states that the neural network deems highly unlikely.

With the addition of the neural network component in

Eq. 7, which tends to narrow the distribution of //w angles

in the top-10 selected triplets considerably, the default

setting for accepting a TALOS? prediction as consistent, or

‘‘good’’ has been changed to cases where the center residues

of all ten selected fragments cluster in the same state, A, B,

or P, which requires a confidence level greater than 0.6 by

its ANN //w prediction; otherwise, such a prediction is

designated as ‘‘ambiguous’’. The TALOS? database search

and prediction procedure is shown schematically in Fig. 3.

Although not indicated in this figure, the neural network

component of the program runs by default in the 3-5 ANN

mode, but automatically switches to the 3-3 ANN model

when chemical shifts are not available for five sequential

residues. Moreover, when the first, center, or last residue in

the triplet under consideration lacks chemical shifts, the

neural network uses the 3-3 ANN(i-1), 3-3 ANN(i), or 3-3

ANN(i?1) model, respectively. These features are imple-

mented in the TALOS? program in a fully automated

manner and therefore do not require user intervention.

Predictions for these cases with partially missing chemical

shifts extend the fraction of residues for which //w angles

can be predicted at only a small cost in accuracy (vide

infra). Additional recommendations regarding the use and

interpretation of TALOS? are available as Supporting

Information. The TALOS? database search procedure is

performed by a program largely written in C??, which is

several orders of magnitude faster than the tcl script driving

the original TALOS search, and thereby far offsets the

slowdown caused by the larger database employed by

TALOS?. On a PC with a single 2.4 GHz CPU, the TA-

LOS? database search procedure takes ca 15 seconds for a

100-residue protein.

Results and discussion

//w distribution from neural network prediction

The neural network analysis used by TALOS? is trained to

predict at the highest possible accuracy the //w angle state

(Alpha, Beta, or Positive-/) on the basis of the backbone

NMR chemical shifts and residue type of the residue itself

and its neighbors in the sequence. The 200-protein database

used for training the neural network comprised a total of

23,257 residues, and the subset of 19,894 residues with

three or more chemical shifts assigned have been used for

training of the neural network models. The //w angle

distribution of the full set of database residues is shown in

Fig. 1a; the number of residues in state Alpha, Beta, and

Positive-/ is 11,701, 10,596 and 960, respectively.

When ignoring the confidence level of the neural net-

work prediction, correct assignment [TP(i); Eq. 5] of the

Alpha, Beta, and Positive-/ regions is found for 96.6 and

96.3% of the database residues for the 3-5 ANN and 3-3

ANN models, respectively (Table S1). These numbers drop

to about 94% when one of the residues in the triplet is

lacking chemical shifts (Table S1). Importantly, when

limiting the evaluation to residues whose //w region can be

predicted at a confidence C80%, the success rate TP80(i) is

much higher, 98.7%, almost independently of the neural

network type used (Table S1). However, as expected, the

fraction of residues for which a confidence level C80% is

obtained drops when fewer data are available, from 89%

when the 3-5 ANN model can be used, to 81% when the

chemical shifts for the residue in question are missing [but

shifts for the adjacent residues are available; model 3-3

ANN(i)]. When the confidence level threshold is raised to

0.9, the error rate in the neural network output drops to wellFig. 3 Flow diagram for the TALOS? program

218 J Biomol NMR (2009) 44:213–223
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below 1% (Fig. 1b–d). An average TP80(i) score of 99.0%

for 13 test proteins which are not part of the 200-protein

database used during neural network training (Table S3) is

very similar to what is seen for the database itself and

confirms that no over-training of the neural network has

taken place.

TALOS? backbone //w torsion angle prediction

The TALOS? user interface is very similar to that of the

original TALOS program, (Fig. 4). New features include a

marking on the Ramachandran map of the ANN-predicted

probability to find any given residue in the Alpha, Beta, or

Positive-/ region, and two graphs displaying the RCI-

derived (Berjanskii and Wishart 2005, 2008) order

parameter, S2, and the ANN-predicted secondary structure.

For the latter, the length of the bars corresponds to prob-

ability of a residue to be helix or b-strand. In the sequence

display, consistent predictions are marked in green,

ambiguous results in yellow, and residues predicted to be

dynamically disordered are colored in blue. As with the

original TALOS program, separate output files containing

the details of each prediction are also generated.

Backbone torsion angles were predicted by both the

original TALOS and the new TALOS? programs for all of

the 200 database proteins, using the cross-validation ‘‘leave-

one-out’’ manner, i.e., for predicting the backbone angles of

any given protein that protein was removed from the data-

base prior to the search. Results are summarized in Table 1.

The original TALOS method, on average, makes ‘‘unam-

biguous’’ predictions for about 74% of the residues when

applied to our larger database, with 2.48% of the predicted

//w torsion angles having large errors relative to those

observed in the reference X-ray structures. As seen in

Table 1, the root-mean-square differences (rmsd) between

the predicted and crystallographically observed backbone

angles are slightly larger for the angles reported by TA-

LOS? than by TALOS. However, this small increase results

primarily from the fact that TALOS? includes far more

predictions outside regions of regular secondary structure.

When restricting the rmsd evaluation to the residues pre-

dicted by TALOS, the rmsd obtained by TALOS? is actu-

ally slightly lower (Table 1). With TALOS?, the number of

‘‘unambiguous’’ predictions jumps to 88.5%, while the error

rate decreases slightly to 2.46%. More details regarding how

well TALOS and TALOS? compare for different residue

types, and for the different proteins in the database is pro-

vided in Supplementary Information Figs. S2, S3.

The performance of TALOS? predictions was further

validated for 13 proteins with various folds and absent

from the TALOS database (Table 2). These include the

small proteins GB3 (Ulmer et al. 2003), DinI (Ramirez

Fig. 4 TALOS? graphic user interface, displaying results for residue

L8 of query protein ubiquitin. The left panel shows a scatter plot of

the //w angles of the ten closest database matches, superimposed on a

Ramachandran map of the favored conformations of a Leu residue.

The ANN Alpha, Beta and Positive-/ scores for L8 are also marked

on the plot, in this case 1.00, 0.00, and 0.00, respectively. The top
right panel displays the sequence of the protein with residues for

which no prediction is obtained marked in light grey, consistent

predictions in green, ambiguous predictions in yellow, and dynamic

residues (with RCI-S2 \ 0.5) in blue. The RCI-S2 value is shown as a

function of residue number in the bottom right panel, together with

the predicted secondary structure (red, helix; aqua, b-sheet). The

height of the bars reflects the probability assigned by the neural

network secondary structure prediction
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et al. 2000), BAF (Cai et al. 1998), and TolR (Parsons et al.

2008), determined at high resolution by NMR with the aid

of RDCs, and nine proteins whose NMR assignments and

X-ray structures have recently become available (Table 2).

The statistics for the TALOS? predictions on these new

proteins are very similar to those observed for the 200

protein database, with 90% of the residues predicted as

‘‘unambiguous’’, and an error rate below 2.0%.

It is perhaps interesting to note that our reported error rate

of the TALOS? predictions in all likelihood significantly

overestimates the true error rate: Many of the ‘‘erroneous’’

predictions occur outside of regions of secondary structure,

where the X-ray and solution structures may actually differ

from one another. An interesting example in this respect is

the protein FluA, for which multiple X-ray structures are

available. Comparing the TALOS? predictions to these

structures shows three to seven ‘‘errors’’, depending on

which reference structure is used (Fig. S4; Table S4).

However, not a single one of these ‘‘erroneous’’ predictions

differs consistently with all three X-ray structures, suggest-

ing that the TALOS? result simply reflects the difference

between the solution state of the protein and the various

states of these residues observed by X-ray crystallography.

Secondary structure prediction by TALOS?

NMR chemical shifts have been widely used to identify the

secondary structure elements in proteins (Wishart et al.

1992; Huang et al. 1997; Wang and Jardetzky 2002; Hung

and Samudrala 2003). Here, we also evaluate the prediction

performance of our neural network for secondary structure

prediction, using the same input data as used above for

grouping the backbone torsion angles in three regions, and

we include the predicted secondary structure as an addi-

tional feature of the TALOS? program.

By training a 3-3 ANN model, evaluation of TALOS?

secondary structure prediction over the 200 protein data-

base, using the cross validation ‘‘leave one out’’ method,

yields Q ratios (Eq. 4) of 94.3, 88.3 and 82.4% for helix,

extended, and loop residues, respectively. The overall Q3

of 88.9% compares favorably with the 82–89% Q3 range

reported by the other NMR-based secondary structure

prediction programs, perhaps because TALOS? uses a

larger set of backbone chemical shifts per residue than

most of the other programs.

Evaluation of the secondary structure prediction effi-

ciency on the set of 13 proteins whose data are not part of

the database yields very similar results, again proving that

over-training of our neural network was successfully

avoided. Details of the secondary structure prediction

efficiency of TALOS? and the popular CSI (Wishart et al.

1992), PSSI (Wang and Jardetzky 2002), and PsiCSI (Hung

and Samudrala 2003) programs are presented in Table S3.

Concluding remarks

TALOS? offers a significant extension of our ability to

predict protein backbone torsion angles from chemical

shifts. Compared to the original TALOS program, the

fraction of residues whose backbone angles cannot be

predicted unambiguously is reduced by more than 50%.

The additional residues whose torsion angles now can be

predicted reliably are located outside of regions of

Table 1 TALOS and TALOS? predictions for the 200 database proteins database

Consistent Ambiguous \sd[a (//w) Rmsdb (//w)

Good Bad Warn

TALOS 18,714 (72.31%c) 475d (2.48%e) 6,693 (25.86%c) 12.2/11.4 (12.1/11.3) 12.9/12.3 (12.8/12.2)

TALOS? 23,030 (86.35%c) 580d (2.46%e) 3,062 (11.48%c) 12.6/12.2 (11.7/11.2) 13.5/12.8 (12.6/12.0)

TALOS and TALOS? runs were performed for 200 proteins present in its reference database, with all residues from the protein under

investigation excluded from the search
a Average standard deviation of //w torsion angles for the center residues of the 10 best matched tri-peptides for ‘‘Good’’ TALOS/TALOS?

predictions, representing the average precision of the predictions; the statistics over consensus predictions, i.e. residues with unambiguous and

good predictions by both TALOS and TALOS?, are given in parentheses
b Rmsd values between TALOS or TALOS? predicted //w angles (‘‘Good’’ predictions only) and observed //w angles in the reference

structures, representing the average accuracy of the predictions; values corresponding to the consensus TALOS/TALOS? ‘‘Good’’ predictions

are given in parentheses
c Percentage relative to the total number of residues for which predictions are calculated
d Based on the criterion {[|/obs - /pred| [ 60� or |wobs - wpred| [ 60�] and |/obs - /pred ? wobs - wpred| [ 60�} or {|/obs - /pred| [ 90� or

|wobs - wpred| [ 90�}
e Percentage relative to the number of total ‘‘consistently’’ predicted residues (‘‘Good’’ ? ’’Bad’’). If an alternate definition is used for what

constitutes a ‘‘bad’’ prediction, namely {|/obs - /pred| [ 2*sd/ or |wobs - wpred| [ 2*sdw and |/obs - /pred ? wobs - wpred| [ 2*(sd/
? sdw)}, where sd/ and sdw are the reported standard deviations for / and w, and using minimum cutoff values for sd/ and sdw of 10�, very

similar fractions of predictions are designated ‘‘bad’’ (2.50% for TALOS, and 2.45% for TALOS?)
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secondary structure, where typically such restraints are

most needed. Considering that backbone chemical shifts

are obtained early on during the NMR study of a protein,

these results can guide the further data analysis and may

prove particularly important for the study of larger pro-

teins, where typically the number of NOE restraints per

residue tends to drop significantly. In this respect it is

interesting to note that addition of the unambiguous

TALOS? torsion angle predictions for the protein malate

synthase G, the largest single chain protein whose structure

has been determined by NMR, falls closer to the X-ray

structure (2.6 vs. 3.3 Å Ca rmsd) when the new TALOS?

restraints are included instead of the TALOS restraints

used originally (Tugarinov et al. 2005; Grishaev et al.

2008).

The improvement in performance of TALOS? over

TALOS is primarily the result of its incorporation of the

neural network output into the selection of database frag-

ments that most closely match the residues in the query

protein. It is conceivable that with further training and

refinement, in combination with an even larger database,

small additional improvements may be attainable. On the

other hand, a significant fraction of the residues whose

backbone torsion angles cannot be predicted unambigu-

ously by TALOS? exhibit high amplitude backbone

motions, as evidenced by their RCI-derived order param-

eters, and often are found at the termini of the protein or in

longer loop regions. For such regions, it is unlikely that

further improvements to TALOS? will provide significant

enhancements.

Software availability

The TALOS? software package can be downloaded from

http://spin.niddk.nih.gov/bax/.

Supplementary material available

Four tables with details regarding the performance of the

neural network performance and TALOS? performance;

Table 2 TALOS and TALOS? results for test proteins which are not included in the database

Protein name PDB/BMRB a%/b%b TALOS TALOS?

Good/Warn/Bad Rmsdc (//w) Good/Warn/Dynd/Bad Rmsde (//w) Rmsdc (//w)

gb3a 2OED 25/42 44/10/0 12.9/13.1 51/3/0/0 13.1/11.7 12.9/14.4

DinIa 1GHH 44/23 64/15/0 10.1/7.6 75/4/0/0 10.9/7.9 12.5/9.9

TolRa 2JWL 36/28 55/13/0 14.9/16.1 62/7/0/0 12.4/11.9 14.3/13.3

BAFa 2EZX/1CI4 65/0 61/25/1 7.8/6.7 71/12/3/1 8.1/6.7 11.1/8.8

HR2106 2HZ5/6210 30/28 77/16/1 21.6/18.4 87/5/1/2(1f) 20.2/19.1 20.1/19.0

TM1112 1O5U/5357 9/51 71/15/0 15.0/11.7 81/5/0/1(1f) 15.0/11.5 16.0/11.8

TM1442 1VC1/5921 38/21 85/19/2(1f) 19.5/19.2 96/9/0/2(1f) 19.6/19.4 19.5/19.6

XcR50 1TTZ/6363 32/18 57/14/0 12.4/10.1 65/6/0/1(1f) 11.7/9.9 13.4/13.3

MrR110 3E0E/15849 8/58 72/24/0 13.4/12.9 81/11/4/0 14.5/12.7 14.7/13.0

Spo0F 1SRR/5899 44/19 92/22/1 12.1/13.5 100/15/0/2(1f) 12.2/13.2 12.5/13.5

Paxillin 2VZC/15760 58/0 100/26/1 11.0/10.7 117/9/0/2 10.7/10.2 13.4/12.4

CtR107 3E0H/16097 25/37 108/39/3(1f) 18.6/14.5 127/18/6/4(3f) 17.4/13.8 17.6/15.5

HR41 3EVX/6546 36/16 112/43/3(1f) 14.4/17.3 137/15/0/5(2f) 13.7/13.3 16.1/14.2

Average 76.1/22.9/1.3g 14.1/13.2 88.8/8.7/1.1/1.7h 13.8/12.4 14.8/13.7

a Protein for which an RDC-refined NMR reference structure is used
b Percentage of a-helical and b-sheet residues in the protein
c Rmsd values of the ‘‘Good’’ predictions relative to the reference structure
d Dynamic residues identified by RCI S2 \ 0.5
e Rmsd values of the consensus (see Table 1, footnote a) TALOS/TALOS? ‘‘Good’’ predictions relative to the highest resolution reference

structure
f Number of inconsistent ‘‘Bad’’ predictions when comparing TALOS/TALOS? predictions relative to multiple reference structures
g Percentage of total Good/Warning/Bad predictions; percentage of Bad predictions are calculated relative to the total number of ‘‘unambig-

uously’’ predicted residues (i.e., residues with ‘‘Good’’ and ‘‘Bad’’ predictions)
h Percentage of total Good/Warning/Dynamic/Bad predictions; percentage of Bad predictions are calculated relative to the total number of

predictable residues (i.e., residues with ‘‘Good’’ and ‘‘Bad’’ predictions)

J Biomol NMR (2009) 44:213–223 221

123

http://spin.niddk.nih.gov/bax/


four figures detailing the neural network architecture and

the performance of TALOS?; a user guide for the

TALOS? program.
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